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Abstract 
 
Physiology-based systems have lead to implicit interaction models where signals 
coming from the human body are used to control devices and applications by means 
different to muscular movement or speech. However, most of these systems are focused 
on single-user modes, and its application in collaborative scenarios is still scarce. In this 
project we present a system for collaborative sound generation and control built from a 
Hybrid Brain-Computer Interface device (BCI) featuring Electroencephalogram (EEG) 
and Electrocardiogram (ECG), and the reactable, a music instrument based on a 
Tangible User Interface (TUI). We assessed collaborative performance and motivational 
variables in a task-oriented experiment based on the imitation of pre-recorded sound 
references. Measures were obtained through self-reported questionnaires. Teams of 
subjects with no previous experience on the reactable used two different methods for 
sound generation and control: implicit interaction, through physiological signals (EEG 
& ECG), and implicit interaction by means of physical manipulation.  

The study has revealed four main effects of physiology-based interaction applied to a 
collaborative performance in a TUI. (1) Teams working with a combination of implicit 
and explicit models of interaction declared less difficulty and greater ease to solve the 
tasks. (2) They also shown higher levels of confidence during the performance. (3) The 
distribution of control and leadership was balance and didn’t show significant difference 
between the two proposed interaction paradigms. (4) Teams have shown a significant 
correlation in key aspects for collaboration, such as confidence and motivation over 
time.  

These findings suggest that the physiological signal extraction and processing 
implemented in this system could be linked to subtler descriptors related to affective 
states, emotional responses or music perception, allowing more advanced and stable 
methods for sound generation and control. We also propose to include previous training 
sessions, and carrying on experiments with musicians to test the expressiveness of the 
proposed system.      

This work presents a friendly configuration for a collaborative sound composition 
experience. It encourages the development of Computer-Supported Collaborative 
Systems where subtle sources of information such as physiological states effectively 
support an explicit model of interaction, as in the case of tangible tabletops interfaces, 
by means of non-invasive, wireless devices that preserve adequate conditions for live 
performance. 
Keywords: Physiology, Brain-Computer Interfaces (BCI), Computer-Supported 
Collaborative Work (CSCW), Tangible User Interfaces (TUI), tabletops, reactable, 
sound generation, sound control, sonification, biofeedback, interaction, music.
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1. INTRODUCTION 

1.1 Problem Statement  

In recent years, physiology-based systems have lead to implicit models of interaction 
where user’s physiological signals, such as brainwave activity, skin response or heart 
rate, are monitored, mapped and transformed in commands to control devices and 
applications [39]. This interaction paradigm is based on internal states of the human 
body and has been explored by several disciplines such as cognitive psychology [37], 
neuroscience [60,28], affective and physiological computing [40,2], and Human 
Computer Interaction (HCI) [3,19]. 
However, most of the physiology-based interaction studies are focused in single-user 
modes, while its application in collaborative scenarios or in Computer-Supported 
Collaborative Work (CSCW) is still scarce. The use of BCI systems and other 
physiology devices for rehabilitation of motor-impaired subjects commonly requires 
individual conditions of use and isolation [60], but its application in healthy users as a 
mean for communication and control is still tested under similar scenarios [8].  
In this project we propose the implementation of implicit interaction through a BCI 
device in a multi-user environment for collaboration. With this aim, we have developed 
an interactive tabletop system for real-time sound generation and control, which 
presents both implicit and explicit models of collaboration. The implicit model is based 
on a BCI that measures electroencephalogram (EEG) and electrocardiogram (ECG) for 
real-time sound generation and control. The explicit model, on its turn, uses the 
reactable [21] an interactive music instrument based on a tabletop surface and tangibles 
objects for music creation and live performance. The reactable has been widely tested in 
collaborative scenarios for music, education and entertainment purposes [45].   

This Hybrid Interface, shaped by a BCI device and the reactable, presents a sound-
processing model mainly dependent on physiological measures, which is the base of the 
implicit interaction we propose. The relation with the explicit interaction model is given 
by the dynamic linking and modular control of the reactable [19], which allow direct 
control and sound generation by manipulating tangible objects (pucks) on the surface of 
the table. Inspired by this, we have connected the physiological signals to new tangible 
objects that we have called the physiopucks. This method allows explicit representation 
of physiological states through both sound and physical objects, and also permits a 
collaborative musical experience with direct manipulation by multiple users, 
simultaneously. 

To test the effect of physiology-based interaction in the collaborative music system, we 
carried on experiments based on collaborative tasks between pairs. The couples 
included a Standard User (sound generation and control through tangible manipulation) 
and a Physiology User (sound generation and control through physiological signals). 
The assessment method was based on declarative measures of performance and 
motivation during the collaborative music performance.  
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1.2 Physiology-based Interaction and Collaborative 

Performance. State of the Art. 

a) Interaction and physiological states. 

The monitoring of physiological states is commonly used in the study of cognitive 
processes such as affect [14], attention and decision-making, strategic planning, and 
learning. 

Two key aspects of appraising human physiological signals are the sensing systems and 
the recognition techniques [16], which are used for adapting the system’s response 
accordingly to specific states, or for providing a coherent feedback to the users. Several 
methods are applied for this kind of recognition. EEG, ECG, electro-oculogram (EOG), 
respiratory patterns and electro-dermal activity are widely used for physiology 
recognition [2], especially due to the recent improvements in sensing and monitoring 
systems.   
Devices for physiological measure are becoming less invasive, unobtrusive, and apt for 
real-time operation, even in daily life environments [29]. Therefore, adding a 
physiological and implicit component to human computer interaction is possible 
through wearable devices that support skin-surface sensing and long-term monitoring 
[41]. This scenario has encouraged the use of physiological interfaces for rehabilitation 
treatments of motor-impaired patients [60], but also in healthy or temporal disabled 
subjects [3,13]. Physiological computing has been used with entertainment purposes, 
such as videogames [4,11], training systems for attention and relaxation [34], and 
control of brain rhythms trough biofeedback [42]. 

b) Physiology and collaboration. 

Physiological states are multidimensional phenomena that involve the human nervous 
system and its relation with the surrounding environment. The importance of real world 
scenarios has been tackled by multimodal approaches in HCI [38] that highlighted the 
necessity of a context-sensitive analysis of human behavior. Certainly, collaborative 
experiences are one of those cases in which communication between participants is 
critical for a successful task achievement in order to reach optimal performance, 
synchronization and anticipation. In the same line, works on perceptual interfaces [57] 
aims to develop technologies based on the rules of human-human interaction and its 
physical and social context. This approach has lead to more intuitive models of group 
interaction, based on everyday knowledge.  
But, what is the role of physiological states in collaborative experiences? Collaborative 
scenarios can be defined as activities organized among groups in which individuals 
interact with others in order to achieve a better productivity or performance [46], both 
factors being extreme sensitive to the information available in the collaborative 
environment. This dependence can be solved by means of different sources of 
information: explicit (factors such as the physical context of interaction and body 
gestures) and implicit (partner’s internal states such as emotions, cognitive process, 
attention guidance, etc.). Whereas the former is represented in the physical world as a 
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repertoire of information commonly accessed through the senses, the latter is guessed 
by perceiving (mostly through vision) physical and body cues, over which processes of 
anticipation, synchronization and decision-making are executed. Physiological states are 
a key part of this repertoire of implicit information of human behavior in collaborative 
experiences, and by means of wearable computers ready to transform physiological 
signals from the human body into real-time inputs, it is now possible to provide an 
explicit representation of such a subtle process (see figure 1). 
 

 
Figure 1: The role of physiological states in collaborative experiences.  

c) Physiological Sonification. 

Together with sensing and signal recognition, an expressive model is needed to properly 
map a specific physiological state to an explicit representation or biofeedback [2]. This 
expressivity can be achieved through auditory display techniques such as sonification, 
which generates a signal representation by means of sound [15]. This method allows 
subjects to perceive the complexity of subtle and emerging physiological processes by 
listening.  

Researches on electronic music systems were pioneer in the implementation of devices 
based on bioelectric signals. Since the first biofeedback techniques implemented by 
Rosenboom during the mid-seventies for electronic music control [48], much work has 
been done in the field of music and physiological sensing. Some of the first 
experimental physiological devices for musical application include the Music Activated 
Danced Directed Music (MADDM)[12], which translated the movements of a dancer 
into synthesized sounds through myoelectric signals; or Biomuse [55], that was also 
based on synthesized music and offered different configurations for music and 
rehabilitation purposes using EMG, EEG and EOG (see figure 2). 
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Figure 2: Atau Tanaka performing with BioMuse at the Manca Festival (1995) [55:392] 

1.3 Brain-Computer Interfaces for Music and Sonification. 

State of the Art. 

a) Defining Brain-Computer Interfaces 

A Brain-Computer Interface is a system that transforms signals originating from the 
human brain into commands that can control devices or applications [39]. It provides a 
nonmuscular communication channel that has been widely used in motor rehabilitation 
and in patients suffering other neurological injuries. While for disable subjects this 
represents a medium of action and communication with their physical environment, 
nowadays these devices also permit healthy people to change and enhance their 
experience of the everyday world by means different to speech and body gestures (see 
figure 3). 
A BCI use a variety of electrophysiological signals as input data, such as cortical 
potentials, evoke and event related potentials (ERP) measured using skin-contact or 
implanted electrodes. Through signal processing, it is possible to extract specific 
features of EEG and use them to control computer devices. Audiovisual stimuli and 
motor imagery are sources of change in neural activity patterns that can be measure in 
real-time through EEG. Selective attention and concentration also alter different brain 
signals of evoked potentials that can be used as an input for a BCI. The most common 
applications of BCI systems are rehabilitation for motor-impaired subjects, control of 
neuroprosthesis, neurofeedback therapies, virtual reality [29] and videogames [11]. 
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Figure 3: Diagram of a BCI system. Signals from the userʼs brain are captured and processed to 
extract specific features used for classification. The classified output is used as a device or 
application command, which also provides feedback to the user (Based on 39:369). 

b) Historical account of BCI and music 

The first measurement of human brainwaves was made in the 1920‘s by Hans Berger 
who termed it Elektrenkephalogramm, a brain electricity writing [5]. In the 1970’s 
Jacques Vidal worked on the first attempt toward a BCI system [58] but it wasn’t till the 
1990’s when the field started to make significant progress in the realm of human-
computer interaction. At that time, Wolpaw et al. developed a BCI system, which 
allowed the control of a computer cursor using EEG’s alpha levels [59].  

Regarding BCIs for musical applications, a paper by Adrian & Matthews [1] from 1934 
reporting a method for listening to the EEG, based on Berger's founding’s, can be 
considered as one of the first references in the field. However, the first relevant 
achievement on BCI applied to music belongs to Alvin Lucier, who composed the first 
musical piece using EEG: Music for Solo performer in 1965 [30]. In [48] David 
Rosenboom -early pioneer on the field of musical interfaces with the human nervous 
system- considers Lucier’s work as one of the first applications of physiological signals 
and biofeedback in the arts that achieved a direct mapping of a soloist's alpha rhythms 
onto the orchestrational palette of a percussion ensemble. On the other hand, Richard 
Teitelbaum's Organ Music and In Tune, both realized in 1968, added heart beat and 
breathing sounds to EEG signals in the creation of electronic music textures [56]. 
In the 1970’s, Rosenboom began his own research on EEG for generating music content 
[48] under the hypothesis that it might be possible to detect certain aspects of the 
musical experience in the EEG signal. In his attempt to go beyond direct signification of 
EEG signals and, instead, use these to create music, he developed The Performing Brain 
[47] and Portable gold and philosophers’ stones (Music from Brains in Four (figure 4), 
in which he introduced a musical system whose parameters where driven by EEG 
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believed to be associated with shifts of the performer's selective attention. From 1970 to 
1971, Rosenboom worked on an audiovisual demonstration-participation-performance 
event entitled Ecology of the Skin [48] that involved biofeedback monitoring of 
brainwaves, and heart signals from performers and audience that were translated into 
musical textures. 

 
Figure 4: System diagram for Rosenboom’s Portable gold and philosophers’ stones (Music from 
Brains in Four) (1972). Score of a musical composition that includes measurement and analysis 

of EEG signals, GSR and body temperature changes from a quartet of performers [48:24]   

 

Recently, Miranda et al. have worked on protocols to associate EEG-acquired data with 
musical imagination [34], reporting new techniques and devices, such as the Brain-
Computer Music Interface (BCMI) Piano System [32] that trains the computer to 
identify EEG patterns associated with specific cognitive musical tasks. Miranda and 
Soucaret also developed a BCMI to control a generative system for music mixing [32]. 

c) Categories of BCI systems 

Authors agree on the existence of many well known and easily detectable neural events, 
such as visual evoked potentials, slow cortical potentials, P300 events and imagined 
movement [26,28,39]. However, researchers like Swift et al. [54] and Allison et al. [3] 
states that the neural events which form the basis of BCI communication often have 
very little to do with the goals or interaction metaphors of the interface itself (e.g. in 
selecting letters for text composition, participants may be required to repeatedly imagine 
moving their left or right feet [25]). Swift et al. call these types of interfaces Artificial 
BCIs [54]. At the other side of the BCI spectrum they locate those designs that presents 
a direct and intuitive relationship between the neural events to be detected and the 
purpose of the interface. According to Swift and colleagues, these Natural BCIs are 
based on more abstract measures of cognitive processes such as attention, emotion and 
creativity. Therefore, BCIs offer interesting possibilities for electronic music 
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composition and performance, as measurements of neural activity can be used either to 
complement or to replace musical input devices such as MIDI controller or keyboards. 

According to this line of analysis, most of the current musical BCI systems have 
primarily taken an artificial BCI approach: a participant is trained to perform standard 
artificial BCI “tricks”, and the resulting measures are used to control or modulate the 
output of a music generation engine.  

Miranda, Durrant and Anders have proposed three main categories of BCI systems [33]: 
1. User oriented BCIs: the computer adapt to the user by learning to associate specific 
EEG patterns to control a device (e.g. a wheelchair). 
2. Computer oriented BCIs: the user adapts to the computer. Users learn to control 
specific aspects of the EEG signal acquisition, affording them the ability to control 
events on the environment (e.g. selecting letters for writing words). 
3. Mutually oriented BCIs: combine the functionality of both previous categories: 
pattern classification and biofeedback (e.g. moving a pointer on a computer screen). 
The authors states that the great majority of BCI projects applied to music controlling 
associate specific EEG characteristics (e.g alpha rhythms) to particular musical actions, 
which means computer oriented systems where the user needs to learn to control their 
brainwave generation.  

d) Main challenges of BCI systems. 

For those researchers working on BCI technologies for the real world [35,3], most of 
the existing BCI applications were designed largely for training and demonstration 
purposes. On [35] Moore et al. describe four main challenges inherent in employing 
BCI for real-world tasks: 
• Information transfer rate (bandwidth): transfer rates for experienced subjects and 

well-tuned BCI systems are relatively low, in the vicinity of 24b (roughly three 
characters)/min. 

• High error rate: a significant complicating factor in the slow information transfer 
rate of BCI users is the high probability of errors. 

• Autonomy: BCI systems require extensive assistance from caretakers who need to 
apply electrodes or signal-receiving devices before a user can communicate. 
Furthermore, most BCI systems are system-initiated, meaning that the user cannot 
turn them on and off independently. This results in what is termed the Midas touch 
problem—the BCI system interprets all brain activity as input, so how can the user 
communicate the intent to control the system? 

• Cognitive load: Most BCI systems are tested in quiet laboratory environments, where 
users are able to concentrate on the task at hand with minimal distractions. BCI users 
in the real world have to deal with much more complex situations, including the 
cognitive load of the task being performed, emotional responses, interactions with 
other people, and possibly even safety considerations. 

Regarding BCI and music, Miranda et al. [33] strive for a new research area on BCMI 
that involve three major challenging problems: 
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• The extraction of meaningful information from signals emanating directly from the 
brain, to reach control beyond the standard EEG rhythms 

• The design of generative music techniques that respond to such information. 
• The training of subjects to use the system.  

The authors states that this trend on BCI research for musical creation will satisfy the 
necessities of a wide range of users: people with special needs and disabilities 
(permanent or temporal by carrying on specific tasks), music performers, composers, 
among others. 

1.4 BCI devices that inspired this project. 

a) The BCMI-Piano System. 

BCMI-Piano [34] is a BCI computer oriented system that looks for information in the 
EEG signal and match the findings with assigned generative music processes. It has four 
main modules (figure 5): 

1. Sensing: 7 pairs of EEG electrodes (bipolar montage) that sense the whole surface of 
the cortex. 
2. Analysis: generates 2 streams of control parameters: (1) Prominent frequency band in 
the signal, used by the music engine to generate the sound: two styles depending on 
whether the EEG indicates salient alpha levels (8-13Hz) or beta levels (14-33Hz) (2) 
Complexity of the signal, using Hjorth signal complexity analysis. The music engine 
uses this information to control the tempo and the loudness of the music.    
3. Music engine: contains the generative music rules. Each rule produces a musical bar 
or half-bar. 
4. Performance module: plays the music using a MIDI-enable acoustic piano.  

 
Figure 5: BCMI-Piano modules: (1) Spectral information is used to activate a music engine. (3) 
Generative music rules are applied to compose music on the fly, and the signal complexity is 

used to control the tempo of the music [34:3]. 
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The software engine generates music using rules extracted from given examples 
(transition matrix of what-follows-what), which allow a simple method to generate 
musical phrases with a beginning and an end determined by EEG information. 
Miranda also proposed a Generative Music System based on Constraints Programming 
[32]. A Constraint Satisfaction Problem (CSP) consists of a set of variables and 
mathematical relations between them, which usually presents a combinatorial problem; 
and a constraint solver may find one or more solutions. In the system proposed by 
Miranda, the user can define a wide range of musical CSPs, including rhythmic, 
harmonic, melodic and contrapuntal problems, like a set of "score objects". 
Hypothetically, the system receives the stream of pairs from EEG analysis data, which 
controls higher-level aspects of a forthcoming chord progression. The first value 
specifies whether a progression should form a cadence (cadence progression) or a chord 
sequence without any recognizable key (key-free progression). If the next progression is 
a cadence progression, then the key of the cadence is specified by the second value of 
the pair.  

b) The Neural Music Software. 

The Georgia State University BrainLab has developed The Neural Music Software [35] 
to translate brain signal and brain-signal patterns directly to Musical Instrument Device 
Interface (MIDI), allowing a tonal representation of the signal. The software has also 
been ported to Wadsworth’s BCI2000. 

c) Mind-Modulated Music. 

The Mind-Modulated Music (MMM) [54] is a BCI system designed by Swift and 
colleagues, which attempts to harness the natural brain activity of musicians to mold 
and modulate music, as it is being composed and played. This computer music 
instrument is part of a system, the Mind Attention Interface, which provides an interface 
to a virtual reality theatre using measures of a participant’s EEG, eye-gaze and head 
position. The theatre itself, and its spatialised sound system, closes a feedback loop 
through the participant. 

In the MMM, the authors describe a different approach to the design of a music BCI 
system, which differs from other interfaces in the types of neural activity that is detected 
and how it is used to generate music. This approach is based on measurements of 
functional connectivity between brain regions. 

Evidence of functional connectivity as an indicator of musical processing activity in the 
brain has been noted in [6], where musicians and non-musicians were monitored using 
an EEG system while listening to music. The results showed a statistically significant 
difference between the two groups, and give rise to the possibility to use real-time 
measures of functional connectivity as a feedback loop for music generation and 
control, which don’t derivate directly from the neural activity of the subject. 

In the MMM, The musical attention in the biomusician’s brain can be used to inform the 
quality or characteristics of the generated music. The music engine can then generate 
music that varies along some dimension. A mapping between parameters in a particular 
time-window was used to govern the evolution of the generated music. 
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In the MMM, musical variation has been indexed using Tonnetz, a topological 
representation of the 12 different notes of the musical scale (Figure 6). Its structure 
provides a quantifiable relationship between different harmonic triads. Therefore, the 
MMM music engine generates music by taking biased random walks around the chord 
triads of the Tonnetz to generate chord progressions for improvisation in the marked 
progression region. As χ increases, the harmonic walk becomes more expansive. Once 
the walk strays outside the region, the current chord becomes the new root of the 
progression, and the scale for improvisation is redefined. 

 
 

 

 
Figure 6: The Tonnetz. Visual representation [54:86] 

 

Using this method, a biomusician can control a musical stimulus merely by attending to 
it, or concentrating on it. Through this mean, the natural musical sensibility and 
cognitive tools of the musician are responsible for the modulation of the music. 
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1.5 Interactive Tabletop Systems for Collaborative 

Experiences. State of the Art. 

Several research studies have highlighted the potentials of tabletop devices as 
collaborative surfaces. The possibilities for co-located and co-present collaboration 
opened by this type of TUIs have been explored in several fields such as Computer-
Supported Collaborative work (CSCW) [50], learning [43], collaborative design [23], 
interactive storytelling [52] and collaborative scenarios for children [51]. 
Although collaboration through physical representation is considered one of the most 
important characteristics of tangible and tabletop interfaces, some authors have noticed 
the lack of a framework for a collaboration-sensitive design on TUIs [31]. Evaluations 
and assessment methods often focus in individual use during task-oriented tests, without 
providing clear results regarding the success of tangible systems in multi-user and 
collaborative scenarios.  
Several authors have proposed taxonomies for tabletop and tangible interface design 
[17,10], but these have been mostly descriptive and focused on system characteristics or 
functionality. Other researchers have analyzed collaborative experiences in tangible 
interaction, expanding the scope of TUIs through the interplay of physical and social 
experience [31]. Notions such as shareable interfaces propose interaction models 
centered in collocated groups of users and shared physical surfaces for collaboration [9]. 
These trends on tangible interface design represent a conceptual framework for 
collaborative learning and CSCW, encouraging the exploration of the collaborative 
potentials of tangible interfaces, compared to WIMP (Windows, Icons, Menus and 
Pointer) technologies and other traditional Graphic User Interfaces (GUI) based on 
single-user models.  

Action-centered perspectives on tangible interaction, as an alternative to data-centered 
approaches, also put emphasis in the collaborative use of such interfaces, offering a 
framework for meaningful and control of digital data in shareable surfaces [9]. This 
model highlights the importance of the context and the physical settings in the definition 
of a tangible interface for collaborative activities.  Following this line, several 
researchers are studying the potential of TUIs in the interplay of social, affective and 
collaborative activity [53]. 
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1.6 Interactive Tabletop Systems for Music. An introduction 

to the reactable. 

As has been noted by Jordà, music performance is one of the most archetypical group 
activities and one of the densest forms of human communication [21]. Under this 
perspective, TUIs such as tabletop systems, that physically represent digital information 
in graspable objects, have arisen as an exciting field for music performance. By 
combining low-level, sensitive control, with macro-structural control between user and 
system, tabletop interfaces allows multidimensional, continuous real-time interaction 
[21] and multi-user collaboration. On the other hand, the coupling of visual feedback 
and physical input control open a door for more intuitive models of interaction. 

Music performance with digital instruments mainly relies on sharing control over 
computational processes rather than sharing data among users. This is directly linked 
with the aforementioned action-centered paradigm of tangible interaction [9], which 
offers a promising framework for digital music performance, especially for direct and 
shared control between performers and machine. Tangible interfaces also offer real-time 
interaction [41], allowing both time and space continuity as in a traditional music 
performance. This scenario strongly contrast with conventional WIMP-based and 
single-user computer applications, built from discrete and constrained sequences of 
events.  
Aiming to explore the potential of tangible tabletop interfaces for live music 
performance, Alonso, Geiger, Jordà and Kaltenbrunner, researchers of the MTG in 
Universitat Pompeu Fabra in Barcelona, started in 2003 the reactable project. The goal 
of the project was to design an intuitive and non-intimidating musical instrument [21] 
appropriate for both single-user and collaborative performances (figure 7). 

 

 
Figure 7: Collaborative performance using the  reactable. Sónar A Coruña 2010. 
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Multi-user interaction is a natural feature of the reactable, as the shared control between 
performers and the system is part of its multi-dimensionality, combining the essential 
aspects of traditional instruments (i.e. direct, simultaneous and fine control of several 
parameters with two hands) with the potential of digital tools (i.e. shared control 
between user and instrument over simultaneous processes, quick monitoring and direct 
access to discrete events). An interactive tabletop surface was implemented to enhance 
control, monitoring and feedback information both for individual and collaborative 
performance. Starting for its circular design, the reactable seeks to maximize 
communication bandwidth in every direction: between human performers and the 
computer, between the computer and the performers, and between the performers 
themselves [21]. 
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2. SYSTEM ARCHITECTURE  

2.1 Physiology-Based Sonification in a Tabletop Interface for 

Collaborative Experiences. 

In this report we present a hybrid interface for sound generation and control based in 
two devices: a wireless BCI and the reactable. While the former measures two 
physiological signals (EEG and ECG) from the users through a non-invasive setup, the 
latter represents the physical interface for music collaboration1. In the following section 
we describe the system architecture, starting from the physiological signal extraction 
and processing, the sound engine and its parameters for sound generation and control, 
and finishing with the mapping we have applied for a physiology-based sonification. 

a) Physiological Signal Extraction and Processing. 

For physiological signal extraction we used Starlab’s Enobio, a wearable, modular and 
wireless electrophysiology sensor system for capture three biopotentials: EEG, ECG 
and EOG (Figure 8). The system features 4 channels connected to dry active electrodes 
using Carbon Nanotubes (CNT) [49] (figure 9) with a sample rate of 250hz, a resolution 
of 0.589µV, maximum Signal-to-Noise Ratio of 83db, a 16-bit Successive-
Approximation Register (SAR) Analog-to-Digital Converter, and an automatic offset 
compensation for each channel. The data captured by the electrodes is amplified and 
then streamed via IEEE802.15.4 PHY to a server application running in a local host for 
data recording, display and transmission to the sound engine (client) via TCP/IP (figure 
10). 

            
Figure 8: Starlab Enobio. Wireless BCI device (www.starlab.es)  

                                                
1 video available in: http://www.vimeo.com/14675468 
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Figure 9: Dry electrode sensor for biopotential applications. The tip of the electrode is covered 
with multi-walled Carbon Nanotubes (CNT). Its brush-like structure penetrates the outer layers 

of the skin improving electrical contact [49:2] 

 

 

Figure 10: Starlab’s Enobio interface for reception, calibration and monitoring of physiological 
signals (EEG and ECG). The software features a control panel to check synchronization for 

each of the 4 channels available, a TCP server for data streaming and a file writer to save the 
values obtained during the measures.   

 

This system permits real-time EEG and ECG signal acquisition, without the need of any 
skin preparation or application of electrolytic gel, as it is commonly used for the 
extraction of low amplitude signals such as the case of EEG. By implementing dry CNT 
electrodes, we have avoided long preparation, application and stabilization times for 
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each electrode. This is a common procedure when working with electrophysiology 
electrodes, but might present serious constraints for real-time and out-of-the-lab 
performances, such as the collaborative music performance we propose.  Enobio is also 
a fast setup wireless device. It has to be placed in the forehead (frontal lobe), and 
electrodes can be easily adjusted using a headband.     

• EEG Placement:  one dry CNT electrode placed in the Frontal midline (Fz) lobe, 
according to the 10-20 International System [26]. 

• ECG Placement: one dry CNT electrode placed in the wrist using a wristband. 

 
Both signals are streamed to a server application for calibration, transmission and 
reception monitoring, and raw data visualization (Figure 11). 
 

 
Figure 11: Enobio interface. Monitoring of calibrated signals (in green) for EEG (channels 1,2 

and 3) and ECG (channel 4).   

 At this stage, we apply a digital filter to reduce environmental noise (usually centered 
between 50 and 60hz). Once the physiological signals are acquired, amplified and 
synchronized, the application enables a TCP/IP data port. The music engine thus 
connects to the TCP/IP server to process the EEG and ECG measures (see figure 12). 
 

Figure 12: System architecture. Signal extraction, processing and filtering. Sound engine and 
implementation for the reactable hardware.    
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b) Physiology-Based Sound Engine 

We decided to create a direct mapping between EEG spectral bands and the audible 
sound frequency spectrum. This EEG analysis and resynthesis as an audio signal 
appears as a sound generator puck in the reactable application. At the same time, ECG 
has been mapped to a puck to control tempo (BPM) in the reactable music engine 
(figure 13). 

To perform the real-time signal analysis and sound synthesis we opted for the use of the 
Pure Data computer music system [44] due to its openness and suitability for the task of 
real-time spectral analysis and resynthesis, and for its flexibility when defining 
mapping. 

 

 
Figure 13: Computer-Supported Collaborative System. Physiological signal extraction (EEG and 
ECG) through a BCI device. Physiopucks for audio generation and control using EEG and ECG 

measures. The reactable as a shareable surface for collaboration. 

 

c) EEG Signal Sonification (EEG Resynthesis) 

The Enobio device samples the EEG signal at a rate of 250hz. We process the signal 
coming from the BCI by first applying a DC block filter to contrast the signal drift and 
by then performing a frequency magnitude analysis (figure 14). The signal is processed 
in blocks of 256 samples with a hop-size of 15 samples, corresponding to about 16 
processed blocks per second. 

Each block is multiplied by a Hann window function of the same size. An FFT with a 
size of 256 samples is then performed, leading to a spectral resolution of about 0.97hz 
per frequency bin (figure 14). 
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(1) 

(2)          (3)  
Figure 14: Frequency magnitude analysis in Pure Data (1): blocks of 256 samples (16 

processed blocks per second) are multiplied by a Hann window (2). Then, an FFT analysis is 
performed, resulting in a spectral resolution of 0.97hz per frequency (3). 

 

The computed magnitude spectrum for each frame is then used to shape the spectrum of 
a white noise signal (Figure 15). Each frequency bin of the EEG is used to weight the 
first 128 frequency bins of a 256 bins white noise FFT. Working at 44.1khz for audio 
synthesis, we have a covered frequency range going from 0Hz to the 11025hz, with 
each frequency bin covering about 86Hz. The spectral magnitudes have been equalized 
by mean of weighting the chosen curve in order to emphasize the weaker higher 
frequencies (Figure 16). The sound resynthesis phase consists of an overlap-add of the 
inverse FFT of the weighted and equalized magnitude spectrum of each consecutive 
processed EEG signal block and is entirely handled by the Pure Data synthesis engine. 
 



 
 

 20 

 
Figure 15: Sound resynthesis of EEG signal in Pure Data: the spectral magnitude of the EEG 

measure is used to shape a white noise signal. The sound synthesis consist of an overlap-add 
of the inverse FFT of the magnitude spectrum of each EEG signal block.  

 

 

Figure 16: Physiology-based sound engine for EEG and ECG signals. The spectral magnitudes 
have been equalized (red circle) by mean of weighting the chosen curve in order to emphasize 

the weaker higher frequencies. 

 

This resynthesized audio signal is finally streamed over a TCP-IP/LAN connection to 
the server running the Reactable software to be injected into its synthesis engine. 

d) ECG Signal Processing for Tempo Tracking (ECG Tempo) 

We process the ECG signal by first applying an adaptive rescaling to the system. We 
look at a 2 seconds sliding window (500 samples) checking for the minimum and 
maximum values and we normalize the signal depending on that range (Figure 17). 
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Figure 17: ECG signal processing for tempo tracking based on ECG signals. Signal reception 
from BCI, DC control filter to contrast the signal drift and measure the average baseline value. 

Then, signal is sent to and adaptive rescaling module for ECG peak detection.   

 

We choose this adaptive rescaling system in order to compensate for the signal while at 
the same time not loosing peak resolution. 

Peaks in the ECG are detected by applying a simple threshold function. A heartbeat is 
detected if the normalized signal is above the 40% of the normalized range. A new 
heartbeat is then detected only if this signal falls below 30% (Figure 18). 
 

 
Figure 18: Threshold function for ECG peak detection in Pure Data. An adaptive rescaling 
compensates the signal without loosing peak resolution. A heartbeat is detected when the 

normalized signal is above the 40% of the range. A new heartbeat is detected only if the signal 
falls below 30% of the normalized range.   
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Figure 19 shows a complete diagram of the sound engine, the EEG and ECG signal 
processing. 

 
Figure 19: Physiology based sound engine, block diagram. Signal processing and sonification. 

e) Integration into the Reactable Software. 

The reactable’s sound synthesis and control methods follow a modular approach, a 
prevalent model in electronic music, which is based on the interconnection of sound 
generators and sound processors units. In the reactable this is achieved by relating pucks 
on the table surface, where each puck has a dedicated function for the generation, 
modification or control of sound. Reactable’s objects can be categorized into severeal 
functional groups such as audio generators, audiofilter, controllers (which provide 
additional variable control to any other object) or global objects (which affect the 
behavior of all objects within their area of influence). Each of this families is associated 
with a different puck shape and can have many different members, each with a disctint 
(human-readable) symbol in the surface. Because of this modular paradigm, the 
integration of our system into the standard reactable was straighforward. Two new 
pucks (physiopucks) were created, one as a sound generator (EEG resynthesis) and one 
as global object for controlling the tempo (BPM) of the whole table, based on the ECG 
rate (see table 1 and figure 20). 
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Table 1: Description of the physiopucks 

 
 

                      
 
Figure 20: the physiopucks during a performance. EEG (square object with brain icon) and ECG 

(star object with heart icon) interacting with standard objects in the reactable. 
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3. METHODS 

The following experiment has been created to assess performance and motivation in the 
proposed collaborative system using self-reported measures. As mentioned, the system 
introduces two different interaction models: explicit interaction through TUIs, and 
implicit interaction through a wireless BCI. The experiment in based on a collaborative 
music performance between two subjects using the tabletop system, and aims to answer 
the following research questions: 

 
RQ1: Can real-time feedback of physiological signals be perceived by users 
collaborating in a music performance? 
RQ2: How does physiology-based interaction affects a collaborative music experience 
in terms of motivation and performance? 

3.1 Experiment Setup and Protocol 

The experiment involved groups of 2 subjects with specific roles: one standard user 
(explicit interaction), that manipulates all the reactable pucks with its hands; and one 
physiology user (implicit interaction) that provides the physiological signals for the 
physiopucks (EEG and ECG measures through a BCI) (figure 21). 
 

 
Figure 21: Types of user collaborating during the tasks. A Physiology User provides the 

physiological signals (EEG and ECG) to the physiopucks. A Standard User participates in the 
sound generation and control by means of physical manipulation of the pucks.  
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The groups worked with a set of six standard reactable pucks plus the two physiopucks 
(see table 1 and figure 20). After a first explorative phase, the group listened to two 
audio samples specially recorded from physiological signals and using the same set of 
pucks. Then, they were asked to mimic the sounds with the pucks.  

Average time for each experiment was 40 minutes. The stages of the experiment were 
the following:  

• Subjects were received and guided to a desk. Once there, they were asked to sign 
a consent form and authorization for the academic use of the data generated 
during the experiment (duration: 3 min) 

• The physiology user was guided to a sector prepared for BCI setup and 
calibration (duration: 5min).  

• Subjects filled out a pre-test questionnaire (duration: 5min).  
• Explorative phase: Subjects received information about the reactable and the set 

of available pucks. Next, the subjects had a period for testing and exploration 
before the beginning of the tasks (duration: 8min). 

• Task execution: the subjects listened a sound sample of 20 seconds length. Then, 
the group had up to 5 minutes to mimic the sound sample. During the task, the 
standard user controlled the pucks with its hands, while the physiology user 
provided sound generation and control through the BCI. The subjects were able 
to ask for a replay of the sound of reference at anytime. There were 2 tasks in 
total (duration: 12min).  

• The subjects were asked to leave the reactable.      
• The physiology user was guided to an specific sector of the room to unmount the 

BCI device (duration: 3min)    
• The subjects filled out a post-test questionnaire (duration: 5min).  

3.2 Sample 

A total of 32 subjects, mean age of 28.09 y/old, 15 females and 17 males, with no 
experience using the reactable, participated in the experiment. They were distributed in 
two groups (Figure 22): 

• Real-time Group: 22 subjects. Signals from the physiology user were mapped in 
real-time to the physiopucks. 

• Sham Group (control group): 10 subjects. Physiopucks respond to pre-recorded 
signals, thus no real feedback is provided to the users. 
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Figure 22: Experimental setup and groups. In the Real-time Group (up) physiology user’s 

signals (EEG & ECG) are mapped to the physiopucks. In the Sham Group (down), real-time 
physiological signals are replaced by pre-recorded measures. 

3.3 Task Design 

The task entailed to replicate a pre-recorded sound sample created with the same objects 
that the users had available during the test. After the sample was played, the group had 
up to 5 minutes to mimic the sound. The subjects were able to replay the sample of 
reference at any time by asking the supervisor. 

There were specific roles for each user during the tasks. The standard user manipulated 
the pucks in the surface of the reactable (explicit interaction) whereas the physiology 
user performed through her own physiological signals mapped to the physiopucks. 
These pucks, which allow filtering and transformation, could use by both user, in 
combination with any other objects (figure 23 and 24).  
A tasks oriented design were applied to engage the groups in a composition process, 
encouraging collaboration between subjects in order to achieve a common goal 
(imitation of reference) and exploration of the tools available for both standard and 
physiology users. 
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Figure 23: pair of participants performing task 1 during the experiment. Physiology user located 

in the center, Standard user in the right. 

  

 

 

 
Figure 24: pair of participants exploring combinations of pucks and physiopucks during the 

explorative phase of the experiment. 
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3.4 Measures 

• Pre-test questionnaire: demographics, general music knowledge, electronic music 
skills and Reactable knowledge (see Appendix, Section 2). 

• Post-test questionnaire: Motivation, Enjoyment and Performance, based on a Likert-
scale of 5 point ranging from "strongly agree" to "strongly disagree", except where 
noted or implied (see Appendix, Section 2).  

• 9-point Bidimensional Self-Assessment Manikin pictorial scale (SAM) for valence 
and arousal, developed by Lang [27].  

In the experiment we assessed nine different factors concerning motivation and 
performance. The proposed model for Collaborative Performance was based on [18] and 
[20] and involves the following measures: 

1- Feedback: does the provided feedback (visual, sound, language) facilitates the 
collaboration between partners and motivates the interaction? (Example of statement: 
The visual interface of the reactable helped me to understand how to create sound 
compositions). 

2- Leadership and distribution of control: balance of control among subjects (Example 
of statement: I feel I was leading most of the work in every task).    

3- Social Affinity between partners: willingness to work together and collaborate 
(Example of statement: I have a relation of friendship with my partner). 

4- Nature of task: can the task be sub-divided and distributed among subjects? Does the 
subject lose the feeling of ownership on specific parts of the task? (Example of 
statement: Collaboration with my partner was difficult to carry on). 
 
The assessment of motivational aspects is based on [18]. The variable of Curiosity has 
been complemented with the Attitude scale of Eagly & Chaiken [7]. 
 
5- Curiosity: Does the user find the activity strange or unusual? (Example of statement: 
Performing with the reactable was an unusual experience).  
6- Difficulty: too easy / too difficult. Rates the difficulty level of the experience 
(Example of statement: The tasks were too difficult to be accomplished).  
7- Confidence: self-efficacy on achieving the tasks (Example of statement: I've 
accomplished the tasks with efficacy). 
8- Control: freedom to negotiate own paths to accomplish the task and the self-
perception of being in control of the experience (Example of statement: I was in control 
of the reactable).  

9- Motivation and perception of time: How does the nature of the experience change 
over time? Does the subject lose interest as time pass by? (Example of statement: The 
first tasks were more compelling and interesting than the latter). 



 
 

 30 



 
 

 31 

4. RESULTS 

We have compared the ratings for nine motivation and performance measures, and 
SAM ratings according to 4 groups of subjects: Real-time, Standard User (RT-S); Real-
time, Physiology Users (RT-P); Sham, Standard User (SH-S); and Sham, Physiology 
Users (SH-P) (see figure 25). The data was collected through computer-based 
questionnaires.  

 

 

Figure 25: Groups of analysis defined by type of user (Standard / Physiology) and type of group 
during task (Real-time / Sham). 

 

The ratings were processed using SPSS for the statistical analysis of each of the nine 
variables implemented in the performance/motivation assessment. Firstly, an 
independent-samples t-test was applied to compare the means of the dependent 
variables between sample groups, showing significance in three variables: difficulty, 
confidence and leadership. The analysis didn’t show any other significance for the rest 
of the variables. Secondly, the variation of measures by couples was evaluated by 
applying a Pearson correlation analysis. 

4.1 Motivation: Difficulty 

Two significances were found in the analysis of difficulty measures (see figure 26). 
First, within the Sham Group, Physiology Users declared higher difficulty than Standard 
Users ( t(9)= -3.57, p<0.01) (see Appendix, table 5). Second, in a inter-grupal analysis, 
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Physiology Users in the Sham Group also declared greater diffculty than Physiology 
Users in the Real-time Group ( t(15)= -2.37, p<0.05) (see Appendix, Table 12). 

 

 
Figure 26: Difficulty measures for the four groups of analysis (scale from 0 to 5). A significant 
difference was found in the comparison between users within the Sham Group ( t(9)= -3.57, 
p<0.01), with Physiology Users declaring higher difficulty (M=2.46, SD=0.18) than Standard 
users (M=1.93, SD=0.27). The difference between Physiology User in both groups was also 
significant ( t(15)= -2.37, p<0.05) as Physiology users in the Real-time Group declared less 
difficulty (M=1.96, SD=0.64) than the same type of user collaborating in the Sham Group. 

4.2 Motivation: Confidence 

The analysis of confidence (see figure 27) shown a significant difference between 
Standard Users in both Real-time and Sham Group ( t(15)=2.03, p<0.05) (see Appendix, 
table 10). Standard Users in the Real-time Group declared higher confidence (M=5.06, 
SD=1.45) than Standard Users in the Sham Group (M=3.55, SD=1.19). On the other 
hand, the confidence comparison between Physiology Users in the two groups also 
reached significance ( t(15)=2.24, p<0.05). Physiology Users in the Real-time Group 
declared greater confidence levels (M=4.90, SD=1.06) than the same type of users 
within the Sham Group (M=3.65, SD=0.96). Finally, significance was also found in the 
confidence comparison between Real-time and Sham groups (f=2.98, p<0.05) (see 
Appendix, table 8 and 9). 
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Figure 27: Confidence measures for the four groups of analysis (scale from 0 to 9). A significant 
difference was found in the comparison between Standard Users in both Real-time and Sham 

Group ( t(15)=2.03, p<0.05). The comparison for Physiology users in both Real-time and Sham 
group also shown a signifcance ( t(15)=2.24, p<0.05). 

4.3 Performance: Leadership 

Regarding leadership analysis (see figure 28), we found significance in the comparison 
of ratings of Standard and Physiology users within the Sham Group ( t(9)=-2.35, 
p<0.05) (see Appendix, table 6). In this case, Physiology Users declared higher 
leadership (M=2.80, SD=0.44) than Standard Users (M=1.80, SD=0.83). We also 
detected a significant difference of leadership when comparing Standard Users in Real-
time and Sham Groups ( t(15)=2.60, p<0.05) (see Appendix, table 11). The analysis 
shown that Standard Users in the Real-time group declared more leadership (M=3.00, 
SD=0.89) than the same type of users in the Sham Group.  
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Figure 28: Leadership measures for the four groups of analysis (scale from 0 to 5). A 

significance difference was found between Standard and Physiology users within the Sham 
Group (t(9)=2.35, p<0.05). The comparison of leadership ratings for Standard Users in both 

groups also reached significance, with the Real-time Standard Users showing greater 
leadership (t(15)=2.60, p<0.05).   

4.4 Correlations between team member’s ratings. 

Couples of users collaborating during the tasks has shown different levels of 
correlations among variables, specially for those reflecting the collaborative design of 
the experimental setup. Couples collaborating in the Real-time Group reflected a strong 
correlation for measures of confidence (Pearson's correlation r=0.91, p<0.01) that 
assessed self-efficacy on achieving the tasks and releabilty of partners (figure 29). For 
the same group, we also found a significant correlation for visual feedback coming from 
the system's interface (Pearson’s correlation r=0.67, p<0.05).         
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Figure 29: Pearson’s Correlation between confidence ratings given by the team memebers 

collaborating in the Real-Time Group (Standard Users and Physiology Users). Rating scale from 
1 to 10.  

Regarding couples in the Sham Group,  one variable strongly linked with the 
collaborative aspect of the experiment have shown significance in the correlation 
analysis. The measures of curiosity (does the subject finds the tasks attractive? Is the 
participant interested in perform more time?) reach strong correlation between pairs 
(p<0.05, coefficient=0.92). This shows that the curiosity of the users and their will to 
perform more time in order to find other sound combinations declined in a sistematic 
manner for both users collaborating.  
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5. DISCUSSION & FUTURE WORK 

5.1 Discussion 

In this report we have presented an interactive tabletop system, based on a hybrid 
interface shaped by a BCI and a TUI. Through this design, we wanted to assess the 
effect of physiology-based interaction in collaborative performances, and the perception 
of the real-time feedback of physiological signals during such an experience.  
The study has revealed three main effects of physiology-based interaction applied to a 
collaborative performance in a TUI. First, teams on the Real-time group (with 
physiological signals connected to the physiopucks) declared less difficulty and greater 
ease to solve the tasks, with similar levels for both Standard and Physiology users. In 
the Sham Group, on the other hand, Standard Users also shown low ratings of difficulty, 
but Physiology Users (whose physiological signals were pre-recorded, not streamed in 
real-time from the BCI) declared highest challenge levels.  

Secondly, and also related with the difficulty measures, users collaborating in the Real-
time group have shown higher levels of confidence during the tasks, describing the 
system as responsive and controllable during explicit interaction (using both hands) and 
implicit interaction modes (by means of EEG and ECG measures). Some statements of 
the participants collected after the experiment also reinforce these measures: 
“I could see how the reactable responded to my BCI (…) and the visual feedback of the 
tempo controlled by my heart didn’t look delayed compared to the audio output. After a 
few minutes, I could start to control aspects of the BCI, and take out the heart rate puck 
if I wanted to define a different tempo (Physiology User, code ED03, see appendix, 
section 3). 

“One aspect I would highlight is the fact that you can control the objects (physiopucks) 
by exploring your brain activity or your heart rate, but also linking these with other 
reactable’s objects, or just taking it out of the surface of the table (…) Also it allow me 
to control the (physiology) signals of my partner using my hands and combining it with 
more traditional tools like filters, controllers or virtual instruments (Standard User, 
code ES09, see appendix, section 3).” 

As opposite, those subjects participating in the Sham Group declared:   
“I was able to recognize the audiovisual feedback coming from my BCI, but it didn’t 
look responsive to what I wanted to generate in the reactable (…) In sum, I think the 
system is difficult to control using the BCI (Physiology User, code CD01, see appendix, 
section 3).”  
“For me, the interaction was pretty straight forward, regardless I didn’t have any 
previous experience using the reactable. However, the collaboration with my partner 
was difficult to carry on and predict, as she couldn’t manage to control de BCI (…) We 
could combine normal reactable’s objects with the brain and heart (physiopucks) in 
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order to solve the tasks, but it was just too difficult to sustain any kind of sound for more 
that a couple of minutes (Standard User, code CS04, see appendix, section 3”    

 
In a third place, the distribution of control and leadership during the collaborative 
performance in the Real-Time Group was balance and didn’t show significant 
difference between the two proposed interaction paradigms (explicit through physical 
manipulation, and implicit through physiological measures). On the contrary, the Sham 
Group revealed significant differences in terms of leadership betwen the two types of 
users, as has been explained in Figure 28   
Regardling feedback perception, the significance detected in both difficulty and 
confidence measures lead us to confirm that physiology users were able to perceive 
whether the audiovisual feedback was linked to her physiological signals or not.    

Finally, the analysis by teams of participants has shown different levels of correlation 
between variables, which strenght the collaborative aspect of our experiemental setup. 
Teams interacting in the Real-time group shown a significant correlation in key aspects 
for collaboration, such as confidence in accomplish the tasks with efficacy and 
confidence in his/her partner. The correlation for the motivation measures also show 
how the collaborative performance was sostainend in terms of interest over time.  

On the contraty, users performing in the Sham Group revealed several flaws duirng the 
collaborative task. The analysis of correlations shown that the curiosity of the users and 
their will to perform more time in order to find more possible combinations declined in 
a sistematic manner for both users collaborating.  

5.2 Faced Problems and Future Work 

During the evaluation process, we have detected some challenges that might guide 
future works in the field of research. To start, we have applied a signal analysis and 
processing that allow a direct mapping between EEG spectral bands and the audible 
sound frequency spectrum. This process transforms the EEG signal in a resynthesis that 
appear as a sound generator puck in the reactable application. On the other hand, ECG 
patterns have been mapped to control tempo (BPM) in the reactable music engine. This 
paradigm for sonification allowed us to assess the effects of explicit and implicit 
interaction in a collaborative scenario and feedback perception. But considering the 
current findings, the physiological signal processing could be refined in order to find 
more subtle descriptors that describe the physiological substrate of phenomena such as 
affective states, emotional responses or music perception. This process will lead to more 
advanced methods for sound generation and control.  

We have also detected specific limitations in Enobio, the BCI device we used to design 
the Computer-Supported Collaborative System. The noise generated by muscular 
movements and body displacement produced an unstable signal during the music 
performance. Also, the device limits the electrode placement to the frontal cortex (Fz, 
Fp1 and Fp2 of the International 10-20 System of Electrode Placement), as it uses CNT 
dry electrodes that require direct skin contact. In order to improve signal acquisition and 
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cover other regions of the brain we suggest to test other BCI devices, even those that 
require electrolytic gel or special preparation, as these might allow a more stable signal 
extraction and a deeper monitoring of processes distributed in different brain regions 
(e.g. emotional states associated with alpha brainwaves, attention and metal tasks 
associated with alpha-theta rhythms). 
Regarding the experimental design and methods, we propose to complement the current 
self-reported assessment tools (questionnaires and SAM scale) with physiology-based 
techniques and sound analysis. The first feature will allow real-time monitoring of 
physiological states of multiple subjects during a collaborative performance, without 
affecting sound control and generation by means of BCI devices. A sound analysis 
method such a similarity tests on timber, frequency and tonality, will optimize the 
assessment of musical performance, making it quantifiable by comparing, for example, 
the sound references and the measures generated by the groups during each task.  Other 
options to strength the current experimental design would be to measure EEG and ECG 
from both participants, including a second BCI device. This will make the implicit 
interaction model available for multiple users. Finally, in order to explore the musical 
possibilities of our design, we suggest carrying on experiments with professional 
musicians and including previous training phases to test the expressiveness of the 
proposed CSCS.      
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6. CONCLUSION  

In this project we have presented two different models of interaction for collaborative 
performances: explicit interaction using physical manipulation, and implicit interaction 
by means of physiological signals.  

The analysis of measures has shown that the combination of these models doesn’t 
represent a high challenge for novel participants collaborating in a sound composition 
experience; it also tends to preserve a balanced distribution of control between subjects 
and encourage collaboration by means of a sustained confidence during tasks, for both 
types of interaction models.    
These results encourage the development of computer-supported collaborative systems 
where subtle sources of information such as affective and physiological states 
effectively support a more direct and explicit model of interaction, as in the case of 
tangible tabletops interfaces. This paradigm opens an exiting field to explore the 
expressiveness of sound generation and control based on the internal states of the 
human body, monitored with non-invasive, wireless devices that tend to preserve 
adequate conditions for live performance. 

 The confidence levels reached by real-time users (both standard and physiology) is a 
clear sign of how the combination of explicit and implicit interaction can enhance a 
collaborative experience that take place in a common tabletop surface. We consider this 
work as a first exploration in the path for a most robust and expressive collaborative 
music system. More work can be done regarding pattern extraction and signal 
processing of the physiological measures. Such research will allow for more complex 
and accurate descriptors for sound generation and control.  
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APPENDIX 

1. Tables of Results 

Real-time Group 

 User N Mean Std. Deviation Std. Error Mean 

Standard 11 1.5909 .66401 .20021 Motivation / 
Time 

Physiology 11 2.1818 .78335 .23619 

Table 2: Motivation along time for Standard and Physiology users in the Real-time Group. 
Means and SD. 

 
 

 

Real-time Group: Standard vs. Physiology Users 

  Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 

  95% Conf. Int. of 

the Diff. 

  F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differe

nce 

Std. 

Error 

Diff. Lower Upper 

Equal 

variances 

assumed 

.468 .502 -1.908 20 .071 -.59091 .30963 -1.23678 .05496 

Motivation

/ 

Time 

Equal 

variances 

not 

assumed 

  

-1.908 19.477 .071 -.59091 .30963 -1.23789 .05607 

Table 3: Motivation along time for Standard and Physiology users in the Real-time Group. 
Independent samples t-test. 
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Motivation / Time 

 95% Confidence Interval 
for Mean 

User 
N Mean 

Std. 
Deviation 

Std. 
Error 

Lower 
Bound Upper Bound Min Max 

RT- 
Standard 

11 1.5909 .66401 .20021 1.1448 2.0370 1.00 3.00 

RT- 
Physiolog
y 

11 2.1818 .78335 .23619 1.6556 2.7081 1.00 3.50 

SHAM- 
Standard 

5 2.1000 1.08397 .48477 .7541 3.4459 1.50 4.00 

SHAM - 
Physiolog
y 

5 1.7000 .44721 .20000 1.1447 2.2553 1.00 2.00 

Total 32 1.8906 .76973 .13607 1.6131 2.1681 1.00 4.00 

Table 4: Motivation along time for all group of users. Description of Means, Standard Deviation 
and Standard Error.  
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SHAM Group: Standard Users vs. Physiology Users. 

  Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 

  95% Conf. Int. of 

the Difference 

  F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differen

ce 

Std. Error 

Differenc

e Lower Upper 

Equal 

variance

s 

assumed 

.640 .447 -3.578 8 .007 -.53333 .14907 -.87709 -.18957 

Difficult

y / 

Challen

ge 

Equal 

variance

s not 

assumed 

  

-3.578 6.897 .009 -.53333 .14907 -.88691 -.17976 

Table 5: Difficulty level for Standard and Physiology users in the SHAM Group. Independent 
Samples t-test. 
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SHAM Gorup: Standard vs. Physiology Users. 

  Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 

  95% Conf. 

Interval of the 

Dif. 

  F Sig. t df 

Sig. 

(2-

taile

d) 

Mean 

Differenc

e 

Std. 

Error 

Differ

ence Lower Upper 

Equal 

variances 

assumed 

1.969 .198 -2.357 8 .046 -1.00000 .42426 -1.97835 -.02165 

Leadership 

Equal 

variances 

not 

assumed 

  

-2.357 6.113 .056 -1.00000 .42426 -2.03349 .03349 

Table 6: Leadership level for Standard and Physiology users in the SHAM Group. Independent 
Samples t-test. 

 

Confidence 

A 95% Confidence Interval for 

Mean 

Groups N Mean 

Std. 

Deviation 

Std. 

Error Lower Bound Upper Bound Minimum Maximum 

RT- STD 11 5.0682 1.45384 .43835 4.0915 6.0449 1.25 6.50 

RT-PHY 11 4.9091 1.06813 .32205 4.1915 5.6267 2.25 6.00 

SHAM-STD 5 3.5500 1.19111 .53268 2.0710 5.0290 1.75 4.75 

SHAM-PHY 5 3.6500 .96177 .43012 2.4558 4.8442 2.50 5.00 

Total 32 4.5547 1.33612 .23620 4.0730 5.0364 1.25 6.50 

Table 7: Confidence Levels for all groups. Description of means, Standard Error and Standard 
Deviation. 
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Confidence 

B Sum of Squares df Mean Square F Sig. 

Between Groups 13.421 3 4.474 2.988 .048 

Within Groups 41.920 28 1.497   

Total 55.342 31    

Table 8: Confidence level analysis between groups. 

 

 

 

 

 

 

Physiology Users: Real-time vs. SHAM Group. 

 Levene's Test for 

Equality of Variances t-test for Equality of Means 

Confidence 95% Confidence 

Interval of the 

Difference 

 F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differen

ce 

Std. Error 

Differenc

e Lower Upper 

Equal variances 

assumed 
.016 .902 2.247 14 .041 1.25909 .56032 .05733 2.46085 

Equal variances 

not assumed 

  
2.343 8.654 .045 1.25909 .53733 .03613 2.48205 

 Table 9: Confidence levels for Physiology users in Real-time and SHAM Group. Independet 
Sample t-test. 
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Standard Users: Real-time vs. SHAM Group 

 Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

Confidence 95% Conf. 

Interval of the 

Diff. 

 F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differenc

e 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

.011 .917 2.034 14 .061 1.51818 .74640 -.08270 3.11906 

Equal 

variances not 

assumed 

  

2.201 9.508 .054 1.51818 .68985 -.02977 3.06613 

Table 10: Confidence levels for Standard users in the Real-time and SHAM Group. Idenpendent 
Sample t-test. 

 

 

Standard Users: Real-time vs. SHAM Group 

 Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

Leaders
hip 95% Confidence Interval 

of the Difference 

 F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differenc

e 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

.125 .729 2.533 14 .024 1.20000 .47373 .18396 2.21604 

Equal 

variances 

not 

assumed 

  

2.602 8.336 .030 1.20000 .46122 .14382 2.25618 

Table 11: Leadership levels for Standard users in the Real-time and SHAM Group. Independet 
Samples t-test. 
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Physiology Users: Real-time vs. SHAM group. 

 Levene's Test 

for Equality of 

Variances t-test for Equality of Means 

Difficulty 95% Confidence Interval of 

the Difference 

 F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Differe

nce 

Std. Error 

Difference Lower Upper 

Equal 

variances 

assumed 

4.906 .044 -1.675 14 .116 -.49697 .29662 -1.13317 .13923 

Equal 

variances 

not 

assumed 

  

-2.371 12.867 .034 -.49697 .20964 -.95034 -.04360 

Table 12: Difficulty levels for Physiology users in the Real-time and SHAM group. Independet 
Samples t-test. 
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2. Questionnaire for assessing performance and motivation in 

computer-supported collaborative experiences 

 
Subjective ratings of performance and motivation were gathered by a two-part 
questionnaire. The constructs were created by grouping several questions (2 to 4 
questions for each variable) in order to provide a statistically significant result. The 
questionnaire presents a Likert-scale of 5 point ranging from "strongly agree" to 
"strongly disagree", except where noted or implied, and is based on user evaluation 
techniques; as well as constructs created specifically for the proposed research. 

A pre-test questionnaire was created to assess demographics (box 1.a), general music 
knowledge (box 1.b) and electronic music skills (box 1.c). The more general variables 
regarding demographics were taken from the System Usability Scale (SUS), which has 
been widely used as a general high-level evaluation tool for computer systems. The 
Internet Self-Efficacy Scale (Eastin and LaRose, 2000) was adapted to assess user’s 
previous knowledge about general and electronic music. 

A post-test questionnaire was designed to assess declarative ratings of motivation and 
performance. The former is based on Keller (1987), a two-dimensional model of 
motivation, featuring curiosity and challenge (box 2.a and 2.b). It has been 
complemented with the attitude scale of Eagly & Chaiken (1993) to determine the 
user’s emotional response to the experience (box 2.a); and involvement (Zaichowsky, 
1987), which focuses on how involved the participant was during the experiment (box 
2.b). 
The assessment of Performance is based on Issroff & del Soldato (1996) and Jones & 
Issroff (2005). The questions were specially designed to address the specific variables 
of this model: control (box 3.a); social affinity between partners (box 3.b); cognitive 
abilities (box 3.c); GUI feedback and its importance for (box 3.d); motivation over time 
(box 3.e); level of general satisfaction and enjoyment (box 3.f); and subjective rating of 
communication resources, named verbal, visual, sound and gesture communication (box 
3.g). 
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a) Pre Test Questionnaire (PT) 

Box 1 

DEMOGRAPHICS AND MUSIC KNOWLEDGE 

a) Demographics 
- Age: 
- Genre: 
- Nationality: 

 
b) General Music knowledge 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I can play music. 
 
2- I can compose music. 
 

 
c) Electronic Music knowledge 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I can play an electronic instrument. 
 
2- I understand how an electronic instrument works. 
 

 

b) Post Test Questionnaire 

Box 2 
MOTIVATION (MOT) 

a) Curiosity and Attitude 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- Performing with the reactable was an unusual experience  
 
2- I would like to perform more time in order to find more possible combinations 
and compositions. 
 
3- I want to know more about the reactable.  
 

 
 



 
 

 56 

 
 

b) Challenge and Involvement 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- The tasks were too difficult to be accomplished 
2- Collaboration with my partner was difficult to carry on. 
3 - My partner looked surpassed during the tasks. 
 

 
c) Confidence 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I've accomplished the tasks with efficacy.  
 
2 - My partner looked confident while performing the tasks 
 
From 0 to 10, please rate the level you think you achieve in the task. 
 
3- Task 1: 
4- Task 2:  

 
 
Box 3 

PERFORMANCE (PER) 
a) Control and Distribution of Control 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I was in control of the reactable 
 
2- The reactable was responsive to my actions. 
 
3- I was capable to negotiate different paths and options with my partner in 
order to achieve the tasks. 
 
4- I didn't feel the necessity of guiding instructions in order to make my choices.    
 
5 - I feel I was leading most of the work in every task. 
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b) Social Affinity between partners 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I have a relation of friendship with my partner.  (maybe can be a Yes/No 
question) 
 
2- I could communicate with my partner using the tools available for sound 
composition 
 

 
d) Feedback  
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- The visual interface of the reactable help me to understand how to create 
sound compositions. 
 
2- The interface of the reactable is more adequate for single-user modes.  
 

 
e) Time 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I felt bored or demotivated as time pass by.  
2- The first tasks were more compelling and interesting than the latter.  
 

 
 

f) Satisfaction 
Please describe the extent to which you agree or disagree with the following 
statements: 
 
1- I enjoyed the experience using the reactable 
 
2- Playing with my partner was a positive experience 
 
3- I can achieve better results performing the tasks by my own.    
 

 
g) Nature of the communication 
From 1 to 10, please rate the following resources according to the importance 
you think they had during the tasks: 
 
1- Verbal communication: 
2- Visual Feedback from the reactable: 
3- Body gestures from your partner: 
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