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Hi-C data is important for studying chromatin three-dimensional structure. However,
the resolution of most existing Hi-C data is generally coarse due to sequencing cost.
Therefore, it will be helpful if we can predict high-resolution Hi-C data from low-coverage
sequencing data. Here we developed a novel and simple computational method based
on deep learning named super-resolution Hi-C (SRHiC) to enhance the resolution of
Hi-C data. We verified SRHiC on Hi-C data in human cell line. We also evaluated the
generalization power of SRHiC by enhancing Hi-C data resolution in other human and
mouse cell types. Results showed that SRHiC outperforms the state-of-the-art methods
in accuracy of prediction.

Keywords: chromatin three-dimensional structure, convolutional neural network, Hi-C data, super-resolution
technology, human

INTRODUCTION

Chromatin three-dimensional (3D) structure is vital to biological processes (Cremer and Cremer,
2001; Bonev and Cavalli, 2016), such as genome replication, DNA mutation and repair,
transcription and so on. The advent of the high-throughput chromosome conformation capture
(Hi-C) technique makes it possible to measure all pair-wise interactions across the entire genome
(Lieberman-Aiden et al., 2009). The emergence and development of Hi-C technique have facilitated
several exciting discoveries of A/B compartment (Lieberman-Aiden et al., 2009), topological
associating domains (TADs) (Dixon et al., 2012), chromatin loops (Rao et al., 2014), and frequently
interacting regions (FIREs) (Schmitt et al., 2016).

High-throughput chromosome conformation capture data is usually represented as a contact
matrix Mn × n, where Mi,j indicates the number of observed interactions (read pair count)
between genomic regions i and j. The whole genome is partitioned into n fixed-size bins. Each
bin corresponds to each row or each column in the matrix. The size (e.g., 10 Kb) of each bin
is called the resolution of Hi-C contact matrix. Hi-C low-resolution data can be used to study
A/B compartment or TAD, and Hi-C high-resolution data can be used to explore more elaborate
structure (e.g., chromatin loop). Hi-C high-resolution data can offer deep insights into chromatin
3D structure. In general, high Hi-C sequencing coverage corresponds to high resolution of contact
matrix. However, the linear increase of resolution requires a quadratic increase in the total number
of sequencing reads. To address this issue, it is necessary to develop a computational method to
predict high-resolution Hi-C contact maps from low-resolution Hi-C data.

In the past years, deep learning has achieved great achievement in many fields, including
computer vision and natural language processing. Convolutional neural network (CNN) is a
feedforward neural network (see Supplementary Material for background of deep learning).
In biology, CNN have been applied in multiple subjects, such as predicting gene expression
(Chen et al., 2016), prediction of DNA sequence function (Zhou et al., 2018), ploy-A site prediction
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and so on (Ma et al., 2014; Zhang et al., 2015; Pavlovic et al.,
2017; Zeng and Gifford, 2017). Some pioneering studies have
used CNNs to predict high-resolution Hi-C contact matrix from
low-resolution Hi-C data. The Hi-C matrix was regarded as a
single-channel picture, which can be simply understood as a
gray-scale picture and can be processed using single-image super-
resolution (SISR) technology. HiCPlus (Zhang et al., 2018) is the
first work that applies a CNN, in which network architecture is
similar to SRCNN (Dong et al., 2014), to enhance the resolution
of Hi-C data. HiCNN (Liu and Wang, 2019), which was based on
DRRN (Tai et al., 2017), used a very deep convolutional neural
with 54 layers to predict the high-resolution Hi-C contact matrix
from the low-resolution Hi-C contact matrix. HiCNN showed
better prediction accuracy than HiCPlus, but the computational
cost of HiCNN is much higher than that of HiCPlus.

In this study, we developed a novel method super-resolution
Hi-C (SRHiC) based on the ResNet model (He et al., 2016)
and the WDSR model (Yu et al., 2018). In our network, we
improved the Res-block in ResNet to increase the nonlinearity
of the network and improve the learning ability of the network.
Meanwhile, we used a small convolution kernel multiple times to
reduce the contact matrix size instead of using a big convolution
kernel once. Our model outperformed HiCNN in prediction
accuracy and running time, and outperformed HiCPlus in
prediction accuracy with a slightly longer running time.

METHOD

Hi-C Data Preprocessing and Contact
Matrix Generation
The data sets we used were from Gene Expression Omnibus
(GEO) dataset under accession number GSE63525 in which Rao
et al. (2014) provided high-resolution Hi-C paired-end reads
in eight different cell types. To be consistent with datasets
and experimental design in previous studies (Zhang et al.,
2018; Liu and Wang, 2019), we used the combined contact
matrix data of three of the eight cell types, including GM12878
(human), K562 (human), and CH12-LX (mouse). We chose
the resolution 10 Kb as the high-resolution data for training
and evaluation. The low-resolution data was produced by
using a random down-sampling method to simulate the low-
resolution Hi-C matrix as in previous studies (Zhang et al.,
2018; Liu and Wang, 2019). In brief, we randomly selected
part of the paired-end reads by the down sampling ratio (e.g.,
1/16), and generated a low-resolution Hi-C contact matrix
using the selected Hi-C paired-end reads. In order to generate
the corresponding down-sampling data, we used two down-
sampling ratios, 1/16 and 1/25. The former was to match the
experimental design of the previous studies (Zhang et al., 2018;
Liu and Wang, 2019), and the latter was to investigate whether
the model can also have the same significant enhancement
for lower resolution Hi-C data. Considering that a too low
down-sampling ratio results in too many missing values in
Hi-C matrix, we selected a moderate down-sampling ratio of
1/25. In GM12878, we used two different down-sampling ratios,
1/16 and 1/25. In K562 and CH12-LX, we only used the

down-sampling ratio 1/16. We first used the Hi-C data from
GM12878 with down-sampling ratio 1/16 and corresponding
GM12878 high-resolution data to train a model which can
enhance the low-resolution data to the high-resolution data, then
used this trained model and the data from K562 and CH12-LX
to evaluate the generalization capabilities of the model across
different cell types in the same or different species. We also
used the data from GM12878 with down-sampling ratio 1/25
to examine whether data with lower down-sampling ratio can
be enhanced by our method. After data processing, the total
number of high-resolution GM12878 Hi-C sequencing reads is
2.521 billion, the number for data with down-sampling ratios
1/16 is 0.158 billion and the number for 1/25 is 0.101 billion.
Similarly, the total number of high-resolution K562 Hi-C
sequencing reads is 0.488 billion and the number for 1/16 is
0.031 billion. The total number of high-resolution CH12-LX Hi-
C sequencing reads is 0.321 billion and the number for 1/16
is 0.020 billion.

In the SRHiC model training process, we first divided 22
chromosomes (excluding sex chromosomes) into five groups.
The first three groups include four chromosomes in order, for
example, the group 1 contains chromosomes 1, 2, 3, and 4. The
latter two groups, respectively, include five chromosomes, for
example, the group 5 includes chromosomes 18, 19, 20, 21, and
22. We trained the model five times. Each time we selected four
of the five groups as the training set. For the remaining one
group, we randomly selected one chromosome as the validation
set, and the remaining chromosomes as the test set. The specific
validation set and test set used in each model training process
were shown in the Supplementary Table S1. In this way, we
got five trained models based on GM12878 data. When testing
the generalization performance of the model across different cell
lines, we randomly selected one of the five models obtained above
to conduct a generalization performance test, and the second
model was selected. Dealing with the GM12878 data with down-
sampling ratio 1/25 training process, we only trained one model.
We used most chromosomes in the validation sets in the training
of the five models above as test set. The test set was chromosomes
2, 11, 14, and 21. The validation set was chromosome 7. The other
17 chromosomes were used as training set.

In the processing of training data, due to the Hi-C contact
matrix of one chromosome is very large, we subdivided the
whole contact matrix into 40 × 40 sub-matrices in order as
in previous studies (Zhang et al., 2018; Liu and Wang, 2019).
Since segmenting a large picture into small pictures may cause
discontinuity in image information, in order to maintain the
continuity of the image information, the same overlapping
processing as in previous studies was used here. If the two
sub-matrices are adjacent in the large matrix, their boundaries
overlap. Take the operation in the row direction for example, if
the first sub-matrix covers the rows of [1, 40] and columns of [1,
40], then the second sub-matrix will cover the rows of [29, 68] and
columns of [1, 40]. The operation in the column direction is the
same as the row direction. We also divided the high-resolution
matrix into sub-matrices, but its size is 28 × 28 and there is
no overlap between adjacent sub-matrices. Take the operation
in the row direction for example, if the first sub-matrix covers
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the rows of [7, 34] and columns of [7, 34], then the second sub-
matrix will cover the rows of [35, 62] and columns of [7, 34]. For
example, the input sub-matrix at rows [1, 40] and columns [29,
68] corresponds to rows and columns of [7, 34] and [35, 62] in
the output matrix. The enhanced sub-matrices predicted from the
model were spliced into a large matrix.

Overview of SRHiC
Super-resolution Hi-C is based on CNN (Figure 1). SRHiC can
enhance the low-resolution Hi-C contact matrix to the high-
resolution Hi-C contact matrix. The input of the model is low-
resolution sub-matrices with size of n × 40 × 40 × 1, where n
represents the number of sub-matrices, and 1 indicates that the
input is from single channel. We input these low-resolution sub-
matrices into the model, SRHiC, and through enhanced by the
model, we will get totally n × 28 × 28 × 1 high-resolution sub-
matrice. In our network, Conv1 was mainly used to extract the
features and patterns of the low-resolution Hi-C contact matrix
from the input. As for Res-block, on one hand, the internal
1 × 1 convolution was used to increase the nonlinearity of the
network, and on the other hand, the skip connection was used
to allow the shallow information to flow directly to the deep
network layer. The main role of Conv2 was to crop the size of the
input Hi-C contact matrix. Conv2 used four small convolution
kernels to crop the matrix four times. Conv3 was used as a
prediction module to enhance the resolution of Hi-C data by
using the features extracted from the previous network and to
output high-resolution Hi-C contact matrix.

Conv1 contains two convolution layers, of which 2D
convolution kernel sizes were 7 and 5, respectively, to extract the
features from the input matrix. We have tested some larger 2D
convolution kernel sizes (e.g., 13), but there was no improvement
on the performance of the validation set. The number of feature
map was 32. After extracting the features, a Res-block was used
before cropping the matrix size. In Res-block, we first used the
1 × 1 convolution kernel (Lin et al., 2013) with the number
of feature map as 128 to increase the depth of feature maps,
which was followed by a rectified linear unit (ReLU) (Nair and
Hinton, 2010). Then we used the 1 × 1 convolution kernel
again with the number of feature map as 32 to reduce the

depth of feature maps. We then used a convolution layer, of
which 2D convolution kernel size was 7, with the number of
feature map as 32 to extract the patterns of data. Finally, we
added this result with previous input data into Res-block as
the input of the subsequent network. In Res-block, we mainly
used the 1 × 1 convolution to increase the nonlinearity of the
network and improve the fitting ability of the network. This could
help the deeper network layers to better learn the information
of the shallow network layers. After the Res-block, we began
to crop the matrix size by using the Conv2. We cropped the
matrix size four times using a small convolution kernel size as
cropping might lose margin information. The margins of the
sub-matrices are not necessarily margin in the complete Hi-C
contact matrix, therefore using a big convolution kernel size to
crop the sub-matrix size at once might lose a lot of information.
In the concrete network structure, the size of the 2D convolution
kernel of the four crops was 5, 3, 5, and 3. The number of
feature map of these four layers CNNs was 32 and each layer
was followed by a ReLU. After cropping, we used the Res-block
again mentioned above to prevent network degradation and
deepen the depth of neural network. The predictive component
of SRHiC included two convolutional layers, the Conv3 used a
7 × 7 convolutional kernel with the number of feature map as
32 to extract the pattern information and the second was to use
a 5 × 5 convolutional kernel with the number of feature map as
1 to predict the target value by using the pattern information on
neighboring values.

Given an input and target set {Xi, X̃i}
n
i=1, where Xi and X̃i

are the low-resolution and corresponding high resolution Hi-C
contact matrices. The loss function of SRHiC is

L(2) =
1
n

n∑
1

‖ F(Xi)− X̃i ‖
2

where F was the mapping function SRHiC have learned to
enhance the resolution of Hi-C contact matrix, and 2 represents
the parameter space.

We implemented SRHiC with Tensorflow (v.1.13.1). The
weight parameters of convolution kernel were initialized using
the Xavier initialization method (Glorot and Bengio, 2010) and
the optimizer was Adam (Kingma and Ba, 2014) with parameters

FIGURE 1 | The architecture of SRHiC. It mainly consists of two Res-blocks and multiple convolutional layers. The input is the low-resolution Hi-C matrix, and the
output is corresponding enhanced high-resolution Hi-C matrix output. The figure was generated by the tool PlotNeuralNet (https://github.com/HarisIqbal88/Plot
NeuralNet.git).
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initialized by default parameters and the batch size was 256.
We used four NVIDIA V100 GPU with 64 Gb memory to
train the model. The model was optimized by minimizing the
mean square error (MSE) between the predicted (recovering
from the low-resolution Hi-C data) and actual values (the
corresponding high-resolution Hi-C data).The SRHiC source
codes were available at https://github.com/hzlzldr/SRHiC. For
HiCPlus and HiCNN, the python source codes were obtained
from https://github.com/zhangyan32/HiCPlus and http://dna.cs.
miami.edu/HiCNN/HiCNN_package.tar.gz, respectively. They
were implemented by Pytorch. We used the Tensorflow (v.1.13.1)
to reimplement them according to their parameters.

Evaluation Methods
To quantitatively evaluate the performances of the three
models, we used four metrics, including Pearson correlation
coefficient, the stratum adjusted correlation coefficient (SCC)
(Yang et al., 2017), statistically significant chromatin interactions
and structural similarity index (SSIM) (Wang et al., 2004; see
details in Supplementary Material).

RESULTS

Recovering High-Resolution Hi-C Data
From Low-Resolution Hi-C Data
We used the low-resolution data with down-sampling ratio 1/16
in GM12878. To provide a comprehensive evaluation, we trained
five SRHiC models using different training sets (see details in
section “Method” and Supplementary Table S1). For the two
previous methods, HiCPlus and HiCNN, we also used similar
strategy to train five models, respectively. We found that HiCNN
showed much longer time for training than SRHiC and HiCPlus
(Supplementary Table S1). In brief, the training time required
by HiCNN was nearly 17.6 times that of HiCPlus, and the time
required by SRHiC was 2.9 times that of HiCPlus. We applied the
trained models to enhance the down-sampled Hi-C interaction
matrix. Different models correspond to different training sets and
test sets, and a total of 17 chromosomes were tested on the five
trained models. We observed that the SRHiC-enhanced matrices
are highly similar with the high-resolution Hi-C matrices (see an
example in Figure 2).

To quantitatively evaluate the performances of the three
models, we calculated the Pearson correlation coefficient between
the experimental high-resolution matrix and the matrices
predicted by the three models at each genomic distance. We
also calculated the Pearson correlation coefficient between the
experimental high-resolution matrix and down-sampled matrix.
The enhanced matrices by SRHiC showed higher correlation with
experimental high-resolution matrices than those of HiCNN and
HiCPlus (see three chromosome examples in Figure 3A, see the
results of the other chromosomes in Supplementary Figure S1).
Compared with the down-sampled Hi-C matrix, the enhanced
Hi-C matrix showed significantly improved Pearson correlation
coefficient score with the experimental high-resolution Hi-
C matrix. As the distance increases, SRHiC showed better
performance than the other two models. We used another metric,

SCC score, to measure the similarity between the enhanced Hi-
C matrix and the original high-resolution matrix. We used the
HiCRep (Yang et al., 2017), a novel framework for assessing the
reproducibility of Hi-C data that takes into account the unique
spatial data features to calculate the SCC score. The results of the
SCC score are highly consistent with the results of the Pearson
correlation coefficient (Supplementary Figure S2). Compared
with the down-sampling Hi-C matrix, the SCC scores of the Hi-C
matrix enhanced by the three models are significantly improved.
SRHiC showed higher SCC scores than HiCNN and HiCPlus. We
also calculated the SSIM score to evaluate the performance of the
three models. SRHiC had higher SSIM scores than HiCNN and
HiCPlus (Figure 3B).

We next explored whether these enhanced high-resolution
matrices can promote the identification of meaningful chromatin
interactions and biological structures. We used Fit-Hi-C
(Ay et al., 2014), which can identify statistically significant
chromatin interactions by adjusting random polymer looping
effect and estimating statistical confidence of intra-chromosomal
interactions. Considering the average size of TADs is <1 Mb
and there are few meaningful interactions outside TADs, we
only restricted the analysis to chromatin interactions where the
genomic distance between two loci is <2 Mb. The threshold for
predicted significant interactions is q-value < 1e-06. We applied
Fit-Hi-C to the real high-resolution (10 Kb) matrices, HiCPlus-
enhanced interaction matrices, HiCNN-enhanced interaction
matrices and SRHiC-enhanced interaction matrices in the 17
chromosomes included in the test sets. For each method, we
calculated the overlap of its identified chromatin interactions
with those identified from real high-resolution Hi-C data.
We considered the overlap ratios in different distance-ranges,
including 50–250 Kb, 250 Kb–1 Mb, 1 Mb–2 Mb (Figure 3C
and Supplementary Table S2). In the 50–250 Kb interval, the
overlap ratios of the three models are similar. However, as the
interaction distance interval increases, the advantages of the
SRHiC model become more obvious, while the performance of
HiCPlus decreases significantly. In order to investigate whether
the significant interaction pairs identified by the three models
have biological significance, we downloaded relevant promoter-
enhancer annotation data (Whalen et al., 2016). There are 159
annotated promoter-enhancer pairs identified by the original
high-resolution Hi-C matrix. The three models recovered similar
numbers of annotated promoter-enhancer pairs, ranging from
144 to 146 (Supplementary Table S3). Next, we used the
original high-resolution Hi-C data as the standard to perform
the Aggregate Peak Analysis (APA) (Rao et al., 2014) on the
down-sampling Hi-C matrix and the enhanced Hi-C matrices to
measure the aggregate enrichment of a set of putative peaks in
a contact matrix. For quantitative comparison metric, we used
P2LL score to indicate enrichment. SRHiC showed higher P2LL
score than the other two models (Supplementary Figure S3).

We further tested whether the three model can recover
annotated TAD boundaries from the TAD knowledge base
(TADKB) (Liu and Wang, 2019). We used the Gaussian Mixture
model And Proportion test (GMAP) (Yu et al., 2017) to identify
TADs from the enhanced Hi-C matrices, low resolution and high
resolution data Hi-C matrices. We defined contact overlapped
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FIGURE 2 | The Hi-C heat maps of chromosomes 16 (57–58 Mb) from five Hi-C data sets, including low-resolution with down sampling ratio 1/16, real
high-resolution, HiCNN-enhanced, HiCPlus-enhanced, and SRHiC-enhanced.

boundary if it falls within 0.2 Mb of any annotation contact
boundary. SRHiC could recover more TAD boundaries than
HiCPlus and SRHiC (Figure 3D and Supplementary Figure S4).

We next sought to examine whether SRHiC can enhance
chromatin interaction matrix with lower down-sampling ratio
1/25. We used the low-resolution data with down-sampling ratio
1/25 to train a new model for SRHiC, HiCNN, and HiCPlus,
respectively (see details in section “Method” and Supplementary
Table S1). We used the same evaluation metrics as above. We
found that SRHiC still showed better performance than HiCNN
and HiCPlus in all the four chromosomes included in the test sets
(Supplementary Figures S5–S8 and Supplementary Table S4).
However, as the number of sequencing reads decreases (see the
method section “Hi-C Data Preprocessing and Contact Matrix
Generation” for the total number of reads after different sampling
ratios), all the three models showed decrease in performance.
The reason is largely due to insufficient sequencing depth,
which makes a large number of entries in the Hi-C matrix
become value 0, significantly impacting on the training and
learning of the models.

Enhancing Hi-C Interaction Matrices
Across Different Cell Types
We examined whether our model trained on one cell type
can be directly used to enhance Hi-C matrices of other
cell types in the same species. Firstly, we randomly selected

one of the five models trained on GM12878 with down-
sampling ratio 1/16 shown in Supplementary Table S1.
We randomly selected the second model, in which the
training set was chromosomes 1∼4 and 9∼22. Then, we
used this trained model to enhance the Hi-C down-sampling
(ratio 1/16) matrices of all 22 chromosomes in K562. Using
the same evaluation strategies as above, we calculated the
Pearson correlation coefficient and the SCC score between
the experimental high-resolution matrix and the predicted
matrices. We also examined the overlap of chromatin interactions
from the predicted matrices with those from the real high-
resolution matrix. The enhanced matrices by SRHiC showed
higher correlation and SCC scores with experimental high-
resolution matrices than those of HiCNN and HiCPlus in
all 22 chromosomes (see the Pearson correlation coefficient
of three chromosome examples in Figure 4A and the other
chromosomes in Supplementary Figure S9, see the SCC score
in Supplementary Figure S10). In terms of the SSIM score,
overlap with real chromatin interactions and TAD recovery,
SRHiC still maintains better performance than the other two
models (Figures 4B–D, Supplementary Figures S11, S12, and
Supplementary Tables S5, S6).

We examined whether our model trained on human cell type
can be directly used to enhance Hi-C matrices of mouse cell
type. We used the second model trained on human GM12878
shown in Supplementary Table S1, to enhance the Hi-C
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FIGURE 3 | SRHiC can enhance chromatin interaction matrix with 1/16 down-sampling ratio in GM12878. (A) Pearson correlations between high-resolution Hi-C
matrices and enhanced matrices predicted by the three models at each genomic distance in three example chromosomes. As the distance increases, the gap
between SRHiC and the other two models becomes larger. (B) SSIM scores for the three models. (C) The overlap of chromatin interactions in a distance-range
identified by the three methods with those from real high-resolution Hi-C data were shown for the 17 chromosomes included in the test sets. The source data were
shown in Supplementary Table S2. (D) The TAD overlap between the original high-resolution Hi-C matrix and Hi-C inferred from the three models.

down-sampling (ratio 1/16) matrices of all 19 chromosomes
in mouse CH12-LX cell type. The enhanced results from
SRHiC showed a higher Pearson correlation, SCC score, overlap
with distance-range and SSIM score with experimental high-
resolution data than those from HiCNN and HiCPlus in
all 19 chromosomes (Supplementary Figures S13–S17 and
Supplementary Table S7).

DISCUSSION

Although our model used only a moderate number of network
layers, it can successfully infer the corresponding high-resolution
Hi-C interaction matrices from low-resolution ones with down-
sampling ratios 1/16 and 1/25. This will help researchers acquire
high-resolution Hi-C data with less sequencing cost. From these
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FIGURE 4 | SRHiC can enhance chromatin interaction matrix across different cell types. The models trained on GM12878 dataset were used to enhance matrices in
K562. (A) Pearson correlations between high-resolution Hi-C matrices and enhanced matrices predicted by the three models at each genomic distance in three
example chromosomes. (B) SSIM scores for the three models. (C) The overlap of chromatin interactions in a distance-range identified by the three methods with
those from real high-resolution Hi-C data were shown for the 22 chromosomes. The source data were shown in Supplementary Table S5. (D) The TAD overlap
between the original high-resolution Hi-C matrix and Hi-C inferred from the three models.

results we can see that when training and prediction are applied
to the data of a cell line (such as GM12878), whether it is on the
consistency score with the original high-resolution Hi-C matrix,
or the identification of related biological structures, including the
identification of significant interaction pairs and TAD boundary,
SRHiC is better than the other two models. Especially when it
comes to the identification of long-distance interaction pairs,
SRHiC is far superior to HiCPlus and HiCNN. In the lower-
resolution (1/25) training data experiment, we can see that the
three models have more or less decreased on multiple metrics.
However, this decline does not mask the enhanced Hi-C matrix
inferred by SRHiC, which is closer to the original high-resolution
Hi-C matrix than the two models. This conclusion can be drawn

from relevant results such as Pearson correlation coefficient
or APA analysis.

When comparing the generalization capabilities of the three
models across cell lines (K562) and species (mouse CH12-
LX), we found that they all showed a decline in performance
compared with GM12878. However, SRHiC has a smaller
decline than HiCNN and HiCPlus. HiCPlus is a simple three-
layer neural network. Too few network layers might make the
network incapable of learning the map function behind the
data. Compared with HiCPlus, HiCNN network is very deep
with 54 layers. Our results showed that HiCNN showed better
performance than HiCPlus, but showed worse performance than
SRHiC. SRHiC has fewer layers than HiCNN. HiCNN cropped
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the matrix size only at once. Considering that cropping may lose
margin information, SRHiC cropped the matrix size four times
using a small convolution kernel size. When a single sub-matrix
is cropped, its margin is cropped. But the margins of the sub-
matrices are not necessarily margin in the complete Hi-C contact
matrix, therefore using a big convolution kernel size to crop the
sub-matrix size at once might lose a lot of information. A too
deep or complex network might be not a good choice, as it may
have an over-fitting property that causes a relatively big decline in
generalization capability.

Constrained by sequencing errors, the data that we used for
model training and evaluation inevitably have noise. The more
reliable the given data is, the more accurately the biological
rules the model can learn. Therefore, the emergence of better
sequencing technology will generate more reliable experimental
data and make computational methods more accurate. It will be
necessary to develop models to enhance low-resolution Hi-C data
accounting for sequencing errors.
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