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Abstract 
 
In singing voice synthesis process, score and lyrics for a target song are converted to 

singing voice expression parameters such as F0, spectra and dynamics. However, this 

study aims to model and automatically generate F0 parameter by assuring 

expressiveness and human-likeness in final synthesized singing voice.  Musical contexts 

are important factor on evolution of F0 through a singing performance. Thus, we 

propose a machine-learning framework that learns F0 of the singing from a set of real 

human singing recordings with respect to musical contexts, at the same time, capturing 

expressiveness and naturalness of the human singer. Then, we can automatically 

generate F0 parameter from our trained model given musical contexts of the score. 

Recurrent Neural Networks with Long Short Term Memory networks are employed for 

first time to this specific problem due to their flexibility and strong power in modeling 

complex sequences. Two recurrent neural networks are trained to learn baseline and 

vibrato parts of F0 separately. Then, F0 sequences are generated from the trained 

networks and applied to a singing voice synthesizer. Finally, synthesized songs are 

evaluated with AB preference tests.  
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CHAPTER 1 
INTRODUCTION 
 
Synthesizing human singing has been a topic of interest among researchers for many 

years. However, while simulation of acoustic instruments have been matured and 

become popular among musicians, singing voice synthesizers, just in the last decade, 

reached to a convincing point where synthesized singing voice can be used as yet 

another musical instrument. In this thesis, we will focus on one main component of 

these synthesizers, F0 or sung melodic contour. We propose a system that automatically 

generates F0 contour from a machine-learning framework when a musical score is 

given. It will be a statistical black box that creates a F0 contour containing necessary 

characteristics such as naturalness and expressiveness. 

 

 In the following sections, we will elaborate on the research problem and our 

goals. In chapter 2, we will provide state of the art research related to generation of F0 

in the context of singing synthesizers. In chapter 3, we provide our methodology, and in 

chapter 4, evaluation strategy and the results will be provided. Finally, in chapter 5 we 

will provide the conclusions and results. 

 

1.1 Research Problem 

 
In the singing voice synthesis process, typically musical score and lyrics for a target 

song are converted to the singing voice. More specifically, the parameters of the singing 

voice that are F0, spectrum and dynamic are generated using the phonetic and pitch 

information described in the score. F0, or melodic contour is very important for the 

naturalness, and expressiveness of the singing voice.  Therefore, one of the most 

important requirements of singing voice synthesis is to obtain an F0 contour that will 

conduct these characteristics of the singing voice. To achieve this, the factors affecting 

F0 contour and its characteristics should be carefully investigated and then a framework 

should be built upon this investigation to generate proper F0 contours. 
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1.2 Motivation 

 
In the current singing voice synthesizers, users have to make some effort to tune the 

synthesized singing voice given by the system since the output does not satisfy them in 

terms of expressiveness and naturalness. For example, in Vocaloid [1], users are 

allowed to manipulate singing expression parameters such as pitch bend, and dynamics 

via a user interface, which involves a huge time cost. Therefore, one of the important 

points in the context of singing voice synthesis is to model these parameters and 

automatically generate them to provide a better, more expressive and human like initial 

contour to user. This can be achieved by modeling F0 contours with proper musical 

contexts. 

  

 Pitch contours also represent the style of the singer. Thus modeling a specific 

style in the singing voice requires the modeling of F0 contours. Analyzing and 

modeling the F0 contours of the songs from a singer or a singing style may enable 

singing voice synthesizers to provide the possibility of representing different styles and 

adjusting F0 output depending on this choice. 

 

1.3 Thesis Statement 

 
In this section we present our thesis statement: 

 

The F0 contour of the singing human voice, similar to other pitched instruments, is 

highly dependent on the musical contexts. It is possible to capture characteristics and 

temporal evolution F0 contour of the singing voice by extracting information about the 

musical contexts. Using this information, statistical models can be trained with properly 

designed musical contexts to automatically predict F0 contour from the given score. F0 

contours with desired properties on the singing voice can be learned with training by 

example strategy on set of singer recordings, which carry those properties themselves. 
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1.4 Goals 

 
The specific goals of this thesis work are: 

 

• Building a machine-learning model to automatically generate pitch contours 

from scores assuring naturalness and expressiveness of the singing voice. 

• Proposing musical contexts for modeling F0 contour for the singing voice. 

• In particular, to explore the possibility of applying recurrent neural networks to 

this problem and setting up the first recurrent neural network for the F0 

generation problem . 
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CHAPTER 2 
State of The Art 
 

In this section, we will review state of the art in F0 modeling for singing voice synthesis 

and various applications of recurrent neural networks on sequence problems. First, we 

will explain approaches focusing just on F0 modeling and sections related to generation 

and control of F0 parameter from complete singing voice synthesizer frameworks. 

Then, we will provide RNN applications on sequential problems related to our topic 

such as text to speech synthesis and music generation 

 

2.1. Performance Driven Approaches 
 

Performance-driven approaches controls singing voice parameters from an external 

recording of the target song, which is usually performed by the user. Janer, Bonada and 

Blauw [3] proposed a system in which pitch, dynamics, vibrato and phonetic parameters 

for a singing voice synthesizer is extracted from user’s singing. In this method, F0 is 

derived from the input voice using a frequency domain method. Then vibrato that is 

defined by its depth and rate is extracted by processing frequency curve. Because 

singing voice synthesizer needs a continuous pitch curve, F0 contour is made 

continuous with interpolation in transition regions or unvoiced phonemes since the 

variation caused by unvoiced phonemes is not related to singing expression. Finally, all 

the parameters including F0 are fed to the singing voice synthesizer’s internal system.  

 

 Nakano and Gato proposed VocaListener[4], developed as a plugin for 

Vocaloid[1]. In the approach proposed by Janer et al. [3] parameters that system 

generates are not robust to different synthesizers since different synthesizers and 

different singer databases will synthesize different outputs with the parameters 

estimated from user’s voice. VocaListener aimed to remove these deflections and to 

mimic user’s voice as exactly as possible. This is done by estimating the pitch 

iteratively until it becomes very close the F0 contour of user’s singing. This iterative 
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approach both guarantees robustness with different synthesizers and gives better 

imitation of user’s singing. Vibrato of the singing is also extracted as depth and rate and 

provided later to the user so that he can adjust it later. In the case of detunings in pitch 

user also can shift the pitch. 

 

 Speech recordings were also used as an external performance for deriving 

singing voice parameters. In such a speech to singing synthesis system [11], spectral 

envelope of the speech is converted to that of singing while F0 is generated after an F0 

control model is applied on musical notes. First, a melody contour is created with 

concatenation of step functions, each having a multiplication factor equal to pitch of a 

note. Then four different types of fluctuations, which can be encountered in singing 

performances and related to naturalness of the singing, are added to this melody 

contour. These fluctuations are overshoot (a deflection exceeding the target note after a 

note change) vibrato (a quasi-periodic frequency modulation (4-7 Hz)), preparation (a 

deflection in the direction opposite to a note change observed just before the note 

change) and fine fluctuation (an irregular frequency fluctuation higher than 10 Hz).  

 

 Performance driven approaches apply singing characteristics extracted from 

user’s singing voice to the synthesizer and provide a simple control system over singing 

expression parameters. Also it is very suitable for representing characteristics of an 

individual singer. However they also require people who know how to sing. Eliminating 

this need is one of the most important points of having singing synthesizers. Yet, for 

people who want to teach their way of singing to the synthesizer this approach provide a 

very convenient control.  

 

2.2. Rule Based Approaches 
 

In a basic architecture of a rule based singing voice synthesizer [10], score and lyrics 

information are processed with a set of performance, phonetic and articulatory (related 

to transition between notes) rules to manipulate singing voice parameters such as pitch, 

vibrato and sound level. The systems that create singing voice synthesis based on these 
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rules are categorized as rule based systems. The foremost system employing this 

approach is KTH singing synthesis system [13]. This system is based on KTH rules for 

music performance, which is a result of a research made through analysis-synthesis 

method over 30 years [12]. This is a cyclic process in which, a music expert proposes 

the rules that will manipulate synthesis parameters according to the musical context or 

lyrics, synthesizer applies this rules in synthesis procedure, listeners evaluate the 

synthesis subjectively and rules are reviewed and proposed again. In KTH singing 

system [14], 23 performance rules (16 for musical context,  4 for phonetic, 3 for special 

singing techniques) that affect F0, formant frequencies, duration, sound level, vibrato 

depth and rate were used. Six of them are related to F0, named as melodic intonation, 

the higher the sharper, marcato, Bull’s roaring Onset, timing of Pitch Change and 

coloratura: 

 

 Melodic intonation rule takes account of the fact that singers may not follow 

equal tempered tuning and intentionally make small pitch deviations on some notes 

[13]. It is thought that the amount of deviation is related to melodic scale [15]. 

Therefore, this rule assigns amount of intonation to each note in a chromatic scale. The 

rule “the higher the sharper” recommends to increase the amounts of deviation when the 

note is played in a higher octave, since some musicians may favor playing higher tones 

sharper and lower tones flatter. 

 

 Marcato and Bull’s Roaring Onsets are two cases of ornamentation occurring in 

specific musical contexts. The rule for marcato recommends setting F0 two semitones 

below the target note at 60 ms before the target note onset since in the ornamentation F0 

fall below the target frequency and go up again. Bull’s Roaring Onset is the term coined 

by the authors for the quick ascending pitch changes at certain onsets. To simulate this, 

at the first note after the rest, F0 is set to 11 semitones down from target and F0 reached 

to the target 50ms later. 

 

 Timing of the pitch change is a phonetic rule. In the analysis by synthesis 

method it is found that singing sound strange if the F0 does not reach target pitch at the 

vowel onset in note transitions. Thus, this rule states to begin to change F0 at preceding 
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consonant and setting F0 to target note frequency at vowel onset. Bonada et al.[16] also 

employed this rule in their system to improve naturalness. 

 

 Coloratura is a term used for rapid sequences of short notes   each sung with 

same single vowel. Thus this rule is applied when there is such a note sequence. It 

formulates the F0 contour based on the note durations and the direction of intervals 

between successive notes in the coloratura sections. 

 

 Rule-based systems provides a simple, deterministic framework to synthesize 

singing. However, when a system is fully rule based and rules are applied collectively 

the output may sound unsatisfactory. Thus, these systems require switches and 

controllers to activate/deactivate rules and set amount of the effects. Difficulty in the 

control level increases when the number of control parameters increases. Rule based 

systems can also represent some aspects of specific styles when rules are decided 

considering that style. For example KTH rules are generally designed for classical 

singing. However, with the rule approach it is inescapable to miss many aspects in 

singing since complexity in singing performance cannot be covered with rules.  

 

2.3. Unit Concatenation Approaches 
 
Synthesizers following unit concatenation approaches takes musical score and lyrics, 

selects best matching units to the given notes and lyrics from a previously created 

database consisting of large number of units, where units are sung phones or diphones. 

Then, selected units are post-processed and concatenated. 

 

 Vocaloid[1], commercially the most successful singing voice synthesizer uses 

this approach to create complete singing synthesis from the best matching units. In this 

system, pitch is tuned to that of target note when a unit with desired phonetic context 

for target pitch does not exist in the database. The pitch is manipulated by scaling the 

each harmonic with the pitch conversion ratio (target pitch/current pitch) in the 

frequency domain. 



	
  9	
  

 

 Umbert et al. [2] employed unit selection for the generation of expressive pitch 

contour and providing it to the synthesizers. Here, units are defined as melodic context 

of three consecutive notes or silences to capture attack and release contours with 

preceding and succeeding notes. All the notes are sung only as vowels to eliminate to 

variations of F0 unrelated to singing that are caused by unvoiced phonemes. Sequence 

of consecutive units for target context is derived with Viterbi algorithm that minimizes a 

cost function penalizing selection of dissimilar source units or unit sequences to the 

targets. The selected set of units further pitch and time shifted to match target note 

duration and pitch. Finally, the units are concatenated to obtain final pitch contour. 

 

 Unit concatenation approach lets synthesizer represent a singing characteristics 

of the singer whose singing excerpts used in the databases. It also provides a high 

singing synthesis quality and naturalness when the database is large and comprehensive 

since the outputs are directly coming from the real recordings. The biggest drawback is 

creating the database and covering different musical contexts (notes sung with all 

pitches, phonemes or successive notes with different intervals) since transformations 

applied to units when they do not match to target sequence. Another disadvantage is the 

need for designing cost functions and setting weights between them. 

 

2.4. Statistical Approaches 
 

Statistical approaches follow the process depicted in Fig. 2.4. It consists of training and 

synthesis parts. In the training part, singing voice parameters are extracted from the 

singer database. Contextual factors such as note pitch and duration, and phonemes are 

fed to statistical model to learn singing voice parameters from data. When the training 

process is completed, singing voice parameters can be generated from the trained model 

given a target score and lyrics. In this section we will review different statistical models 

and contextual factors used in these approaches. 
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Figure 2.1.Basic Architecture of Statistical Approaches 

2.4.1. HMM based approaches 
 
Hidden Markov Models are most extensively used statistical model for singing voice 

synthesis. Followers of this approach are based on a HMM based speech synthesis 

system [8]. Thus speech synthesis approach will be explained in detail first. 

 

F0 modeling with HMMs in speech synthesis 
 

An N state HMM can be denoted as 𝜆 = 𝐴,𝐵,𝜋  where A is state transition 

probabilities 𝑎!" !,!!!
!

, B is output probability distribution 𝑏! 𝑜 !!!
!  and 𝜋 is initial 

state transition probabilities 𝜋 !!!
! .  In HMM based speech synthesis [8], each HMM 

represents a phoneme. In addition each HMM has the left-to-right model structure in 

which only the transitions from lower index state to higher index state is possible 

through the time. This structure allows better modeling of speech since it is a signal 

whose properties are successively changing. Output vectors 𝑜 consists of spectral (Mel 

Frequency Cepstral Coefficients) and pitch (F0) parameters. Output probability 

distributions 𝑏! 𝑜  are continuous and modeled by Gaussian Mixtures. Gaussian 

mixtures allow smooth outputs and modeling complex data. Output distribution 

parameters (mean and variance vectors) are estimated from training data using 

expectation-maximization (Baum-Welsch) algorithm [17]. For the generation of 

outputs, a parameter generation algorithm working in a maximum likelihood sense is 

proposed for speech synthesis [17]. This algorithm finds the speech parameter vector 
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sequence  𝑂∗ with the maximum likelihood given HMM λ  and sequence length 𝑇: 

 𝑂∗ = argmax
!

𝑃 𝑂|𝜆,𝑇  (2.1) 

 

which is further divided into two sub problems: 

 𝑞∗ = argmax
!

𝑃 𝑞|𝜆,𝑇  (2.2) 

 𝑂∗ = argmax
!

𝑃 𝑂|𝑞∗, 𝜆,𝑇  (2.3) 

 

 The solutions of the equations and derivation of subproblems [18] are not 

provided here. However, solving the second equation, that is, finding the optimum 

hidden state sequence 𝑞∗  given   𝜆  and   𝑇 , requires an essential modification on the 

structure of HMM, termed as explicit state duration modeling [19]. In an HMM 

including self-transitions through the states, probability of staying d consecutive steps at 

state i is given by a geometric distribution (𝑝! 𝑑 = 𝑎!!!!! 1− 𝑎!! ). Instead of using 

such a distribution and self transition probabilities, explicit probability distributions 

such as Gaussians are used. From these distributions, the best hidden state sequence  𝑞∗ 

can be directly found since the HMM used has left-to-right structure. 

 

 One characteristic of speech synthesis systems is the use of contexts. The output 

vector for a phoneme is not independent of context it occurs. Therefore context 

information such as proceeding, current and succeeding phoneme, count of syllables in 

the phrase, position of the phoneme in the phrase is incorporated to the system. 

However introducing contexts requires a big training data containing all combinations 

of contexts. Creating such a database is impossible since the values each factor can take 

are many. To overcome this problem, context dependent factors are clustered using a 

decision-tree based context-clustering algorithm [20,21] in HMM approaches, where 

similar contexts are mapped to same output density distribution via a decision tree. This 

reduces the need for big training data and allows modeling of unseen contexts since 

each context is guaranteed to be mapped to one output distribution via decision trees. 

 

 For modeling of F0 MSD-HMM (Multi Space Probability Distribution 
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HMM)[18] is used. F0 contour values are 1-dimensional frequency values through 

voiced region and undefined for unvoiced regions. Therefore F0 samples are considered 

to be drawn from two different spaces, one 1-dimensional and other 0-dimensional 

space. This cannot be modeled by single space probability distribution HMMs unless 

some assumptions are made for the unvoiced regions. MSD-HMMs can model multi 

space distributions and solve this problem. 

 

 To sum up, hmm based speech synthesis system consists of training and 

synthesis stages. In the training stage, state duration, spectral and pitch parameter 

distributions are determined through Baum-Welsch algorithm. Then, decision-tree 

based context-clustering algorithm is applied to all of these distributions to cluster 

similar contexts. In the synthesis stage, a given text sequence is converted to context-

dependent label sequence. Based on these context dependent labels, from spectrum, 

pitch and state duration probabilities, a sequence of phoneme HMMs is constructed 

with associated output probability distribution in the decision tree. Finally, parameter 

generation algorithm is applied to estimate F0 and spectrum output from the sequence 

of phoneme HMMs. 

 

F0 modeling with HMMs in singing voice synthesis 

 
HMM-based singing synthesis systems inherit the properties of the HMM-based speech 

synthesis approach such as the parameter generation algorithm, context dependent 

HMMs, explicit state duration modeling and MSD-HMMs for F0 modeling. Given a 

score and lyrics, speech synthesis framework can be used for singing voice synthesis in 

the manner of “singing the speech” when the defined contexts include factors related to 

singing voice. 

 

 Saino, K et al. [6] used preceding, current, and succeeding phonemes and 

musical tones, durations and positions of preceding, current and succeeding notes to 

model MFCCs (Mel Frequency Cepstral Coefficients) and F0. Sinsy[7,9] is a free 

online singing voice synthesizer using a similar approach. It defines  “rich contexts” 
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proposing a lot of contextual factors: (i) key, beat, length and dynamics of the previous, 

current and next note, (ii) ties and slurs, (iii) distance between the current note and the 

next, previous accent and staccato, (iv) the position of the current note in the current 

crescendo and decrescendo, (v) number of phonemes in previous, current and next 

phrase, (vi) the number of phonemes and phrases in the song. In addition, it extracts 

vibrato parameters depth and rate and models them with MSD-HMMs (0-dimensional 

space for nonvibrato and 1-dimensional space for vibrato regions) using the same 

contextual factors. 

 

 HMM based singing voice synthesis approach also inherits the problem of 

creating training data with different contexts from the speech synthesis approach. The 

problem is more dominant here since number of different context used is higher. 

However, for one context specific to singing training data can be extended artificially. 

This contextual factor is pitch. It is possible to shift F0 contour and note sequence of 

given song and create a training data with higher pitch coverage [7]. Another solution 

for the same problem is using relative pitch parameters against corresponding notes in 

observation vectors [5]. This allows estimation of pitches of the notes in the test songs 

whose notes are not trained with the database before. 

 

 Another HMM based approach [5] estimates only pitch to be used by singing 

voice synthesizers. It proposes using note HMMs instead of using phoneme HMMs 

since only the pitch is generated from the model and the pitch of singing voice is 

assumed to be less dependent on phonemes. The variations in F0 contour caused by 

consonant are removed from the contour using interpolation. In addition to using note 

HMMs it introduces behavior-type HMMs where each HMM represents a melodic 

behavior type occurring inside the notes. These types are beginning (B), sustained (S) 

and end (E). Each note is assumed to have a behavior pattern consisting of one or more 

of three behaviors. Then, a behavior pattern for a single note can be B, S, E, BS, BE, 

SE, or BSE. Tree-based context clustering technique is applied to these patterns, 

obtaining discrete probability distributions for choosing among 7 discrete behavior-

patterns for given contexts. While converting the musical score to HMM sequence, 

behavior-pattern for each extracted context dependent label is determined through 
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probability distributions and a variable number (one to three) of HMMs are appended 

where each HMM corresponds to a behavior type. This approach considers the notes as 

having 3 different regions and model singing expression parameter behaviors in these 

regions accordingly.  

 

 HMM-based systems allow learning of singing voice parameters directly from 

the training data. Thus, they require less manual work compared to other approaches. 

For example, rule-designing process in the rule-based systems is implicitly done via 

learning or transformation and cost functions have to be adjusted in unit concatenation 

method. HMM approach is also flexible since model parameters can be adapted to 

different speaker, emotion or style characteristics. On the other hand, statistical 

approach may cause oversmoothing of singing voice expression parameters since it is 

working in the sense of statistical averaging and likelihood maximization. This, in turn, 

may impair naturalness and human-likeness in the generated expression parameters,  

 

2.5 Recurrent Neural Networks Applications 

 
Recurrent neural networks are very powerful sequence models. They are obtained by 

allowing ordinary multilayer perceptron to have cyclical connections. These cyclical 

connections provide a very strong theoretical property: an RNN is able to see its entire 

history of previous input to each output. However, for long time RNNs had not get 

much attention from the research community due to the difficulties in training in 

practice. The cause of this difficulty is vanishing gradients problem. This problem 

prevents RNNs from achieving its strong theoretic power of seeing entire history of 

inputs. It is found out that vanishing gradient problem makes it hard for an RNN to use 

its history of inputs more than 10 time steps before [22]. Fortunately, an efficient 

solution, which uses a special kind of neuron network, is proposed to solve vanishing 

gradient problem. These are LSTMs [22] (Long-Short Term Memory) and thanks to 

them RNNs started to get widespread usage in the last decade, which we will exploit in 

this paper also. In this section, we will provide literature using RNNs for the same goal 

as our paper: sequence generation. 
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 Fan et al. [23] used Deep Bidirectional RNNs (DBLSTMs) with LSTMs to 

achieve text-to-speech (TTS) synthesis. DBLSTMs are deep, that is they have multiple 

hidden layers and deep representation of the input features as deep neural networks 

(DNNs). Deep-layer architectures allow complex function estimations by creating 

composite features of features in each deep hidden layer. Bidirectional structure allows 

accessing future context as well as preceding context [22]. The system converts 

utterances to a feature sequence through text analysis and then these sequences are 

mapped with output vectors to provide training example pairs. To train the RNN, back-

propagation through time algorithm with a mean squared error function is used. TTS 

with DBLSTMs outperformed both HMM and DNN models in perceptual AB 

preference tests. 

 

 RNNs with LSTM are also applied to music related tasks. Eck et al. [24] used 

next-step prediction approach for music composition. In such approach, the network 

learns to predict the next note depending on all the previous notes. Data is encoded as 

binary on/off vector, representing which notes are played and which are not. These 

encodings are pushed into input layers of the network and the network predicts an 

output in same style of encoding; which notes should be active given all previous 

predictions.12-bar blues style is used for constructing training test and a binary 

probability distribution is used for predicting on and off state for each note. With this 

configuration RNN-LSTM was able to compose music that carry characteristics of 12-

bar blues style 

 

 Graves used RNNs with LSTMs for handwriting prediction, which is related to 

our task because a sequence of continuous values is predicted. [26] Handwriting is 

encoded as two dimensional real-valued x-y pen-tip locations. The network generates 

such x-y values at each time step and invents handwritings. To model real valued 

outputs, mixture density network is used as probability distribution of the network. At 

the output layer of the network, a Gaussian mixture is predicted at each time step, that 

is, output neurons output set of means, standard deviations, correlations and mixture 

weights of the bivariate mixture components. The network is trained by maximizing the 
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log probability densities of the target vectors with a training data consisting of text and 

its handwritten version encoded in x-y values. The experiments showed that the network 

learned strokes, letters and even common words such as “of” and “the” by modeling the 

problem only as next-step x-y point prediction. 

 

 

 

 

  



	
  17	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  18	
  

CHAPTER 3 
Methodology 
 

3.1.Software 

 
RNNLIB [33] is used for implementing recurrent neural network experiments. It is a 

stable recurrent neural network library for sequence learning tasks implemented in C++ 

and suitable for running low-and-high scale experiments. However, we needed 

regression for our task and it was not supported in the last version although it had been 

active on previous versions. Therefore, we reimplemented regression learning on the 

last version based on the previous versions [34]. 

 

 Vocaloid[1], a singing voice synthesizer based on unit concatenation, is used to 

generate final singing voice outputs. Our model directly provides the F0 contour and 

Vocaloid applies this information to samples from the voice database while generating 

singing voice synthesis. 

 

3.2.Dataset 
 

Two singing voice database are used for learning F0 contours: melodic exercises 

database and jazz songs database. They are recorded with vocal and background music 

related to the style it is intended to convey. The background music helped the singer 

sing in tune and evoke the target style. The singing expression contours and score files 

are derived from the recordings semi-automatically. 

 

 Vocal sections are sung only with vowels. Any note sequence is sung as 

sequence of /ua-i-a-i-…/ where /i/ and /a/ alternated after first note. This approach 

allows controlling F0 for any target lyrics since unvoiced sections or micro-prosody due 

to the phonetics (not related to expression) are intrinsically removed and the model 
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becomes lyric independent. 

Systematic melodic exercise database (SysDB): 

 

Systematic melodic exercise database are designed so that a pitch space of one octave 

and different musical intervals will be covered. Since these are just melodic exercises, 

there is relatively less expression and emotion involved in the recordings. Rather, it is a 

recording database in which specific intervals and pitches are sung correctly and in 

tune. After training with database, we would expect to get natural sounding but not 

much expressive synthesis outputs 

 

Jazz songs database (SongDB): 

 

It consists of standard jazz songs. The recorded songs are selected from a repertoire 

known by the singer. Therefore, here, the singer could put more expression and style 

specific properties to the singing. Thus, from a model trained with database we would 

like to represent these characteristics. The number of recordings and total duration in 

the two databases are given in Table 3.1. 

 
Table 3.1. Statistics for singing voice databases 

Database Number of Recordings Duration 

SysDB 70 11 min 59 sec 

SongDB 15 16 min 59 sec 

 

 

3.3. Computational Modeling 

 
In this section, we will provide the methodology with which we used to learn and 

predict F0 contours. We used recurrent neural networks as the statistical learning model. 

First, we will explain the RNN structure, and training procedure. Then we will provide 

how we model the singing expression contours. 
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3.3.1. RNN structure 
 

Recurrent neural network structure used in this paper is depicted in Fig. 3.1.  

 

Figure 3.1. RNN structure used in the paper (left). RNN structure when expanded through time (right) 

 

 The difference from multilayer perceptron is that hidden layer is fully connected 

to itself (every hidden unit connected to all other recurrently). With this small change, 

RNNs can see and map their entire history of inputs to each output since recurrent 

connections between each time step allow inputs to stay in network’s internal state. 

[22]. More formally, recurrent Neural Network (RNN) computes hidden state vector 

sequence ℎ!, ℎ!  . . . ℎ!   and outputs vector sequence 𝑦!,𝑦!  . . .𝑦! , for a given input vector 

sequence 𝑥!, 𝑥!  . . . 𝑥! , iterating the following equations from t= 1 to t=T: 

  

𝑂 = ℎ! =ℋ 𝑊!!𝑥! +𝑊!!ℎ!!! + 𝑏!  
(3.1) 

 𝑦! =𝑊!!ℎ! + 𝑏! (3.2) 

where  𝑊  represent weight matrix between two layer, e.g. 𝑊!!    is weights of recurrent 

connections between the hidden layer, ℋ represent a nonlinear activation function such 

as tanh and 𝑏 represent biases of the layers. 

 

 However, RNN’s ability of seeing all the history only remains in theory as 

explained in section 2.5. The previous inputs cannot stay for long delays in the network 

because of the vanishing gradient problem. To solve this problem, we used LSTM 
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blocks instead of standard cells with logistic or tanh activation function in the hidden 

layer.  

 

 The structure LSTM block is given in Fig. 3.2. It consists of an input and output 

neuron, three multiplicative units, input, output and forgets gates that act as write, read 

and reset operations [22]. These multiplicative gates allows keeping a previous input in 

the memory of the network over long periods of time and access when it is needed, 

eliminating the vanishing gradient problem. LSTM is implemented as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑖! = 𝜎(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏! (3.3) 

 𝑓! = 𝜎(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏! (3.4) 

 𝑐! = 𝑓!𝑐!!! + 𝑖!tanh  (𝑊!"𝑥! +𝑊!!ℎ!!! + 𝑏!) (3.5) 

 𝑜! = 𝜎(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐! + 𝑏!) (3.6) 

  ℎ! = 𝑜!tanh  (𝑐!)  (3.7) 

where 𝜎 is the activation function and  f,i,o,c are forget,input and output gates and 

memory cell. 

Figure 3.2.LSTM structure 
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3.3.2. Error function and Training Procedure 

 
RNNs are differentiable by construction[22]. Therefore, gradient descent algorithms 

that minimize an objective error function of training-target examples can train them. 

Objective error function differs according to type of the task learned such as regression 

or classification. In this paper, we applied regression with sum squares error since we 

simply predict a continuous value in each time frame given input features. Let z and y 

be the target, network output pairs. Then error function O for regression is given by 

 𝑂 = (𝑧 − 𝑦)! (3.8) 

where y is given by linear combination of input activations of the output unit(eqn. 1,2). 

 

 Gradient descent methods minimize objective error function by finding the 

derivatives of objective function with respect to network weights and adjusting the 

weights in the negative slope of the derivative. In this paper, steepest descent algorithm 

is used. In this algorithm, after each training example, each weight w in the network is 

updated as follows: 

 𝑤!!! = 𝑤! + ∆𝑤! (3.9) 

 ∆𝑤! = 𝑚∆𝑤!!! − 𝛼
!"
!!!

  (3.10) 

𝑤ℎ𝑒𝑟𝑒  0 ≤ 𝛼,𝑚 ≤ 1  

 

 The second term (𝛼 !"
!!!

) in error gradient (∆𝑤!) is the adjustment in the 

direction of negative slope of the error derivative and 𝛼 represent the amount of change 

that will be applied and named as “learning rate”. The first term is the momentum term 

in 3.10. A ratio of the previous gradient is also added to the error update. This helps 

steepest descent algorithm to converge fast and to avoid getting stuck at local minimum 

points. The momentum and learning parameters are generally chosen experimentally 

depending on the dataset, learning task and other training related factors. 

 

 In multilayer perceptrons, back propagation algorithm is used to efficiently 
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calculate error derivatives !"
!!!

. It first finds the derivatives of objective function with 

respect to network outputs and propagates error terms from output through input layer 

and calculates error gradients in each layer by repeated application of chain rule. In this 

work, we used back propagation through time algorithm [22], which is also based on 

back propagation but modified for recurrent neural works to handle the peculiarity in 

RNNs: objective function not only depends on the current activations (as in standard 

neural networks) but also the previous history 

 

3.4.Learning Singing Expression contours 
 

Our framework is given by the Fig. 3.3. 

 

 
Figure 3.3.General Framework 

 

 Scores are semi-automatically derived from singing voice recordings by labeling 
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the notes in the F0 contour. Total F0 is separated into baseline and vibrato sequences for 

each song. Then, vibrato and baseline are learned by training the vibrato and baseline 

streams with contextual information derived from the corresponding scores. Finally, 

after models are created with learning procedure, given a target score vibrato and 

baseline models can generate vibrato and baseline output of the target score and these 

are summed to get total F0 output. 

 

 One important point not given in the Fig.3.3. is that, we used phrases as the 

training examples, not the whole songs. We extracted phrases from songs by dividing 

each song by the rests in the musical score of the song. Therefore, we eliminated all the 

rest and only modeled the notes. The reason behind is that our model fit a regression; on 

the other hand F0 contour or vibrato parameters during rest regions are undefined. Thus, 

it is unreasonable to predict the values during these regions simply by a regression 

model. Either they should be removed from training process or a multi-space probability 

distribution that decides if a frame is rest or not should be used. However, there is one 

drawback of this operation: since we reduced training sequences from whole excerpts to 

note sequences they become independent of each other and one phrase in a song cannot 

see history that would be formed by previous phrases in the same song. On the other 

hand, it also allow network to learn better in phrase level. 

 

 The learning in RNNs is done at frame level. That is, given a phrase the output 

sequences are streams of F0 or vibrato values of all the audio frames as well as input 

sequences are streams of contextual information of all the audio frames and there is a 

one to mapping between input and output sequences. Our model learns to predict output 

value (F0 or vibrato) sequence given contextual information sequence of all the frames 

of a target phrase.  

 

 To create singing expression contours, we modeled vibrato and baseline F0 

contour separately. Thus, F0 training data is converted to vibrato data and baseline data. 

The baseline is the remaining part when vibratos are excluded from the F0 contour. 

Vibrato is defined by vibrato depth and rate at each time frame. The relation between 

the baseline, vibrato parameters and the total F0 contour is given by the equations[2]: 
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𝜑 𝑛 = 2𝜋𝑟 𝑘 ∆!

!!!

!!!

+   𝜑!"##$! 𝑛  (3.11) 

 𝐹0 𝑛 = 𝐹0 𝑛 + 𝑑 𝑛 sin 𝜑 𝑛 + 𝜑!"#$  (3.12) 

 

where 𝐹0 𝑛   is reconstructed total F0,  𝐹0 𝑛  is baseline pitch at frame n,  𝑑 𝑛  is 

vibrato depth at frame n,  𝜑 𝑛  is sinusoid’s phase and 𝜑!"#$ value indicating initial 

phase, 𝑟 𝑘  is vibrato rate at frame k, ∆! is frame time and 𝜑!"##$!(𝑛) is reconstruction 

error 

 

3.4.1.Learning baseline 
 

F0 contour carries important characteristics of the singing and related to the naturalness 

[28]. Behaviors in F0 contour such as overshoot and preparation or fine fluctuations 

[29] exists in human singing and found be to related to musical contexts [30]. Thus we 

should be able to model and simulate this kind of behaviors within our statistical model. 

 

 An RNN-LSTM with a linear output neuron trained with sum squares error 

function is used to learn baseline F0. The following contextual factors are provided as 

input to the network: 

 

1. The pitch of the note in the current frame in units of integer MIDI notes. 

2. The interval between current note and the next note in semitones. 

3. The interval between current note and the previous note in semitones. 

4. The duration of the current note in seconds. 

5. The position of the frame within the current note. For the nth frame in a note 

it is given as n / total number of frames in the note. 

6. Binary feature telling if the next note is a rest  

7. Binary feature telling if the previous note is a rest  

 

 Current pitch feature is important for system to learn to be intune with the notes 

since F0 contour follows the frequency of the note with small deviations. Frame 
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position within the note helps learning amounts of these deviations through the note. 

Interval between next note and previous note or the information of whether they are rest 

is important for the beginning and end regions of the notes and modeling the transitions 

made from the previous or to the next note.  

 

 The network configurations and statistics of SysDB and SongDB for learning 

baseline is as in Table 3.2. 

 
Table 3.2. Network configurations and statistics for melodic exercises and jazz songs database 

Database Number of 

Frames 

Number of 

Sequences 

Learning 

Rate 

Momentum Hidden 

Layer Size 

Number Of 

Epochs 

SysDB 123873 154 10-5 0.9 120 300 

SongDB 145237 196 10-5 0.9 120 324 

 

 Learning rate and momentum corresponds the parameters in equations 9 and 10. 

Hidden layer size is the number of neurons in the hidden layer and is chosen 

experimentally. Epoch is one-step iteration of training with all the input dataset. The 

number of epochs is not selected beforehand. Instead, a threshold that states the number 

of subsequent epochs without improvement on the network error is provided. The 

network automatically stops when it reached to this threshold. This threshold was given 

as 30 for both database and the networks automatically stopped when they reached to 

300th and 324th epoch for SysDB and SongDB respectively. 

 

Pitch shifted data 

 
Pitch as a contextual factor is very important for model to generate proper and intune F0 

contours since the frequency of the note and the frequency that singer sings are very 

correlated. Therefore, this contextual factor should be covered in training set as much as 

possible. However, our database had a sparse distribution of pitch and also had a limited 

range. In our first experiments, this caused some undesired outputs for the target 

contexts where their pitch is not covered in database (Fig. 3.4). 
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 To solve this problem, we applied pseudo-pitch shifting[7] to our database. 

Since F0 contours are just represented in logF0 (midi) units, new training examples can 

be generated by shifting the F0 contours in semitones. This is an easy way to increase 

F0 training data and cover pitch context better. We applied a shifting of +/- 1 and +/-6 

semitones to all training songs. After this operation, we got the pitch distributions in the 

Fig.3.5 and get a better coverage of the pitch. 

 

 
Figure 3.5.Distributions of notes before and after pitch shifting for SysDB(left) and SongDB(right).Y axis is 

the number of occurrences. 
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Figure 3.4. Detunings in pitch contour before and after pitch shifting.The model trained with SysDB 
fails to be intune with some target notes which is out of pitch range of the training set(left).The 
problem is solved after pitch shifting(right) 
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3.4.2.Learning Vibrato 
  

Vibrato corresponds to a modulation of the frequency and characterized by the rate and 

depth of this modulation. It is an important technique that is used by singers to add 

expression to the performance. In addition, its characteristics change depending on the 

singer and style.  Thus, it is needed to incorporate vibrato modeling in our model. 

Musical contexts and aspects of vibrato are found to be related.  For example, Prame 

found out that depth of the vibrato is affected by the duration of the note, and the 

relative position inside a note [27]. Thus, it is reasonable to train and predict the vibrato 

characteristics by providing contextual information of the note. 

 

 Vibrato prediction is done with two separate networks. (Fig.3.6) One model 

consists of a RNN-LSTM with two linear output neurons predicts vibrato depth and rate 

simultaneously. This model predicts a continuous two-dimensional stream for a given 

sequence. However, vibrato depth and rate are defined only when the frame is vibrato 

frame. When the frame is unvibrato frame the network should predict 0.This is not 

possible with a simple regression model that minimize sum squares error since the 

network will always predict a continuous value in an interval. Therefore we created 

another model based on binary classification to predict whether the frame is a vibrato or 

nonvibrato frame. To get the final output, output of the two models for a given sequence 

are multiplied so that binary classification model will act as a mask and will filter the 

nonzero vibrato depth and rate predictions from the other model, which actually come 

from a nonvibrato frame (Fig 3.7.). The objective function of the binary classification 

network is given as follows [22]: 

  

 𝑂 = − 𝑧𝑙𝑛𝑦 + 1− 𝑧 ln 1− 𝑦  

where z and y are target  and network output pairs 
(3.8) 
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Figure 3.6.Vibrato Framework 

 

 Following features are used in both of the networks: 

1. The duration of the current note in seconds. 

2. The position of the frame within the current note. For the nth frame in a note 

it is given as n / total number of frames in the note. 

3. Binary feature telling if the next note is a rest 

4. Phrase position of the note 

 

 Many vibratos occur when the next note is a rest since these represents generally 

phrase endings and the singer generally accents this climax point with a vibrato. 

However, vibrato can also occur at other points occasionally. Therefore, phrase position 

is provided to predict such points. The other features are chosen especially for 

predicting the timing and intensity of the vibrato. 

 

 The network configuration of SysDB and SongDB for learning vibrato is as 

follow:  learning rate, momentum, and hidden layer size is chosen as 10-6, 0.9, and 40, 

respectively for both database. The network trained with SysDB to predict depth and 

rate stopped after 670 epochs while the network predicting vibrato frames stopped at 

630 epochs. The network trained with SongDB predicting depth and rate stopped after 

843 epochs and the network predicting vibrato frames stopped at 810 epochs. 

 



	
  30	
  

	
  
Figure 3.7. Vibrato models and their interaction. To get the final output, output of the two models (original 
depth prediction and isVib,binary output telling if the frame is vibrato frame) for a given sequence are 
multiplied 
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CHAPTER 4 
Results 

 
We applied RNNs for modeling F0 of the singing voice. In this section, we will explain 

how our model generates final outputs, discuss some consistent behavior we observed 

in contour outputs and provide our qualitative evaluation methodology and its results. 

 

4.1.Output Generation 
 

Given a musical score, we first divide it into the phrases since it is the basic unit of our 

database, for each phrase we generate F0 contours from the vibrato and baseline 

models, and concatenate them in order to create complete F0 stream. This F0 stream is 

provided to Vocaloid. Dynamics parameter is provided as a constant stream since we 

haven’t modeled dynamics. Vocaloid handles the remaining processes in the synthesis 

and returns wav files for each song. 

 

 We generated outputs for 7 targets that are some jazz songs, which is listed 

online [35]. Target information are parsed from score files (MusicXML[32]) and since 

they are just scores the timing is not natural. Although it would be better to derive 

scores from human performances (for the qualitative test for example), this is not the 

main issue in our work. We wanted to evaluate F0 contours by holding the other factors 

identical.  

 

 One additional modification while we generate the synthesized audios was 

applying a smoothing to baseline contour at note boundaries(fig 4.1.). This is because 

we encountered some discontinuities at the note boundaries because of the sharp context 

changes at the note boundaries. We could not find a way to solve this problem from 

scratch (from our networks directly), instead we applied a smoothing at the frames close 

to the note transitions. Although there was no difference at the synthesized audios with 

and without smoothing since the discontinuity occurs at just few frames, it might cause 
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problems for the possible target songs we did not cover in our tests. The method ideally 

should avoid any discontinuities at the boundaries. 

 

 

4.2. Contour Samples	
  
 

In this section we will describe the results of F0 and vibrato modeling by presenting 

some common behaviors learned by the models. One such behavior is that our model 

learns to exhibit overshoot (deflection of F0 contour exceeding the target note after note 

changes) and preparation (deflection of the opposite direction of note change observed 

just before note changes), which are F0 fluctuations that occur in human singing and 

related to naturalness [29] (Fig. 4.2.). 

Smoothed 

Original 

Figure 4.1. Discontinuities (labeled green) at note transitions. 
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 Being in tune with the notes is also essential for the F0 modeling systems. It is a 

must to avoid detunings and mistakes in singing. Our model also successfully learned 

being in tune (Fig. 4.3.). 
 

 The vibratos are also learned properly, increasing depth and rate through the 

Figure 4.3. An excerpt from output for the But Not For Me, which is succesfully in tune. 

Figure 4.2. An excerpt from September In The Rain  output showing overshoots and 
preparations 
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beginning and smoothly decreasing at the end of the note. However, the vibratos are 

predicted only at the phrase endings (i.e. when the next note is a rest). This is one 

problem of our method. Although the phrase endings generally involves a vibrato in 

singing the model should also predict vibratos in other positions occasionally.  

	
  
Figure 4.4.Vibrato predictions for Stars Fell on Alabama. Total F0, depth and rate from top the bottom 

4.3. Subjective Evaluation 

 

We compared our method with 3 different methods: HMM approach, Unit Selection 

Approach, and default strategy of Vocaloid. We used a perceptual A/B preference test 

as the evaluation method. An online survey is prepared for the test [31]. In the test, 

users do a comparison between pairs of synthesis methods by stating the better audio or 

giving a “no preference” option and they consider naturalness and expressiveness as the 

evaluation criteria. For five target songs in the target set, outputs are created with each 

of the 4 methods (RNN,HMM,Unit Selection, and Default Vocaloid), and for each song 

RNN is compared against hidden markov models, Unit Selection, and Default Vocaloid.  
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Figure 4.6. AB preference results for But Not For Me 
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Figure 4.7.  AB preference results for I Thought About You 
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Figure 4.8. AB preference results for September In The Rain 
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Figure 4.5.AB preference results for Summertime 
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Figure 4.9. AB preference results for Stars Fell On Alabama 
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 The results of test made with 22 people are shown on Fig. 4.5, 4.6, 4.7,4.8 and 

4.9. Preference percentages are given for each song for RNN-DEF, RNN-UNIT, and 

RNN_HMM comparisons,where RNN is our method, DEF is default Vocaloid 

synthesis, UNIT is unit selection and HMM is hidden markov model approach 

 

 From these results we can state that rnn and def performance are very similar 

since in all the songs rnn-def comparison showing a tendency towards equal 

percentages. In, rnn-hmm comparison we can say that hmm outperformed rnn for 4 

songs out of 5, therefore it seems to be better than RNN. Between unit selection and 

RNN it is hard to decide which is better since for some songs RNN and for some other 

UNIT is preferred. In RNN-DEF comparison percentages are close to each other in all 

the cases. 

 

 From the results, we would at least expect to outperform the default method. 

Also, we were expecting at least to get close results with HMM. However, when we 

listened pairs in which our method performs much worse than the other (e.g RNN-

HMM comparison for But Not For Me) or much better than other (e.g. RNN-UNIT 

comparison for September In The Rain) it was very hard to explain the reason for such 

differences only by listening. The reason for is that synthesized audios are very similar 

to each other and hard to differentiate although there are slight differences between 

audios. Also we never see a common method that is always preferred in different songs 

of the same comparison pair. Thus, we think that our method performs very close to 

other methods and works reasonably well. Using a different dataset with higher size and 

variety or modeling also the dynamics might expose real pros and cons of the different 

methods. 
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CHAPTER 5 

Conclusions and Future Work 

 
In this study, we have build up a framework for generating F0 contours automatically 

from given scores. We have used recurrent neural network with LSTMs to model our 

data and create our predictor. We have a decent statistical model that is able to represent 

F0 fluctuations occurring in human singing such as overshoot, preparation, and vibrato, 

and avoid detunings. 

 

Our main contribution is that this work is the first application of Recurrent Neural 

Networks to F0 modeling for singing voice synthesis. Although we could not 

outperform the competent methods in our subjective listening tests, we provided a good 

starting point by creating a decent model. With their power of modeling complex data 

by providing compact nonlinear functions, RNNs has a huge potential than the others 

for sequence problems such as f0 modeling. They are also very flexible and powerful 

against modeling complex and large data, which are the properties that will be exploited 

more in the future. 

 

Limitations and Future Work 

 

Some changes for enhancing our work would be as follows: 

 

• Changing basic training units from phrases to songs. Currently we were dividing 

whole songs to the phrases and this prevents RNNs from learning dependencies 

between contexts in two different phrases of the same song. This can be solved 

by adding another Recurrent Neural Network with binary classification layer, 

which predicts if the note is a rest or not.  

 

• We encountered with the small discontinuities at the note boundaries. Although 

these did not make differences on the synthesized audios, it may cause problems 
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in the other possible targets. To solve this problem, a Gaussian probability 

distribution can be used at the output layer and smoother outputs could be 

obtained. 

 

• The vibrato model only predicts vibratos at phrase endings. One reasonable 

explanation is the examples that training database provide contains this 

behavior. However, vibratos also occur inside the phrases even if it is not as 

much as at the phrase endings. Thus, the statistical model should occassionaly 

predict vibratos inside phrase. This can be achieved by using different network 

configurations (different hidden layer size, features etc.) 

 

• Our model is missing the dynamics. It is also very valuable for representing 

expressiveness and naturalness. It can be modeled in the same way F0 modeled, 

with a regression RNN-LSTM. 
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