

F0 Modeling For Singing Voice Synthesizers with

LSTM Recurrent Neural Networks

Serkan Özer

MASTER THESIS UPF/2015

Master in Sound and Music Computing

Master Thesis Supervisors:

Merlijn Blauw and Marti Umbert

Department of Information and Communication Technologies

Universitat Pompeu Fabra,Barcelona

	

	

	

	

	

iii	

Abstract

In singing voice synthesis process, score and lyrics for a target song are converted to

singing voice expression parameters such as F0, spectra and dynamics. However, this

study aims to model and automatically generate F0 parameter by assuring

expressiveness and human-likeness in final synthesized singing voice. Musical contexts

are important factor on evolution of F0 through a singing performance. Thus, we

propose a machine-learning framework that learns F0 of the singing from a set of real

human singing recordings with respect to musical contexts, at the same time, capturing

expressiveness and naturalness of the human singer. Then, we can automatically

generate F0 parameter from our trained model given musical contexts of the score.

Recurrent Neural Networks with Long Short Term Memory networks are employed for

first time to this specific problem due to their flexibility and strong power in modeling

complex sequences. Two recurrent neural networks are trained to learn baseline and

vibrato parts of F0 separately. Then, F0 sequences are generated from the trained

networks and applied to a singing voice synthesizer. Finally, synthesized songs are

evaluated with AB preference tests.

	

	
 v	

Acknowledgments

First of all, I would like to thank my supervisors Marti Umbert and Merlijn Blaauw for

their guidance, support and patience throughout this year. I would also like to thank

Xavier Serra for giving me the opportunity of being part of the Sound and Music

Computing Master. I would also thank all the teachers for providing their precious

knowledge on this exciting field. Moreover, I would like to thank all my classmates for

the time that we spent together sharing, discussing and partying. Finally, I express my

gratitude to all who involved in the evaluation survey of this thesis

	

	

	

	

	

	

	

	

	

	

	

	

vii	

Content
	

p.	

ABSTRACT	
 ..	
 iii	

ACKNOWLEDGMENTS	
 ..	
 v	

LIST	
 OF	
 FIGURES	
 ..	
 viii	

LIST	
 OF	
 TABLES	
 ...	
 ix	

	

1.	
 INTRODUCTION	
 ...	
 1	

1.1	
 Research	
 Problem	
 ...	
 1	

1.2	
 Motivation	
 ..	
 1	

1.3	
 Thesis	
 Statement	
 ...	
 2	

1.4	
 Goals	
 ...	
 3	

2.	
 STATE	
 OF	
 THE	
 ART	
 ...	
 5	

2.1	
 Performance	
 Driven	
 Approaches	
 ...	
 5	

2.2	
 Rule	
 Based	
 Approaches	
 ...	
 6	

2.3	
 Unit	
 Concatenation	
 Approaches	
 ...	
 8	

2.4	
 Statistical	
 Approaches	
 ...	
 9	

	
 	
 2.4.1	
 HMM-­‐Based	
 Approaches	
 ...	
 10	

	
 2.4.2	
 RNN	
 applications	
 	
 ..	
 14	

3.	
 Methodology	
 ..	
 18	

3.1	
 Software	
 ...	
 18	

3.2	
 Dataset	
 ...	
 18	

3.3	
 Computational	
 Modeling	
 	
 ...	
 19	

	
 3.3.1	
 RNN	
 Structure	
 ...	
 20	

	
 3.3.2	
 Error	
 Function	
 and	
 Training	
 Procedure	
 ..	
 22	

3.4	
 Learning	
 Singing	
 Expression	
 Contours	
 ...	
 23	

	
 3.4.1	
 Learning	
 Baseline	
 ..	
 25	

	
 3.4.2	
 Learning	
 Vibrato	
 ..	
 28	

4.	
 Results	
 ...	
 32	

4.1	
 Output	
 Generation	
 ...	
 32	

4.2	
 Contour	
 Samples	
 ...	
 33	

4.3	
 Subjective	
 Evaluation	
 ..	
 35	

5.	
 Conclusions	
 and	
 Future	
 Work	
 	
 ..	
 39	

REFERENCES	
 ...	
 42	

	

	

	

	

	
 	

	
 viii	

List	
 of	
 Figures	

	

	

Figure	
 2.1.Basic	
 Architecture	
 of	
 Statistical	
 Approache	
 ..	
 10	

Figure	
 3.1.	
 RNN	
 structure	
 used	
 in	
 the	
 paper	
 ..	
 20	

Figure	
 3.2.LSTM	
 Structure	
 ..	
 21	

Figure	
 3.3.General	
 Framework	
 ...	
 23	

Figure	
 3.4.	
 Detunings	
 in	
 pitch	
 contour	
 before	
 and	
 after	
 pitch	
 shifting	
 	
 27	

Figure	
 3.5.Distributions	
 of	
 notes	
 before	
 and	
 after	
 pitch	
 shifting	
 	
 28	

Figure	
 3.6.	
 Vibrato	
 framework.	
 ..	
 29	

Figure	
 3.7.	
 Vibrato	
 models	
 and	
 their	
 interaction	
 ...	
 30	

Figure	
 4.1.	
 Discontinuties	
 at	
 note	
 boundaries	
 ...	
 33	

Figure	
 4.2.	
 Overshoot	
 and	
 preperations.	
 ..	
 34	

Figure	
 4.3.	
 Intune	
 F0	
 contour	
 ..	
 34	

Figure	
 4.4.	
 Vibrato	
 prediction	
 sample.	
 ..	
 35	

Figure	
 4.5.	
 AB	
 preference	
 result	
 for	
 Summertime.	
 ..	
 35	

Figure	
 4.6.	
 AB	
 preference	
 results	
 for	
 But	
 Not	
 For	
 Me.	
 ...	
 35	

Figure	
 4.7.	
 AB	
 preference	
 results	
 for	
 I	
 Thought	
 About	
 You	
 ...	
 35	

Figure	
 4.8.	
 AB	
 preference	
 results	
 for	
 September	
 In	
 The	
 Rain.	
 	
 35	

Figure	
 4.9.	
 AB	
 preference	
 results	
 for	
 Stars	
 Fell	
 On	
 Alabama.	
 	
 35	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 ix	

List	
 of	
 Tables	

	

Table	
 3.1.	
 Statistics	
 for	
 singing	
 voice	
 databases	
 ...	
 19	

Table	
 3.2.	
 Network	
 configurations	
 and	
 statistics	
 for	
 melodic	
 exercises	
 and	
 jazz	
 	

songs	
 database	
 ..	
 26	

	

	

	

	

	

	

	

	

	

	
 x	

	
 1	

CHAPTER 1
INTRODUCTION

Synthesizing human singing has been a topic of interest among researchers for many

years. However, while simulation of acoustic instruments have been matured and

become popular among musicians, singing voice synthesizers, just in the last decade,

reached to a convincing point where synthesized singing voice can be used as yet

another musical instrument. In this thesis, we will focus on one main component of

these synthesizers, F0 or sung melodic contour. We propose a system that automatically

generates F0 contour from a machine-learning framework when a musical score is

given. It will be a statistical black box that creates a F0 contour containing necessary

characteristics such as naturalness and expressiveness.

 In the following sections, we will elaborate on the research problem and our

goals. In chapter 2, we will provide state of the art research related to generation of F0

in the context of singing synthesizers. In chapter 3, we provide our methodology, and in

chapter 4, evaluation strategy and the results will be provided. Finally, in chapter 5 we

will provide the conclusions and results.

1.1 Research Problem

In the singing voice synthesis process, typically musical score and lyrics for a target

song are converted to the singing voice. More specifically, the parameters of the singing

voice that are F0, spectrum and dynamic are generated using the phonetic and pitch

information described in the score. F0, or melodic contour is very important for the

naturalness, and expressiveness of the singing voice. Therefore, one of the most

important requirements of singing voice synthesis is to obtain an F0 contour that will

conduct these characteristics of the singing voice. To achieve this, the factors affecting

F0 contour and its characteristics should be carefully investigated and then a framework

should be built upon this investigation to generate proper F0 contours.

	
 2	

1.2 Motivation

In the current singing voice synthesizers, users have to make some effort to tune the

synthesized singing voice given by the system since the output does not satisfy them in

terms of expressiveness and naturalness. For example, in Vocaloid [1], users are

allowed to manipulate singing expression parameters such as pitch bend, and dynamics

via a user interface, which involves a huge time cost. Therefore, one of the important

points in the context of singing voice synthesis is to model these parameters and

automatically generate them to provide a better, more expressive and human like initial

contour to user. This can be achieved by modeling F0 contours with proper musical

contexts.

 Pitch contours also represent the style of the singer. Thus modeling a specific

style in the singing voice requires the modeling of F0 contours. Analyzing and

modeling the F0 contours of the songs from a singer or a singing style may enable

singing voice synthesizers to provide the possibility of representing different styles and

adjusting F0 output depending on this choice.

1.3 Thesis Statement

In this section we present our thesis statement:

The F0 contour of the singing human voice, similar to other pitched instruments, is

highly dependent on the musical contexts. It is possible to capture characteristics and

temporal evolution F0 contour of the singing voice by extracting information about the

musical contexts. Using this information, statistical models can be trained with properly

designed musical contexts to automatically predict F0 contour from the given score. F0

contours with desired properties on the singing voice can be learned with training by

example strategy on set of singer recordings, which carry those properties themselves.

	
 3	

1.4 Goals

The specific goals of this thesis work are:

• Building a machine-learning model to automatically generate pitch contours

from scores assuring naturalness and expressiveness of the singing voice.

• Proposing musical contexts for modeling F0 contour for the singing voice.

• In particular, to explore the possibility of applying recurrent neural networks to

this problem and setting up the first recurrent neural network for the F0

generation problem .

	
 4	

	
 5	

CHAPTER 2
State of The Art

In this section, we will review state of the art in F0 modeling for singing voice synthesis

and various applications of recurrent neural networks on sequence problems. First, we

will explain approaches focusing just on F0 modeling and sections related to generation

and control of F0 parameter from complete singing voice synthesizer frameworks.

Then, we will provide RNN applications on sequential problems related to our topic

such as text to speech synthesis and music generation

2.1. Performance Driven Approaches

Performance-driven approaches controls singing voice parameters from an external

recording of the target song, which is usually performed by the user. Janer, Bonada and

Blauw [3] proposed a system in which pitch, dynamics, vibrato and phonetic parameters

for a singing voice synthesizer is extracted from user’s singing. In this method, F0 is

derived from the input voice using a frequency domain method. Then vibrato that is

defined by its depth and rate is extracted by processing frequency curve. Because

singing voice synthesizer needs a continuous pitch curve, F0 contour is made

continuous with interpolation in transition regions or unvoiced phonemes since the

variation caused by unvoiced phonemes is not related to singing expression. Finally, all

the parameters including F0 are fed to the singing voice synthesizer’s internal system.

 Nakano and Gato proposed VocaListener[4], developed as a plugin for

Vocaloid[1]. In the approach proposed by Janer et al. [3] parameters that system

generates are not robust to different synthesizers since different synthesizers and

different singer databases will synthesize different outputs with the parameters

estimated from user’s voice. VocaListener aimed to remove these deflections and to

mimic user’s voice as exactly as possible. This is done by estimating the pitch

iteratively until it becomes very close the F0 contour of user’s singing. This iterative

	
 6	

approach both guarantees robustness with different synthesizers and gives better

imitation of user’s singing. Vibrato of the singing is also extracted as depth and rate and

provided later to the user so that he can adjust it later. In the case of detunings in pitch

user also can shift the pitch.

 Speech recordings were also used as an external performance for deriving

singing voice parameters. In such a speech to singing synthesis system [11], spectral

envelope of the speech is converted to that of singing while F0 is generated after an F0

control model is applied on musical notes. First, a melody contour is created with

concatenation of step functions, each having a multiplication factor equal to pitch of a

note. Then four different types of fluctuations, which can be encountered in singing

performances and related to naturalness of the singing, are added to this melody

contour. These fluctuations are overshoot (a deflection exceeding the target note after a

note change) vibrato (a quasi-periodic frequency modulation (4-7 Hz)), preparation (a

deflection in the direction opposite to a note change observed just before the note

change) and fine fluctuation (an irregular frequency fluctuation higher than 10 Hz).

 Performance driven approaches apply singing characteristics extracted from

user’s singing voice to the synthesizer and provide a simple control system over singing

expression parameters. Also it is very suitable for representing characteristics of an

individual singer. However they also require people who know how to sing. Eliminating

this need is one of the most important points of having singing synthesizers. Yet, for

people who want to teach their way of singing to the synthesizer this approach provide a

very convenient control.

2.2. Rule Based Approaches

In a basic architecture of a rule based singing voice synthesizer [10], score and lyrics

information are processed with a set of performance, phonetic and articulatory (related

to transition between notes) rules to manipulate singing voice parameters such as pitch,

vibrato and sound level. The systems that create singing voice synthesis based on these

	
 7	

rules are categorized as rule based systems. The foremost system employing this

approach is KTH singing synthesis system [13]. This system is based on KTH rules for

music performance, which is a result of a research made through analysis-synthesis

method over 30 years [12]. This is a cyclic process in which, a music expert proposes

the rules that will manipulate synthesis parameters according to the musical context or

lyrics, synthesizer applies this rules in synthesis procedure, listeners evaluate the

synthesis subjectively and rules are reviewed and proposed again. In KTH singing

system [14], 23 performance rules (16 for musical context, 4 for phonetic, 3 for special

singing techniques) that affect F0, formant frequencies, duration, sound level, vibrato

depth and rate were used. Six of them are related to F0, named as melodic intonation,

the higher the sharper, marcato, Bull’s roaring Onset, timing of Pitch Change and

coloratura:

 Melodic intonation rule takes account of the fact that singers may not follow

equal tempered tuning and intentionally make small pitch deviations on some notes

[13]. It is thought that the amount of deviation is related to melodic scale [15].

Therefore, this rule assigns amount of intonation to each note in a chromatic scale. The

rule “the higher the sharper” recommends to increase the amounts of deviation when the

note is played in a higher octave, since some musicians may favor playing higher tones

sharper and lower tones flatter.

 Marcato and Bull’s Roaring Onsets are two cases of ornamentation occurring in

specific musical contexts. The rule for marcato recommends setting F0 two semitones

below the target note at 60 ms before the target note onset since in the ornamentation F0

fall below the target frequency and go up again. Bull’s Roaring Onset is the term coined

by the authors for the quick ascending pitch changes at certain onsets. To simulate this,

at the first note after the rest, F0 is set to 11 semitones down from target and F0 reached

to the target 50ms later.

 Timing of the pitch change is a phonetic rule. In the analysis by synthesis

method it is found that singing sound strange if the F0 does not reach target pitch at the

vowel onset in note transitions. Thus, this rule states to begin to change F0 at preceding

	
 8	

consonant and setting F0 to target note frequency at vowel onset. Bonada et al.[16] also

employed this rule in their system to improve naturalness.

 Coloratura is a term used for rapid sequences of short notes each sung with

same single vowel. Thus this rule is applied when there is such a note sequence. It

formulates the F0 contour based on the note durations and the direction of intervals

between successive notes in the coloratura sections.

 Rule-based systems provides a simple, deterministic framework to synthesize

singing. However, when a system is fully rule based and rules are applied collectively

the output may sound unsatisfactory. Thus, these systems require switches and

controllers to activate/deactivate rules and set amount of the effects. Difficulty in the

control level increases when the number of control parameters increases. Rule based

systems can also represent some aspects of specific styles when rules are decided

considering that style. For example KTH rules are generally designed for classical

singing. However, with the rule approach it is inescapable to miss many aspects in

singing since complexity in singing performance cannot be covered with rules.

2.3. Unit Concatenation Approaches

Synthesizers following unit concatenation approaches takes musical score and lyrics,

selects best matching units to the given notes and lyrics from a previously created

database consisting of large number of units, where units are sung phones or diphones.

Then, selected units are post-processed and concatenated.

 Vocaloid[1], commercially the most successful singing voice synthesizer uses

this approach to create complete singing synthesis from the best matching units. In this

system, pitch is tuned to that of target note when a unit with desired phonetic context

for target pitch does not exist in the database. The pitch is manipulated by scaling the

each harmonic with the pitch conversion ratio (target pitch/current pitch) in the

frequency domain.

	
 9	

 Umbert et al. [2] employed unit selection for the generation of expressive pitch

contour and providing it to the synthesizers. Here, units are defined as melodic context

of three consecutive notes or silences to capture attack and release contours with

preceding and succeeding notes. All the notes are sung only as vowels to eliminate to

variations of F0 unrelated to singing that are caused by unvoiced phonemes. Sequence

of consecutive units for target context is derived with Viterbi algorithm that minimizes a

cost function penalizing selection of dissimilar source units or unit sequences to the

targets. The selected set of units further pitch and time shifted to match target note

duration and pitch. Finally, the units are concatenated to obtain final pitch contour.

 Unit concatenation approach lets synthesizer represent a singing characteristics

of the singer whose singing excerpts used in the databases. It also provides a high

singing synthesis quality and naturalness when the database is large and comprehensive

since the outputs are directly coming from the real recordings. The biggest drawback is

creating the database and covering different musical contexts (notes sung with all

pitches, phonemes or successive notes with different intervals) since transformations

applied to units when they do not match to target sequence. Another disadvantage is the

need for designing cost functions and setting weights between them.

2.4. Statistical Approaches

Statistical approaches follow the process depicted in Fig. 2.4. It consists of training and

synthesis parts. In the training part, singing voice parameters are extracted from the

singer database. Contextual factors such as note pitch and duration, and phonemes are

fed to statistical model to learn singing voice parameters from data. When the training

process is completed, singing voice parameters can be generated from the trained model

given a target score and lyrics. In this section we will review different statistical models

and contextual factors used in these approaches.

	
 10	

Figure 2.1.Basic Architecture of Statistical Approaches

2.4.1. HMM based approaches

Hidden Markov Models are most extensively used statistical model for singing voice

synthesis. Followers of this approach are based on a HMM based speech synthesis

system [8]. Thus speech synthesis approach will be explained in detail first.

F0 modeling with HMMs in speech synthesis

An N state HMM can be denoted as 𝜆 = 𝐴,𝐵,𝜋 where A is state transition

probabilities 𝑎!" !,!!!
!

, B is output probability distribution 𝑏! 𝑜 !!!
! and 𝜋 is initial

state transition probabilities 𝜋 !!!
! . In HMM based speech synthesis [8], each HMM

represents a phoneme. In addition each HMM has the left-to-right model structure in

which only the transitions from lower index state to higher index state is possible

through the time. This structure allows better modeling of speech since it is a signal

whose properties are successively changing. Output vectors 𝑜 consists of spectral (Mel

Frequency Cepstral Coefficients) and pitch (F0) parameters. Output probability

distributions 𝑏! 𝑜 are continuous and modeled by Gaussian Mixtures. Gaussian

mixtures allow smooth outputs and modeling complex data. Output distribution

parameters (mean and variance vectors) are estimated from training data using

expectation-maximization (Baum-Welsch) algorithm [17]. For the generation of

outputs, a parameter generation algorithm working in a maximum likelihood sense is

proposed for speech synthesis [17]. This algorithm finds the speech parameter vector

	
 11	

sequence 𝑂∗ with the maximum likelihood given HMM λ and sequence length 𝑇:

 𝑂∗ = argmax
!

𝑃 𝑂|𝜆,𝑇 (2.1)

which is further divided into two sub problems:

 𝑞∗ = argmax
!

𝑃 𝑞|𝜆,𝑇 (2.2)

 𝑂∗ = argmax
!

𝑃 𝑂|𝑞∗, 𝜆,𝑇 (2.3)

 The solutions of the equations and derivation of subproblems [18] are not

provided here. However, solving the second equation, that is, finding the optimum

hidden state sequence 𝑞∗ given 𝜆 and 𝑇 , requires an essential modification on the

structure of HMM, termed as explicit state duration modeling [19]. In an HMM

including self-transitions through the states, probability of staying d consecutive steps at

state i is given by a geometric distribution (𝑝! 𝑑 = 𝑎!!!!! 1− 𝑎!!). Instead of using

such a distribution and self transition probabilities, explicit probability distributions

such as Gaussians are used. From these distributions, the best hidden state sequence 𝑞∗

can be directly found since the HMM used has left-to-right structure.

 One characteristic of speech synthesis systems is the use of contexts. The output

vector for a phoneme is not independent of context it occurs. Therefore context

information such as proceeding, current and succeeding phoneme, count of syllables in

the phrase, position of the phoneme in the phrase is incorporated to the system.

However introducing contexts requires a big training data containing all combinations

of contexts. Creating such a database is impossible since the values each factor can take

are many. To overcome this problem, context dependent factors are clustered using a

decision-tree based context-clustering algorithm [20,21] in HMM approaches, where

similar contexts are mapped to same output density distribution via a decision tree. This

reduces the need for big training data and allows modeling of unseen contexts since

each context is guaranteed to be mapped to one output distribution via decision trees.

 For modeling of F0 MSD-HMM (Multi Space Probability Distribution

	
 12	

HMM)[18] is used. F0 contour values are 1-dimensional frequency values through

voiced region and undefined for unvoiced regions. Therefore F0 samples are considered

to be drawn from two different spaces, one 1-dimensional and other 0-dimensional

space. This cannot be modeled by single space probability distribution HMMs unless

some assumptions are made for the unvoiced regions. MSD-HMMs can model multi

space distributions and solve this problem.

 To sum up, hmm based speech synthesis system consists of training and

synthesis stages. In the training stage, state duration, spectral and pitch parameter

distributions are determined through Baum-Welsch algorithm. Then, decision-tree

based context-clustering algorithm is applied to all of these distributions to cluster

similar contexts. In the synthesis stage, a given text sequence is converted to context-

dependent label sequence. Based on these context dependent labels, from spectrum,

pitch and state duration probabilities, a sequence of phoneme HMMs is constructed

with associated output probability distribution in the decision tree. Finally, parameter

generation algorithm is applied to estimate F0 and spectrum output from the sequence

of phoneme HMMs.

F0 modeling with HMMs in singing voice synthesis

HMM-based singing synthesis systems inherit the properties of the HMM-based speech

synthesis approach such as the parameter generation algorithm, context dependent

HMMs, explicit state duration modeling and MSD-HMMs for F0 modeling. Given a

score and lyrics, speech synthesis framework can be used for singing voice synthesis in

the manner of “singing the speech” when the defined contexts include factors related to

singing voice.

 Saino, K et al. [6] used preceding, current, and succeeding phonemes and

musical tones, durations and positions of preceding, current and succeeding notes to

model MFCCs (Mel Frequency Cepstral Coefficients) and F0. Sinsy[7,9] is a free

online singing voice synthesizer using a similar approach. It defines “rich contexts”

	
 13	

proposing a lot of contextual factors: (i) key, beat, length and dynamics of the previous,

current and next note, (ii) ties and slurs, (iii) distance between the current note and the

next, previous accent and staccato, (iv) the position of the current note in the current

crescendo and decrescendo, (v) number of phonemes in previous, current and next

phrase, (vi) the number of phonemes and phrases in the song. In addition, it extracts

vibrato parameters depth and rate and models them with MSD-HMMs (0-dimensional

space for nonvibrato and 1-dimensional space for vibrato regions) using the same

contextual factors.

 HMM based singing voice synthesis approach also inherits the problem of

creating training data with different contexts from the speech synthesis approach. The

problem is more dominant here since number of different context used is higher.

However, for one context specific to singing training data can be extended artificially.

This contextual factor is pitch. It is possible to shift F0 contour and note sequence of

given song and create a training data with higher pitch coverage [7]. Another solution

for the same problem is using relative pitch parameters against corresponding notes in

observation vectors [5]. This allows estimation of pitches of the notes in the test songs

whose notes are not trained with the database before.

 Another HMM based approach [5] estimates only pitch to be used by singing

voice synthesizers. It proposes using note HMMs instead of using phoneme HMMs

since only the pitch is generated from the model and the pitch of singing voice is

assumed to be less dependent on phonemes. The variations in F0 contour caused by

consonant are removed from the contour using interpolation. In addition to using note

HMMs it introduces behavior-type HMMs where each HMM represents a melodic

behavior type occurring inside the notes. These types are beginning (B), sustained (S)

and end (E). Each note is assumed to have a behavior pattern consisting of one or more

of three behaviors. Then, a behavior pattern for a single note can be B, S, E, BS, BE,

SE, or BSE. Tree-based context clustering technique is applied to these patterns,

obtaining discrete probability distributions for choosing among 7 discrete behavior-

patterns for given contexts. While converting the musical score to HMM sequence,

behavior-pattern for each extracted context dependent label is determined through

	
 14	

probability distributions and a variable number (one to three) of HMMs are appended

where each HMM corresponds to a behavior type. This approach considers the notes as

having 3 different regions and model singing expression parameter behaviors in these

regions accordingly.

 HMM-based systems allow learning of singing voice parameters directly from

the training data. Thus, they require less manual work compared to other approaches.

For example, rule-designing process in the rule-based systems is implicitly done via

learning or transformation and cost functions have to be adjusted in unit concatenation

method. HMM approach is also flexible since model parameters can be adapted to

different speaker, emotion or style characteristics. On the other hand, statistical

approach may cause oversmoothing of singing voice expression parameters since it is

working in the sense of statistical averaging and likelihood maximization. This, in turn,

may impair naturalness and human-likeness in the generated expression parameters,

2.5 Recurrent Neural Networks Applications

Recurrent neural networks are very powerful sequence models. They are obtained by

allowing ordinary multilayer perceptron to have cyclical connections. These cyclical

connections provide a very strong theoretical property: an RNN is able to see its entire

history of previous input to each output. However, for long time RNNs had not get

much attention from the research community due to the difficulties in training in

practice. The cause of this difficulty is vanishing gradients problem. This problem

prevents RNNs from achieving its strong theoretic power of seeing entire history of

inputs. It is found out that vanishing gradient problem makes it hard for an RNN to use

its history of inputs more than 10 time steps before [22]. Fortunately, an efficient

solution, which uses a special kind of neuron network, is proposed to solve vanishing

gradient problem. These are LSTMs [22] (Long-Short Term Memory) and thanks to

them RNNs started to get widespread usage in the last decade, which we will exploit in

this paper also. In this section, we will provide literature using RNNs for the same goal

as our paper: sequence generation.

	
 15	

 Fan et al. [23] used Deep Bidirectional RNNs (DBLSTMs) with LSTMs to

achieve text-to-speech (TTS) synthesis. DBLSTMs are deep, that is they have multiple

hidden layers and deep representation of the input features as deep neural networks

(DNNs). Deep-layer architectures allow complex function estimations by creating

composite features of features in each deep hidden layer. Bidirectional structure allows

accessing future context as well as preceding context [22]. The system converts

utterances to a feature sequence through text analysis and then these sequences are

mapped with output vectors to provide training example pairs. To train the RNN, back-

propagation through time algorithm with a mean squared error function is used. TTS

with DBLSTMs outperformed both HMM and DNN models in perceptual AB

preference tests.

 RNNs with LSTM are also applied to music related tasks. Eck et al. [24] used

next-step prediction approach for music composition. In such approach, the network

learns to predict the next note depending on all the previous notes. Data is encoded as

binary on/off vector, representing which notes are played and which are not. These

encodings are pushed into input layers of the network and the network predicts an

output in same style of encoding; which notes should be active given all previous

predictions.12-bar blues style is used for constructing training test and a binary

probability distribution is used for predicting on and off state for each note. With this

configuration RNN-LSTM was able to compose music that carry characteristics of 12-

bar blues style

 Graves used RNNs with LSTMs for handwriting prediction, which is related to

our task because a sequence of continuous values is predicted. [26] Handwriting is

encoded as two dimensional real-valued x-y pen-tip locations. The network generates

such x-y values at each time step and invents handwritings. To model real valued

outputs, mixture density network is used as probability distribution of the network. At

the output layer of the network, a Gaussian mixture is predicted at each time step, that

is, output neurons output set of means, standard deviations, correlations and mixture

weights of the bivariate mixture components. The network is trained by maximizing the

	
 16	

log probability densities of the target vectors with a training data consisting of text and

its handwritten version encoded in x-y values. The experiments showed that the network

learned strokes, letters and even common words such as “of” and “the” by modeling the

problem only as next-step x-y point prediction.

	
 17	

	
 18	

CHAPTER 3
Methodology

3.1.Software

RNNLIB [33] is used for implementing recurrent neural network experiments. It is a

stable recurrent neural network library for sequence learning tasks implemented in C++

and suitable for running low-and-high scale experiments. However, we needed

regression for our task and it was not supported in the last version although it had been

active on previous versions. Therefore, we reimplemented regression learning on the

last version based on the previous versions [34].

 Vocaloid[1], a singing voice synthesizer based on unit concatenation, is used to

generate final singing voice outputs. Our model directly provides the F0 contour and

Vocaloid applies this information to samples from the voice database while generating

singing voice synthesis.

3.2.Dataset

Two singing voice database are used for learning F0 contours: melodic exercises

database and jazz songs database. They are recorded with vocal and background music

related to the style it is intended to convey. The background music helped the singer

sing in tune and evoke the target style. The singing expression contours and score files

are derived from the recordings semi-automatically.

 Vocal sections are sung only with vowels. Any note sequence is sung as

sequence of /ua-i-a-i-…/ where /i/ and /a/ alternated after first note. This approach

allows controlling F0 for any target lyrics since unvoiced sections or micro-prosody due

to the phonetics (not related to expression) are intrinsically removed and the model

	
 19	

becomes lyric independent.

Systematic melodic exercise database (SysDB):

Systematic melodic exercise database are designed so that a pitch space of one octave

and different musical intervals will be covered. Since these are just melodic exercises,

there is relatively less expression and emotion involved in the recordings. Rather, it is a

recording database in which specific intervals and pitches are sung correctly and in

tune. After training with database, we would expect to get natural sounding but not

much expressive synthesis outputs

Jazz songs database (SongDB):

It consists of standard jazz songs. The recorded songs are selected from a repertoire

known by the singer. Therefore, here, the singer could put more expression and style

specific properties to the singing. Thus, from a model trained with database we would

like to represent these characteristics. The number of recordings and total duration in

the two databases are given in Table 3.1.

Table 3.1. Statistics for singing voice databases

Database Number of Recordings Duration

SysDB 70 11 min 59 sec

SongDB 15 16 min 59 sec

3.3. Computational Modeling

In this section, we will provide the methodology with which we used to learn and

predict F0 contours. We used recurrent neural networks as the statistical learning model.

First, we will explain the RNN structure, and training procedure. Then we will provide

how we model the singing expression contours.

	
 20	

3.3.1. RNN structure

Recurrent neural network structure used in this paper is depicted in Fig. 3.1.

Figure 3.1. RNN structure used in the paper (left). RNN structure when expanded through time (right)

 The difference from multilayer perceptron is that hidden layer is fully connected

to itself (every hidden unit connected to all other recurrently). With this small change,

RNNs can see and map their entire history of inputs to each output since recurrent

connections between each time step allow inputs to stay in network’s internal state.

[22]. More formally, recurrent Neural Network (RNN) computes hidden state vector

sequence ℎ!, ℎ! . . . ℎ! and outputs vector sequence 𝑦!,𝑦! . . .𝑦! , for a given input vector

sequence 𝑥!, 𝑥! . . . 𝑥! , iterating the following equations from t= 1 to t=T:

𝑂 = ℎ! =ℋ 𝑊!!𝑥! +𝑊!!ℎ!!! + 𝑏!
(3.1)

 𝑦! =𝑊!!ℎ! + 𝑏! (3.2)

where 𝑊 represent weight matrix between two layer, e.g. 𝑊!! is weights of recurrent

connections between the hidden layer, ℋ represent a nonlinear activation function such

as tanh and 𝑏 represent biases of the layers.

 However, RNN’s ability of seeing all the history only remains in theory as

explained in section 2.5. The previous inputs cannot stay for long delays in the network

because of the vanishing gradient problem. To solve this problem, we used LSTM

	
 21	

blocks instead of standard cells with logistic or tanh activation function in the hidden

layer.

 The structure LSTM block is given in Fig. 3.2. It consists of an input and output

neuron, three multiplicative units, input, output and forgets gates that act as write, read

and reset operations [22]. These multiplicative gates allows keeping a previous input in

the memory of the network over long periods of time and access when it is needed,

eliminating the vanishing gradient problem. LSTM is implemented as follows:

 𝑖! = 𝜎(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏! (3.3)

 𝑓! = 𝜎(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏! (3.4)

 𝑐! = 𝑓!𝑐!!! + 𝑖!tanh (𝑊!"𝑥! +𝑊!!ℎ!!! + 𝑏!) (3.5)

 𝑜! = 𝜎(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐! + 𝑏!) (3.6)

 ℎ! = 𝑜!tanh (𝑐!) (3.7)

where 𝜎 is the activation function and f,i,o,c are forget,input and output gates and

memory cell.

Figure 3.2.LSTM structure

	
 22	

3.3.2. Error function and Training Procedure

RNNs are differentiable by construction[22]. Therefore, gradient descent algorithms

that minimize an objective error function of training-target examples can train them.

Objective error function differs according to type of the task learned such as regression

or classification. In this paper, we applied regression with sum squares error since we

simply predict a continuous value in each time frame given input features. Let z and y

be the target, network output pairs. Then error function O for regression is given by

 𝑂 = (𝑧 − 𝑦)! (3.8)

where y is given by linear combination of input activations of the output unit(eqn. 1,2).

 Gradient descent methods minimize objective error function by finding the

derivatives of objective function with respect to network weights and adjusting the

weights in the negative slope of the derivative. In this paper, steepest descent algorithm

is used. In this algorithm, after each training example, each weight w in the network is

updated as follows:

 𝑤!!! = 𝑤! + ∆𝑤! (3.9)

 ∆𝑤! = 𝑚∆𝑤!!! − 𝛼
!"
!!!

 (3.10)

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛼,𝑚 ≤ 1

 The second term (𝛼 !"
!!!

) in error gradient (∆𝑤!) is the adjustment in the

direction of negative slope of the error derivative and 𝛼 represent the amount of change

that will be applied and named as “learning rate”. The first term is the momentum term

in 3.10. A ratio of the previous gradient is also added to the error update. This helps

steepest descent algorithm to converge fast and to avoid getting stuck at local minimum

points. The momentum and learning parameters are generally chosen experimentally

depending on the dataset, learning task and other training related factors.

 In multilayer perceptrons, back propagation algorithm is used to efficiently

	
 23	

calculate error derivatives !"
!!!

. It first finds the derivatives of objective function with

respect to network outputs and propagates error terms from output through input layer

and calculates error gradients in each layer by repeated application of chain rule. In this

work, we used back propagation through time algorithm [22], which is also based on

back propagation but modified for recurrent neural works to handle the peculiarity in

RNNs: objective function not only depends on the current activations (as in standard

neural networks) but also the previous history

3.4.Learning Singing Expression contours

Our framework is given by the Fig. 3.3.

Figure 3.3.General Framework

 Scores are semi-automatically derived from singing voice recordings by labeling

	
 24	

the notes in the F0 contour. Total F0 is separated into baseline and vibrato sequences for

each song. Then, vibrato and baseline are learned by training the vibrato and baseline

streams with contextual information derived from the corresponding scores. Finally,

after models are created with learning procedure, given a target score vibrato and

baseline models can generate vibrato and baseline output of the target score and these

are summed to get total F0 output.

 One important point not given in the Fig.3.3. is that, we used phrases as the

training examples, not the whole songs. We extracted phrases from songs by dividing

each song by the rests in the musical score of the song. Therefore, we eliminated all the

rest and only modeled the notes. The reason behind is that our model fit a regression; on

the other hand F0 contour or vibrato parameters during rest regions are undefined. Thus,

it is unreasonable to predict the values during these regions simply by a regression

model. Either they should be removed from training process or a multi-space probability

distribution that decides if a frame is rest or not should be used. However, there is one

drawback of this operation: since we reduced training sequences from whole excerpts to

note sequences they become independent of each other and one phrase in a song cannot

see history that would be formed by previous phrases in the same song. On the other

hand, it also allow network to learn better in phrase level.

 The learning in RNNs is done at frame level. That is, given a phrase the output

sequences are streams of F0 or vibrato values of all the audio frames as well as input

sequences are streams of contextual information of all the audio frames and there is a

one to mapping between input and output sequences. Our model learns to predict output

value (F0 or vibrato) sequence given contextual information sequence of all the frames

of a target phrase.

 To create singing expression contours, we modeled vibrato and baseline F0

contour separately. Thus, F0 training data is converted to vibrato data and baseline data.

The baseline is the remaining part when vibratos are excluded from the F0 contour.

Vibrato is defined by vibrato depth and rate at each time frame. The relation between

the baseline, vibrato parameters and the total F0 contour is given by the equations[2]:

	
 25	

𝜑 𝑛 = 2𝜋𝑟 𝑘 ∆!

!!!

!!!

+ 𝜑!"##$! 𝑛 (3.11)

 𝐹0 𝑛 = 𝐹0 𝑛 + 𝑑 𝑛 sin 𝜑 𝑛 + 𝜑!"#$ (3.12)

where 𝐹0 𝑛 is reconstructed total F0, 𝐹0 𝑛 is baseline pitch at frame n, 𝑑 𝑛 is

vibrato depth at frame n, 𝜑 𝑛 is sinusoid’s phase and 𝜑!"#$ value indicating initial

phase, 𝑟 𝑘 is vibrato rate at frame k, ∆! is frame time and 𝜑!"##$!(𝑛) is reconstruction

error

3.4.1.Learning baseline

F0 contour carries important characteristics of the singing and related to the naturalness

[28]. Behaviors in F0 contour such as overshoot and preparation or fine fluctuations

[29] exists in human singing and found be to related to musical contexts [30]. Thus we

should be able to model and simulate this kind of behaviors within our statistical model.

 An RNN-LSTM with a linear output neuron trained with sum squares error

function is used to learn baseline F0. The following contextual factors are provided as

input to the network:

1. The pitch of the note in the current frame in units of integer MIDI notes.

2. The interval between current note and the next note in semitones.

3. The interval between current note and the previous note in semitones.

4. The duration of the current note in seconds.

5. The position of the frame within the current note. For the nth frame in a note

it is given as n / total number of frames in the note.

6. Binary feature telling if the next note is a rest

7. Binary feature telling if the previous note is a rest

 Current pitch feature is important for system to learn to be intune with the notes

since F0 contour follows the frequency of the note with small deviations. Frame

	
 26	

position within the note helps learning amounts of these deviations through the note.

Interval between next note and previous note or the information of whether they are rest

is important for the beginning and end regions of the notes and modeling the transitions

made from the previous or to the next note.

 The network configurations and statistics of SysDB and SongDB for learning

baseline is as in Table 3.2.

Table 3.2. Network configurations and statistics for melodic exercises and jazz songs database

Database Number of

Frames

Number of

Sequences

Learning

Rate

Momentum Hidden

Layer Size

Number Of

Epochs

SysDB 123873 154 10-5 0.9 120 300

SongDB 145237 196 10-5 0.9 120 324

 Learning rate and momentum corresponds the parameters in equations 9 and 10.

Hidden layer size is the number of neurons in the hidden layer and is chosen

experimentally. Epoch is one-step iteration of training with all the input dataset. The

number of epochs is not selected beforehand. Instead, a threshold that states the number

of subsequent epochs without improvement on the network error is provided. The

network automatically stops when it reached to this threshold. This threshold was given

as 30 for both database and the networks automatically stopped when they reached to

300th and 324th epoch for SysDB and SongDB respectively.

Pitch shifted data

Pitch as a contextual factor is very important for model to generate proper and intune F0

contours since the frequency of the note and the frequency that singer sings are very

correlated. Therefore, this contextual factor should be covered in training set as much as

possible. However, our database had a sparse distribution of pitch and also had a limited

range. In our first experiments, this caused some undesired outputs for the target

contexts where their pitch is not covered in database (Fig. 3.4).

	
 27	

 To solve this problem, we applied pseudo-pitch shifting[7] to our database.

Since F0 contours are just represented in logF0 (midi) units, new training examples can

be generated by shifting the F0 contours in semitones. This is an easy way to increase

F0 training data and cover pitch context better. We applied a shifting of +/- 1 and +/-6

semitones to all training songs. After this operation, we got the pitch distributions in the

Fig.3.5 and get a better coverage of the pitch.

Figure 3.5.Distributions of notes before and after pitch shifting for SysDB(left) and SongDB(right).Y axis is

the number of occurrences.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

F#
2	

G#
2	

A#
3	
 C3
	

D3
	

E3
	

F#
3	

G#
3	

A#
4	
 C4
	

D4
	

E4
	

F#
4	

G#
4	

number	
 of	

notes	

Shifted	

Original	

0	

100	

200	

300	

400	

500	

600	

E2
	

F#
2	

G#
2	

A#
3	
 C3
	

D3
	

E3
	

F#
3	

G#
3	

A#
4	
 C4
	

D4
	

E4
	

F#
4	

G#
4	

A#
5	
 C5
	

number	
 of	

notes	

Shifted	

Original	

Figure 3.4. Detunings in pitch contour before and after pitch shifting.The model trained with SysDB
fails to be intune with some target notes which is out of pitch range of the training set(left).The
problem is solved after pitch shifting(right)

	
 28	

3.4.2.Learning Vibrato

Vibrato corresponds to a modulation of the frequency and characterized by the rate and

depth of this modulation. It is an important technique that is used by singers to add

expression to the performance. In addition, its characteristics change depending on the

singer and style. Thus, it is needed to incorporate vibrato modeling in our model.

Musical contexts and aspects of vibrato are found to be related. For example, Prame

found out that depth of the vibrato is affected by the duration of the note, and the

relative position inside a note [27]. Thus, it is reasonable to train and predict the vibrato

characteristics by providing contextual information of the note.

 Vibrato prediction is done with two separate networks. (Fig.3.6) One model

consists of a RNN-LSTM with two linear output neurons predicts vibrato depth and rate

simultaneously. This model predicts a continuous two-dimensional stream for a given

sequence. However, vibrato depth and rate are defined only when the frame is vibrato

frame. When the frame is unvibrato frame the network should predict 0.This is not

possible with a simple regression model that minimize sum squares error since the

network will always predict a continuous value in an interval. Therefore we created

another model based on binary classification to predict whether the frame is a vibrato or

nonvibrato frame. To get the final output, output of the two models for a given sequence

are multiplied so that binary classification model will act as a mask and will filter the

nonzero vibrato depth and rate predictions from the other model, which actually come

from a nonvibrato frame (Fig 3.7.). The objective function of the binary classification

network is given as follows [22]:

 𝑂 = − 𝑧𝑙𝑛𝑦 + 1− 𝑧 ln 1− 𝑦

where z and y are target and network output pairs
(3.8)

	
 29	

Figure 3.6.Vibrato Framework

 Following features are used in both of the networks:

1. The duration of the current note in seconds.

2. The position of the frame within the current note. For the nth frame in a note

it is given as n / total number of frames in the note.

3. Binary feature telling if the next note is a rest

4. Phrase position of the note

 Many vibratos occur when the next note is a rest since these represents generally

phrase endings and the singer generally accents this climax point with a vibrato.

However, vibrato can also occur at other points occasionally. Therefore, phrase position

is provided to predict such points. The other features are chosen especially for

predicting the timing and intensity of the vibrato.

 The network configuration of SysDB and SongDB for learning vibrato is as

follow: learning rate, momentum, and hidden layer size is chosen as 10-6, 0.9, and 40,

respectively for both database. The network trained with SysDB to predict depth and

rate stopped after 670 epochs while the network predicting vibrato frames stopped at

630 epochs. The network trained with SongDB predicting depth and rate stopped after

843 epochs and the network predicting vibrato frames stopped at 810 epochs.

	
 30	

	

Figure 3.7. Vibrato models and their interaction. To get the final output, output of the two models (original
depth prediction and isVib,binary output telling if the frame is vibrato frame) for a given sequence are
multiplied

Ce
nt
s	

Ce
nt
s	

	
 31	

CHAPTER 4
Results

We applied RNNs for modeling F0 of the singing voice. In this section, we will explain

how our model generates final outputs, discuss some consistent behavior we observed

in contour outputs and provide our qualitative evaluation methodology and its results.

4.1.Output Generation

Given a musical score, we first divide it into the phrases since it is the basic unit of our

database, for each phrase we generate F0 contours from the vibrato and baseline

models, and concatenate them in order to create complete F0 stream. This F0 stream is

provided to Vocaloid. Dynamics parameter is provided as a constant stream since we

haven’t modeled dynamics. Vocaloid handles the remaining processes in the synthesis

and returns wav files for each song.

 We generated outputs for 7 targets that are some jazz songs, which is listed

online [35]. Target information are parsed from score files (MusicXML[32]) and since

they are just scores the timing is not natural. Although it would be better to derive

scores from human performances (for the qualitative test for example), this is not the

main issue in our work. We wanted to evaluate F0 contours by holding the other factors

identical.

 One additional modification while we generate the synthesized audios was

applying a smoothing to baseline contour at note boundaries(fig 4.1.). This is because

we encountered some discontinuities at the note boundaries because of the sharp context

changes at the note boundaries. We could not find a way to solve this problem from

scratch (from our networks directly), instead we applied a smoothing at the frames close

to the note transitions. Although there was no difference at the synthesized audios with

and without smoothing since the discontinuity occurs at just few frames, it might cause

	
 32	

problems for the possible target songs we did not cover in our tests. The method ideally

should avoid any discontinuities at the boundaries.

4.2. Contour Samples	

In this section we will describe the results of F0 and vibrato modeling by presenting

some common behaviors learned by the models. One such behavior is that our model

learns to exhibit overshoot (deflection of F0 contour exceeding the target note after note

changes) and preparation (deflection of the opposite direction of note change observed

just before note changes), which are F0 fluctuations that occur in human singing and

related to naturalness [29] (Fig. 4.2.).

Smoothed

Original

Figure 4.1. Discontinuities (labeled green) at note transitions.

	
 33	

 Being in tune with the notes is also essential for the F0 modeling systems. It is a

must to avoid detunings and mistakes in singing. Our model also successfully learned

being in tune (Fig. 4.3.).

 The vibratos are also learned properly, increasing depth and rate through the

Figure 4.3. An excerpt from output for the But Not For Me, which is succesfully in tune.

Figure 4.2. An excerpt from September In The Rain output showing overshoots and
preparations

	
 34	

beginning and smoothly decreasing at the end of the note. However, the vibratos are

predicted only at the phrase endings (i.e. when the next note is a rest). This is one

problem of our method. Although the phrase endings generally involves a vibrato in

singing the model should also predict vibratos in other positions occasionally.

	

Figure 4.4.Vibrato predictions for Stars Fell on Alabama. Total F0, depth and rate from top the bottom

4.3. Subjective Evaluation

We compared our method with 3 different methods: HMM approach, Unit Selection

Approach, and default strategy of Vocaloid. We used a perceptual A/B preference test

as the evaluation method. An online survey is prepared for the test [31]. In the test,

users do a comparison between pairs of synthesis methods by stating the better audio or

giving a “no preference” option and they consider naturalness and expressiveness as the

evaluation criteria. For five target songs in the target set, outputs are created with each

of the 4 methods (RNN,HMM,Unit Selection, and Default Vocaloid), and for each song

RNN is compared against hidden markov models, Unit Selection, and Default Vocaloid.

	
 35	
 	

RNN	

33%	

DEF	

43%	

NOPR
EF	

24%	

RNN	

14%	

UNIT	

57%	

NOPR
EF	

29%	

RNN	

14%	

HMM	

53%	

NOPR
EF	

33%	

Figure 4.6. AB preference results for But Not For Me

RNN	

33%	

DEF	

29%	

NOPR
EF	

38%	

RNN	

33%	

UNIT	

43%	

NOPR
EF	

24%	

RNN	

33%	

HMM	

43%	

NOPR
EF	

24%	

Figure 4.7. AB preference results for I Thought About You

RNN	

38%	

DEF	

38%	

NOPR
EF	

24%	

RNN	

52%	
 UNIT	

24%	

NOPR
EF	

24%	

RNN	

41%	

HMM	

32%	

NOPR
EF	

27%	

Figure 4.8. AB preference results for September In The Rain

RNN	

43%	

DEF	

43%	

NOPR
EF	

14%	

RNN	

24%	

HMM	

48%	

NOPR
EF	

28%	

RNN	

57%	

UNIT	

38%	

NOPR
EF	

5%	

Figure 4.5.AB preference results for Summertime

RNN	

43%	

DEF	

38%	

NOPR
EF	

19%	

RNN	

33%	

HMM	

53%	

NOPR
EF	

14%	

RNN	

28%	

UNIT	

48%	

NOPR
EF	

24%	

Figure 4.9. AB preference results for Stars Fell On Alabama

	
 36	

 The results of test made with 22 people are shown on Fig. 4.5, 4.6, 4.7,4.8 and

4.9. Preference percentages are given for each song for RNN-DEF, RNN-UNIT, and

RNN_HMM comparisons,where RNN is our method, DEF is default Vocaloid

synthesis, UNIT is unit selection and HMM is hidden markov model approach

 From these results we can state that rnn and def performance are very similar

since in all the songs rnn-def comparison showing a tendency towards equal

percentages. In, rnn-hmm comparison we can say that hmm outperformed rnn for 4

songs out of 5, therefore it seems to be better than RNN. Between unit selection and

RNN it is hard to decide which is better since for some songs RNN and for some other

UNIT is preferred. In RNN-DEF comparison percentages are close to each other in all

the cases.

 From the results, we would at least expect to outperform the default method.

Also, we were expecting at least to get close results with HMM. However, when we

listened pairs in which our method performs much worse than the other (e.g RNN-

HMM comparison for But Not For Me) or much better than other (e.g. RNN-UNIT

comparison for September In The Rain) it was very hard to explain the reason for such

differences only by listening. The reason for is that synthesized audios are very similar

to each other and hard to differentiate although there are slight differences between

audios. Also we never see a common method that is always preferred in different songs

of the same comparison pair. Thus, we think that our method performs very close to

other methods and works reasonably well. Using a different dataset with higher size and

variety or modeling also the dynamics might expose real pros and cons of the different

methods.

	
 37	

	
 38	

CHAPTER 5

Conclusions and Future Work

In this study, we have build up a framework for generating F0 contours automatically

from given scores. We have used recurrent neural network with LSTMs to model our

data and create our predictor. We have a decent statistical model that is able to represent

F0 fluctuations occurring in human singing such as overshoot, preparation, and vibrato,

and avoid detunings.

Our main contribution is that this work is the first application of Recurrent Neural

Networks to F0 modeling for singing voice synthesis. Although we could not

outperform the competent methods in our subjective listening tests, we provided a good

starting point by creating a decent model. With their power of modeling complex data

by providing compact nonlinear functions, RNNs has a huge potential than the others

for sequence problems such as f0 modeling. They are also very flexible and powerful

against modeling complex and large data, which are the properties that will be exploited

more in the future.

Limitations and Future Work

Some changes for enhancing our work would be as follows:

• Changing basic training units from phrases to songs. Currently we were dividing

whole songs to the phrases and this prevents RNNs from learning dependencies

between contexts in two different phrases of the same song. This can be solved

by adding another Recurrent Neural Network with binary classification layer,

which predicts if the note is a rest or not.

• We encountered with the small discontinuities at the note boundaries. Although

these did not make differences on the synthesized audios, it may cause problems

	
 39	

in the other possible targets. To solve this problem, a Gaussian probability

distribution can be used at the output layer and smoother outputs could be

obtained.

• The vibrato model only predicts vibratos at phrase endings. One reasonable

explanation is the examples that training database provide contains this

behavior. However, vibratos also occur inside the phrases even if it is not as

much as at the phrase endings. Thus, the statistical model should occassionaly

predict vibratos inside phrase. This can be achieved by using different network

configurations (different hidden layer size, features etc.)

• Our model is missing the dynamics. It is also very valuable for representing

expressiveness and naturalness. It can be modeled in the same way F0 modeled,

with a regression RNN-LSTM.

	
 40	

	
 41	

References

1. Kenmochi, H., & Ohshita, H. (2007, August). VOCALOID-commercial singing synthesizer

based on sample concatenation. INTERSPEECH (pp. 4009-4010).

2. Umbert, M., Bonada, J., & Blaauw, M. (2013, July). Generating singing voice expression

contours based on unit selection. In Proc. SMAC.

3. Janer, J., Bonada, J., & Blaauw, M. (2006, September). Performance-driven control for sample-

based singing voice synthesis. In Proc. of DAFx, 6, 41-44.

4. Nakano, T., & Goto, M. (2009). VocaListener: A singing-to-singing synthesis system based on

iterative parameter estimation.In Proc. of SMC (pp. 343-348).

5. Saino, K., Tachibana, M., & Kenmochi, H. (2010). A singing style modeling system for singing

voice synthesizers.INTERSPEECH(pp.2894-2897).

6. Saino, K., Zen, H., Nankaku, Y., Lee, A., & Tokuda, K. (2006, September). An HMM-based

singing voice synthesis system. In Proc. of ICSLP, 9, 1141-1144.

7. Oura, K., Mase, A., Yamada, T., Muto, S., Nankaku, Y., & Tokuda, K. (2010). Recent

development of the HMM-based singing voice synthesis system—Sinsy. Seventh ISCA

Workshop on Speech Synthesis.

8. Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., & Kitamura, T. (1999). Simultaneous

modeling of spectrum, pitch and duration in HMM-based speech synthesis.Proc. of

Eurospeech,(pp. 2347-2350).

9. HMM-Based Singing Voice Synthesis System (Sinsy), http://www.sinsy.jp/

10. Rodet, X. (2002, November). Synthesis and processing of the singing voice. Proc. 1st IEEE

Benelux Workshop on Model based Processing and Coding of Audio (MPCA-2002) (pp. 15-31).

11. Saitou, T., Goto, M., Unoki, M., & Akagi, M. (2007, October). Speech-to-singing synthesis:

Converting speaking voices to singing voices by controlling acoustic features unique to singing

voices. Applications of Signal Processing to Audio and Acoustics, 2007 IEEE Workshop on (pp.

215-218).

12. Friberg, A. (1991). Generative rules for music performance: A formal description of a rule

system. Computer Music Journal, 15(2), 56-71.

13. Sundberg, J. (2006). The KTH synthesis of singing. Advances in cognitive Psychology, 2,131-

143.

14. Berndtsson, G. (1996). The KTH rule system for singing synthesis. Computer Music Journal,

20, 76-91.

15. Friberg, A., Bresin, R., & Sundberg, J. (2006). Overview of the KTH rule system for musical

performance. Advances in Cognitive Psychology, 2(2-3), 145-161.

16. Bonada, J., Celma, O., Loscos, À., Ortolà, J., & Serra, X.(2001). Singing Voice Synthesis

Combining Excitation plus Resonance and Sinusoidal plus Residual Models. MTG,Universidad

Pompeu Fabra, Spain.

	
 42	

17. Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., & Kitamura, T. (2000). Speech

parameter generation algorithms for HMM- based speech synthesis. Proc. ICASSP, 3, 1315–

1318.

18. Yamagishi, J. (2006). An introduction to hmm-based speech synthesis. Technical report, Tokyo

Institute of Technology.

19. Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., & Kitamura, T. (1998). Duration

Modeling in HMM-based Speech Synthesis System. Proc. of ICSLP, 2, 29–32.

20. Young, S. J., Odell, J. J., & Woodland, P. C. (1994, March). Tree-based state tying for high

accuracy acoustic modelling. Proc. ARPA Human Language Technology Workshop, (pp.307–

312).

21. Shinoda, K., & Watanabe, T. (2000). MDL-based context-dependent subword modeling for

speech recognition. The Journal of the Acoustical Society of Japan (E), 21(2), 79-86.

22. Graves, A (2008). Supervised sequence labelling with recurrent neural networks. PhD thesis,

Technical University Munich.

23. Fan, Y., Qian, Y., Xie, F., & Soong, F. K. (2014). TTS synthesis with bidirectional LSTM based

recurrent neural networks. Proc. Interspeech (pp. 1964-1968).

24. Eck, D., & Schmidhuber, J. (2002). A first look at music composition using lstm recurrent neural

networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale.

25. Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2012). Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation and

transcription. arXiv preprint arXiv:1206.6392.

26. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850.

27. Prame, E. (1997,July). Vibrato extent and intonation in professional Western lyric singing. The

Journal of the Acoustical Society of America, 102(1), 616-621.

28. Ohishi, Y., Kameoka, H., Mochihashi, D., & Kashino, K. (2012, September). A Stochastic

Model of Singing Voice F0 Contours for Characterizing Expressive Dynamic Components.

INTERSPEECH.

29. Saitou, T., Unoki, M., & Akagi, M. (2004). Development of the F0 Control Model for Singing-

Voices Synthesis. Speech Prosody 2004, International Conference.

30. Lee, S. W., Ang, S. T., Dong, M., & Li, H. (2012, March). Generalized F0 modelling with

absolute and relative pitch features for singing voice synthesis. Acoustics, Speech and Signal

Processing (ICASSP), 2012 IEEE International Conference on (pp. 429-432).

31. http://sekozer.com/test.php

32. http://www.musicxml.com/

33. http://sourceforge.net/p/rnnl/wiki/Home/

34. https://github.com/meierue/RNNLIB/

35. http://sekozer.com/rnn/rnn.html

