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ABSTRACT 

There has been extensive speculation on the apparent differences in mortality between 

countries reporting on the confirmed cases and deaths due to Covid-19.  A number of 

explanations have been suggested, but there is no clear evidence about how apparent 

fatality rates may be expected to vary with the different testing regimes, admission 

policies and other variables.  An individual patient simulation model was developed 

to address this question.  Parameters and sensitivity analysis based upon recent 

international data sources for Covid-19 and results were averaged over 100 iterations 

for a simulated cohort of over 500,000 patients. 

Different testing regimes for Covid-19 were considered; testing admitted patients 

only, various rates of community testing of symptomatic cases and active contact-

tracing and screening. 

In the base case analysis, apparent mortality ranged from 10.5% under a policy of 

testing only admitted patients to 0.4% with intensive contact tracing and community 

testing.  These findings were sensitive to assumptions regarding admission rates and 

the rate of spread, with more selective admission policies and suppression of spread 

increasing the apparent mortality and the potential for apparent mortality rates to 

exceed 18% under some circumstances.  Under all scenarios the proportion of patients 

tested in the community had the greatest impact on apparent mortality. 

Whilst differences in mortality due to health service and demographic factors cannot 

be excluded, the current international differences in reported mortality are all 

consistent with differences in practice regarding screening, community testing and 

admission policies. 
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INTRODUCTION 

The current Covid-19 pandemic has been the subject of more open and rapid 

availability of data than any previous disease.  This has, inevitably, led to 

international comparisons of the spread and outcome of the disease, with widespread 

media speculation regarding the apparent differences in mortality between similar 

European countries.  On the face of it, the differences are stark.  On 2nd April 2020, 

Germany reported 85,063 confirmed cases with 1,111 deaths (1.3%), whereas three 

days earlier the comparable figures from Spain had shown 7,716 deaths from 87,956 

confirmed cases (8.8%) and three days before that Italy had reported 9,134 deaths 

from 86,498 cases (10.1%).[1]  While these may relate to differences in 

demographics, treatment or healthcare policy, the apparent mortality may also be 

altered by differences in testing policy and in changes in the rate of spread brought 

about by social distancing policies.   

In estimating mortality in the early stages of a rapidly spreading infection there are 

important potential confounding factors.  Early under-ascertainment with a failure to 

identify mild, moderate or asymptomatic cases in the community, may lead to an 

overestimate of mortality.  Conversely, the rapid rise in identified cases with 

unknown outcomes may lead to an underestimate as confirmed cases are identified a 

considerable time before deaths occur (right-censoring).  This paper describes a 

simulation model of the effect of different testing regimes on the apparent mortality in 

the early stages of exponential spread of a pandemic, and compares this to reported 

international variation in mortality rates for Covid-19. 
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METHOD 

An individual patient level simulation model was developed in R (R Foundation for 

Statistical Computing, Vienna) to consider the effects of different testing policies, 

spread parameters and hospital admission rates on the apparent mortality of a 

pandemic in the early phase of exponential spread. A series of testing scenarios were 

considered;   

• Testing restricted to those admitted to hospital with severe disease.  

• The addition of community testing for virus in a proportion of symptomatic 

patients.  Scenarios considered testing rates of 10%, 25%, 50%, 75% and 90%. 

• Active tracing of known contacts and testing to identify symptomatic and 

asymptomatic infections.   

The first 19 doubling cycles of spread were considered, resulting in over 500,000 

simulated cases.  Apparent mortality for each testing scenario was estimated, based 

upon averaging 100 iterations to allow for Monte Carlo error, using a common seed to 

provide consistency across model runs.  Model estimates under the different scenarios 

were compared to the apparent mortality rates based upon published national data, for 

those countries with the greatest number of reported cases of Covid-19.  The structure 

of the model is shown diagrammatically in Figure 1. 

 

Figure 1.  Structure of the simulation model for Covid-19. 

 

Time (onset to admission)
Time (admission to death)
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Parameters and assumptions 

A summary of the base case estimates for the required parameters, ranges used in the 

sensitivity analyses, and sources of data are provided in Table 1.   

Infection fatality rate (IFR) 

There is considerable doubt about the underlying IFR of Covid-19.  The apparent case 

fatality rate based upon reported deaths[1] is around 4.8% and an estimate based upon 

‘completed’ cases from China suggests a figure of 2.3%.[2]  Assumptions regarding 

asymptomatic or untested cases result in very much lower estimates for IFR that have 

been used in previous models.[3] For the base case in this study a published estimate 

of 0.66%[4] was used, with sensitivity analysis covering a wide range from 0.2% to 

4.8%.[5] 

Rate of spread 

The rate of spread was assumed to be exponential in the early stages and expressed in 

terms of days required for numbers to double, with a base case estimate of six days 

and range from 2 to 10 days.[1] 

Rate of hospital admission 

The rate of hospital admission was modelled as a multiple of the number of deaths.  

This was chosen as it is a figure that can be rapidly and more accurately ascertained 

from local data, whereas the actual admission rate as a proportion of infected cases is 

uncertain due to unknown incidence in the community.  In the early data from China 

the overall admission rate was approximately eight patients for every death.[6]  

However, these data include a significant proportion of patients with mild/moderate 

disease, who may have been admitted for isolation.  Estimates based upon only severe 

and critical cases put the ratio at nearer to 4.[7]   

Delay from onset to admission and admission to fatality 

The distribution of time intervals between onset of symptoms and hospital admission 

and between admission and death were obtained from models based upon the Chinese 

data.[4]  Separate estimates were provided for survivors and non-survivors; however, 

it seems likely that the survivor data is distorted by those with less severe disease, 

who may have been admitted early for isolation.[8]  Thus, for the base case, the time 
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from onset to admission for all cases was based upon the non-survivor data.  

Sensitivity analysis included the full range reported for both groups.  The time from 

admission to death was based upon the modelled distributions from same data.[4] 

Proportion of asymptomatic cases 

The proportion of infections that remain asymptomatic is unknown, but has been 

estimated at 17.9% from the screened populations aboard the Diamond Princess 

cruise ship[9] and at 33%, based on Japanese nationals evacuated from Wuhan.[10] 

 

Table 1. Parameter values used in the base case analysis and sensitivity analysis. 

Parameter Base case Sensitivity analysis  Source 

Underlying IFR 0.66% 0.2% to 5% [1, 2, 4, 5] 

Proportion that are 

severe/critical requiring 

admission 

9.2% 4.6% to 18.4% [2, 7] 

Days (IQR) onset to 

admission 

5.3 1.9 to 6.8 [4] 

Days (IQR) admission to 

death 

9.1 6.7 to 13.7 [4] 

Asymptomatic proportion 17.9% 7.7%-53.5% [9, 10] 

Doubling time (days) 6 2 to 10 [1] 

Testing policy 50% of 

community 

cases  

0 to 90% of 

community cases and 

contact tracing 

Scenario 

analysis 

Infections identifiable 

through contact tracing 

50% 20% to 80% Assumption 

 

Testing regimes 

It is assumed that all hospitalised patients will be tested.  Various scenarios have been 

considered with 10% to 90% of symptomatic cases in the community being tested.  In 
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addition, a policy of tracing and testing known contacts has been considered.  In this 

scenario it is assumed that asymptomatic cases would not otherwise have been 

identified and symptomatic cases will be identified two days earlier than would 

otherwise have been the case.  The proportion of infections that are amenable to 

identification through contact tracing is dependent upon the local circumstances.  

Under strict lock-down it might be expected that most contacts would be identifiable, 

whereas with free movement on public transport this may be impossible.  Thus, an 

assumption of 50% was made with minimum and maximum values of 20% and 80%. 
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RESULTS 

Under the base case assumptions, the apparent mortality estimated from confirmed 

cases and known deaths is 5.3% with the assumption of 50% community testing of 

symptomatic patients, and ranges from 10.5%, if testing is restricted to hospitalised 

patients, down to 0.4% with intensive contact tracing and community testing (Table 

2).  Figure 2 illustrates the one-way sensitivity analysis of the key parameters as 

specified in Table 1 (see Appendix 1 for the full results of sensitivity analysis).  The 

rate of community testing and the ratio of hospitalised patients have the greatest effect 

and are considered in a two-way sensitivity analysis (see Table 2). 

Figure 2. Tornado diagram of the results of a one-way sensitivity analysis based upon 

the parameter ranges in Table 1.  The vertical line represents the base case (5.3%). 
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Table 2. Two-way sensitivity analysis of testing intensity and ratio of hospitalised to 

fatal cases (base case in bold) in relation to apparent mortality. 

 Ratio of hospitalised to fatal cases 

Testing intensity 2.2:1 3:1 4:1 5:1 6:1 7:1 8:1 

Only hospitalised cases 18.9% 13.9% 10.4% 8.3% 7.0% 6.0% 5.2% 

Hospitalised and 10% of 

community cases 17.0% 12.5% 9.4% 7.5% 6.3% 5.4% 4.7% 

Hospitalised and 25% of 

community cases 14.2% 10.5% 7.8% 6.3% 5.3% 4.5% 3.9% 

Hospitalised and 50% of 

community cases 9.5% 7.1% 5.3% 4.3% 3.6% 3.1% 2.7% 

Hospitalised and 75% of 

community cases 4.9% 3.6% 2.7% 2.2% 1.9% 1.6% 1.4% 

Hospitalised and 90% of 

community cases 2.1% 1.6% 1.2% 1.0% 0.9% 0.8% 0.7% 

90% of community cases and 

20% identified contact tracing 1.7% 1.3% 1.0% 0.8% 0.7% 0.7% 0.6% 

90% of community cases and 

50% identified contact tracing 1.1% 0.9% 0.7% 0.6% 0.5% 0.5% 0.4% 

90% of community cases and 

80% identified contact tracing 0.5% 0.4% 0.3% 0.3% 0.3% 0.3% 0.2% 

 

The apparent fatality rates from Covid-19 in those countries with the greatest number 

of cases is shown in Figure 3, with the modelled estimates different community 

testing regimes.   
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Figure 3. Apparent fatality rate from Covid-19 for 24 days after the first 10 deaths 

were reported in those countries with the highest reported rates, compared to  

modelled apparent mortality with differing rates of community testing. 
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DISCUSSION 

The modelling demonstrates that the large differences between countries in apparent 

Covid-19 mortality rates are compatible with the effects that might be expected with 

different testing policy in the early stages of a pandemic.  While it is not possible to 

rule out differences in outcome due to demographic factors or aspects of the provision 

of health services, care is needed in drawing conclusions about such differences.  The 

effects of more stringent testing regimes and tighter hospital admission policies are 

likely to exaggerate apparent fatality rates.  High pressure on services, due to rapidly 

increasing demands, may affect both of these through limitations in staff, equipment 

and test kits for community testing as well as increasing the threshold of severity for 

hospital admission.  Paradoxically, since the effect of incomplete case ascertainment 

is partly counter-balanced by the effect of right-censoring, successful attempts as 

suppression, which reduce the impact of right-censoring, may appear to exaggerate 

estimates of mortality. 

It has been suggested that the use of historical numbers of confirmed cases, 14 days 

prior to fatality rates, as the denominator may provide more accurate estimates than 

basing rates on the most recent deaths and confirmed cases.[11]  Due to the skewed 

distribution of survival a more sophisticated estimate may be obtained by using 

weighted averages over a longer period.  However, neither of these would account for 

the other factors described, such as under-ascertainment, that might distort estimates 

in the opposite direction. 

Sensitivity analysis suggests that the underlying IFR has relatively little effect on 

apparent mortality, since the uncertainty largely relates to the number of 

asymptomatic or mild cases that remain unidentified.  Conversely, this implies that 

the IFR will remain uncertain, as demonstrated by the widely differing estimates,[4] 

until the result of more extensive population testing become available.  Another 

implication is that it is likely that those countries reporting higher mortality rates have 

a large number of unidentified cases and there is an urgent need to improve our 

understanding of this in order to predict future trends and the effects of suppression 

measures.  If the apparent differences between German and Italian mortality were to 

be entirely related to differences in admission and testing criteria, then the implication 

is that there were at least one million unconfirmed infections in Italy by 30 March 

2020. 
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As with any modelling, this study is limited by the available information, but the 

general findings remain robust across a range of sensitivity analyses.  Some of the 

parameters and assumptions are based upon very limited data in selected populations, 

such as specific nations and cruise ship passengers, and may not be representative of 

the wider populations.  There may also be some concerns about the accuracy of 

reported data and, in particular, the reported deaths are largely based upon hospital 

admissions, whereas there may be a significant mortality amongst untested people in  

care homes and other settings that are excluded from the data.  

In conclusion, this study demonstrates the potential dangers of speculation and over-

interpretation of apparent differences in mortality, without adjustment for differences 

in testing policy, admission rates and rate of spread.   It also provides a basis for 

understanding the likely effects of these differences in practice on reported mortality 

rates.  
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Appendix 1: Results of sensitivity analysis 

 

Case DT IFR As AR TTA  TTD S1 S2 S3 S4 S5 S6 S7 S8 S9 

Doubling time 2 days 2 0.0066 0.179 4 5.3 9.1 4.7% 4.2% 3.5% 2.4% 1.2% 0.5% 0.4% 0.3% 0.1% 

Doubling time 3 days 3 0.0066 0.179 4 5.3 9.1 6.4% 5.7% 4.8% 3.2% 1.7% 0.7% 0.6% 0.4% 0.2% 

Doubling time4 days 4 0.0066 0.179 4 5.3 9.1 7.9% 7.1% 5.9% 4.0% 2.1% 0.9% 0.7% 0.5% 0.2% 

Doubling time 5 days 5 0.0066 0.179 4 5.3 9.1 9.2% 8.3% 7.0% 4.7% 2.4% 1.1% 0.9% 0.6% 0.3% 

Doubling time 6 days (base case) 6 0.0066 0.179 4 5.3 9.1 10.5% 9.4% 7.9% 5.3% 2.8% 1.2% 1.0% 0.7% 0.4% 

Doubling time 7 days 7 0.0066 0.179 4 5.3 9.1 11.4% 10.3% 8.6% 5.8% 3.0% 1.4% 1.1% 0.8% 0.4% 

Doubling time 8 days 8 0.0066 0.179 4 5.3 9.1 12.3% 11.1% 9.3% 6.3% 3.3% 1.5% 1.2% 0.8% 0.4% 

Doubling time 9 days 9 0.0066 0.179 4 5.3 9.1 13.1% 11.8% 9.9% 6.7% 3.5% 1.6% 1.3% 0.9% 0.5% 

Doubling time 10 days 10 0.0066 0.179 4 5.3 9.1 13.7% 12.3% 10.3% 7.0% 3.7% 1.6% 1.4% 0.9% 0.5% 

Low asymptomatic rate 6 0.0066 0.077 4 5.3 9.1 10.5% 9.4% 7.9% 5.3% 2.8% 1.2% 1.0% 0.7% 0.3% 

Higher asymptomatic rate 6 0.0066 0.535 4 5.3 9.1 10.4% 9.4% 7.9% 5.4% 2.9% 1.4% 1.1% 0.7% 0.4% 

Low admission rate (2.2) 6 0.0066 0.179 2.2 5.3 9.1 18.9% 17.0% 14.2% 9.5% 4.9% 2.1% 1.7% 1.1% 0.5% 

Admission rate 3 6 0.0066 0.179 3 5.3 9.1 13.9% 12.5% 10.5% 7.1% 3.6% 1.6% 1.3% 0.9% 0.4% 
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Admission rate 5 6 0.0066 0.179 5 5.3 9.1 8.3% 7.5% 6.3% 4.3% 2.2% 1.0% 0.8% 0.6% 0.3% 

Admission rate 6 6 0.0066 0.179 6 5.3 9.1 7.0% 6.3% 5.3% 3.6% 1.9% 0.9% 0.7% 0.5% 0.3% 

Admission rate 7 6 0.0066 0.179 7 5.3 9.1 6.0% 10.5% 4.5% 3.1% 1.6% 0.8% 0.7% 0.5% 0.3% 

Highest admission rate 6 0.0066 0.179 8 5.3 9.1 5.2% 4.7% 3.9% 2.7% 1.4% 0.7% 0.6% 0.4% 0.2% 

Low Time to death 6 0.0066 0.179 4 5.3 6.7 12.9% 11.6% 9.7% 6.6% 3.4% 1.5% 1.2% 0.8% 0.4% 

High Time to death 6 0.0066 0.179 4 5.3 13.7 7.3% 6.6% 5.5% 3.7% 1.9% 0.9% 0.7% 0.5% 0.2% 

Low Time to admission 6 0.0066 0.179 4 1.9 9.1 11.0% 9.9% 8.3% 5.6% 3.0% 1.4% 1.1% 0.8% 0.4% 

High Time to admission 6 0.0066 0.179 4 6.8 9.1 10.3% 9.3% 7.8% 5.2% 2.7% 1.2% 1.0% 0.6% 0.3% 

Low IFR  6 0.002 0.179 4 5.3 9.1 10.4% 9.4% 7.8% 5.3% 2.7% 1.1% 0.9% 0.6% 0.3% 

Intermediate IFR  6 0.004 0.179 4 5.3 9.1 10.4% 9.4% 7.8% 5.3% 2.7% 1.1% 0.9% 0.6% 0.3% 

High IFR  6 0.023 0.179 4 5.3 9.1 10.4% 9.5% 8.0% 5.6% 3.1% 1.7% 1.4% 1.1% 0.7% 

Maximum IFR  6 0.048 0.179 4 5.3 9.1 10.4% 9.5% 8.2% 5.9% 3.7% 2.4% 2.1% 1.7% 1.2% 
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Parameters 

DT Doubling time (days) 

IFR Infection fatality rate 

As Proportion asymptomatic 

AR Admission rate (multiplier for IFR) 

TTA  Time from onset to admission 

TTD Time from admission to death 

Scenarios 

S1 Testing only admitted cases 

S2 Testing all admitted cases and 10% of symptomatic cases 

S3  Testing all admitted cases and 25% of symptomatic cases 

S4  Testing all admitted cases and 50% of symptomatic cases 

S5  Testing all admitted cases and 75% of symptomatic cases 

S6  Testing all admitted cases and 90% of symptomatic cases 

S7  Testing all admitted cases, 90% of symptomatic cases and 20% identification through contact tracing 

S8  Testing all admitted cases, 90% of symptomatic cases and 50% identification through contact tracing 

S9  Testing all admitted cases, 90% of symptomatic cases and 80% identification through contact tracing 

 

Base case highlighted 
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