# So, You Think You Have a Power Law, Do You? Well Isn't That Special? 

Cosma Shalizi

Statistics Department, Carnegie Mellon University
Santa Fe Institute

18 October 2010, NY Machine Learning Meetup

Power Laws: What? So What?

## Summary

## Summary

(1) Everything good in the talk I owe to my co-authors, Aaron Clauset and Mark Newman

## Summary

(1) Everything good in the talk I owe to my co-authors, Aaron Clauset and Mark Newman
(2) Power laws, $p(x) \propto x^{-\alpha}$, are cool, but not that cool

## Summary

(1) Everything good in the talk I owe to my co-authors, Aaron Clauset and Mark Newman
(2) Power laws, $p(x) \propto x^{-\alpha}$, are cool, but not that cool
(3) Most of the studies claiming to find them use unreliable 19th century methods, and have no value as evidence either way

## Summary

(1) Everything good in the talk I owe to my co-authors, Aaron Clauset and Mark Newman
(2) Power laws, $p(x) \propto x^{-\alpha}$, are cool, but not that cool
(3) Most of the studies claiming to find them use unreliable 19th century methods, and have no value as evidence either way
(9) Reliable methods exist, and need only very straightforward mid-20th century statistics

## Summary

(1) Everything good in the talk I owe to my co-authors, Aaron Clauset and Mark Newman
(2) Power laws, $p(x) \propto x^{-\alpha}$, are cool, but not that cool
(3) Most of the studies claiming to find them use unreliable 19th century methods, and have no value as evidence either way
(9) Reliable methods exist, and need only very straightforward mid-20th century statistics
(3) Using reliable methods, lots of the claimed power laws disappear, or are at best "not proven"

## Summary

(1) Everything good in the talk I owe to my co-authors, Aaron Clauset and Mark Newman
(2) Power laws, $p(x) \propto x^{-\alpha}$, are cool, but not that cool
(3) Most of the studies claiming to find them use unreliable 19th century methods, and have no value as evidence either way
(9) Reliable methods exist, and need only very straightforward mid-20th century statistics
(3) Using reliable methods, lots of the claimed power laws disappear, or are at best "not proven"

You are now free to tune me out and turn on social media

## What Are Power Law Distributions? Why Care?

$$
\begin{aligned}
p(x) & \propto x^{-\alpha} \text { (continuous) } \\
\mathrm{P}(X=x) & \propto x^{-\alpha} \text { (discrete) } \\
\therefore \mathrm{P}(X \geq x) & \propto x^{-(\alpha-1)}
\end{aligned}
$$

$$
\log p(x)=\log C-\alpha \log x
$$

## What Are Power Law Distributions? Why Care?

$$
\begin{aligned}
p(x) & \propto x^{-\alpha} \text { (continuous) } \\
\mathrm{P}(X=x) & \propto x^{-\alpha}(\text { discrete }) \\
\therefore \mathrm{P}(X \geq x) & \propto x^{-(\alpha-1)}
\end{aligned}
$$

and

$$
\log p(x)=\log C-\alpha \log x
$$

"Pareto" (continuous), "Zipf" or "zeta" (discrete)

## What Are Power Law Distributions? Why Care?

$$
\begin{aligned}
p(x) & \propto x^{-\alpha} \text { (continuous) } \\
\mathrm{P}(X=x) & \propto x^{-\alpha}(\text { discrete }) \\
\therefore \mathrm{P}(X \geq x) & \propto x^{-(\alpha-1)}
\end{aligned}
$$

and

$$
\log p(x)=\log C-\alpha \log x
$$

"Pareto" (continuous), "Zipf" or "zeta" (discrete)
Explicitly:

$$
p(x)=\frac{\alpha-1}{x_{\min }}\left(\frac{x}{x_{\min }}\right)^{-\alpha}
$$

(discrete version involves the Hurwitz zeta function)

Power Laws: What? So What?

## Money, Words, Cities

The three classic power law distributions
Pareto's law: wealth (richest 400 in US, 2003)


Power Laws: What? So What?

## Money, Words, Cities

The three classic power law distributions
Zipf's law: word frequencies (Moby Dick)
Word Frequencies


Power Laws: What? So What?

## Money, Words, Cities

The three classic power law distributions
Zipf's law: city populations
City Sizes


Power Laws: What? So What?

## Properties

Highly right skewed

Power Laws: What? So What?

## Properties

Highly right skewed
Heavy (fat, long, ... ) tails: sub-exponential decay of $p(x)$

## Properties

Highly right skewed
Heavy (fat, long, ...) tails: sub-exponential decay of $p(x)$ Extreme inequality (" $80 / 20$ "): high proportion of summed values comes from small fraction of samples/population

## Properties

Highly right skewed
Heavy (fat, long, ...) tails: sub-exponential decay of $p(x)$ Extreme inequality (" $80 / 20$ "): high proportion of summed values comes from small fraction of samples/population "Scale-free":

$$
p(x \mid X \geq s)=\frac{\alpha-1}{s}\left(\frac{X}{s}\right)^{-\alpha}
$$

i.e., another power law, same $\alpha$

## Properties

Highly right skewed
Heavy (fat, long, ...) tails: sub-exponential decay of $p(x)$ Extreme inequality (" $80 / 20$ "): high proportion of summed values comes from small fraction of samples/population "Scale-free":

$$
p(x \mid X \geq s)=\frac{\alpha-1}{s}\left(\frac{X}{s}\right)^{-\alpha}
$$

i.e., another power law, same $\alpha$
$\therefore$ no "typical scale"

## Properties

Highly right skewed
Heavy (fat, long, ...) tails: sub-exponential decay of $p(x)$ Extreme inequality (" $80 / 20$ "): high proportion of summed values comes from small fraction of samples/population "Scale-free":

$$
p(x \mid X \geq s)=\frac{\alpha-1}{s}\left(\frac{X}{s}\right)^{-\alpha}
$$

i.e., another power law, same $\alpha$
$\therefore$ no "typical scale"
though $x_{\text {min }}$ is the typical value

## Origin Myths

Catchy and mysterious origin myth from physics:

- Distinct phases co-exist at phase transitions
- $\therefore$ Each phase can appear by fluctuation inside the other, and vice versa
- $\therefore$ Infinite-range correlations in space and time
- $\therefore$ Central limit theorem breaks down
- but macroscopic physical quantities are still averages
- $\therefore$ they must have a scale-free distribution
- So critical phenomena $\Rightarrow$ power laws


## Origin Myths (cont.)

Deflating origin myths:
Piles of papers on my office floor [1, 2, 3]

- I start new piles at rate $\lambda$, so age of piles $\sim \operatorname{Exponential}(\lambda)$
- All piles start with size $x_{\text {min }}$
- Once a pile starts, on average it grows exponentially at rate $\mu$
- $X \sim \operatorname{Pareto}\left(\lambda / \mu+1, x_{\min }\right)$


## Origin Myths (cont.)

Deflating origin myths:
Piles of papers on my office floor [1, 2, 3]

- I start new piles at rate $\lambda$, so age of piles $\sim \operatorname{Exponential}(\lambda)$
- All piles start with size $x_{\text {min }}$
- Once a pile starts, on average it grows exponentially at rate $\mu$
- $X \sim \operatorname{Pareto}\left(\lambda / \mu+1, x_{\text {min }}\right)$

Mixtures of exponentials work too [4]

Power Laws: What? So What?

There are lots of claims that things follow power laws, especially in the last $\approx 20$ years, especially from physicists

There are lots of claims that things follow power laws, especially in the last $\approx 20$ years, especially from physicists
word frequency, protein interaction degree (yeast), metabolic network degree ( E . coli), Internet autonomous system network, calls received, intensity of wars, terrorist attack fatalities, bytes per HTTP request, species per genus, \# sightings per bird species, population affected by blackouts, sales of best-sellers, population of US cities, area of wildfires, solar flare intensity, earthquake magnitude, religious sect size, surname frequency, individual net worth, citation counts, \# papers authored, \# hits per URL, in-degree per URL, \# entries in e-mail address books, ...

# $\Rightarrow$ Mason Porter's Power Law Shop 

Power Laws: What? So What?
Bad Practices
Better Practices No Really, So What? References

Definitions and Examples

I Went to a physics CONFERENCE AND ALL I GOT WAS A LOUSY power law.

## How do physicists come up with their power laws?

Remember

$$
\log p(x)=\log C-\alpha \log x
$$

\& similarly for the CDF

## How do physicists come up with their power laws?

Remember

$$
\log p(x)=\log C-\alpha \log x
$$

\& similarly for the CDF
Suggests:

- Take a log-log plot of the histogram, or of the CDF, and
- Fit an ordinary regression line, then
- Use fitted slope as guess for $\alpha$, check goodness of fit by $R^{2}$


## How do physicists come up with their power laws?

Remember

$$
\log p(x)=\log C-\alpha \log x
$$

\& similarly for the CDF Suggests:

- Take a log-log plot of the histogram, or of the CDF, and
- Fit an ordinary regression line, then
- Use fitted slope as guess for $\alpha$, check goodness of fit by $R^{2}$

This is a clever idea

## How do physicists come up with their power laws?

Remember

$$
\log p(x)=\log C-\alpha \log x
$$

\& similarly for the CDF Suggests:

- Take a log-log plot of the histogram, or of the CDF, and
- Fit an ordinary regression line, then
- Use fitted slope as guess for $\alpha$, check goodness of fit by $R^{2}$

This is a clever idea for the 1890s

## How do physicists come up with their power laws?

Remember

$$
\log p(x)=\log C-\alpha \log x
$$

\& similarly for the CDF Suggests:

- Take a log-log plot of the histogram, or of the CDF, and
- Fit an ordinary regression line, then
- Use fitted slope as guess for $\alpha$, check goodness of fit by $R^{2}$

This is a clever idea for the 1890 s
Fun fact: "statistical physics" involves no actual statistics

You Can Do Everything with Least Squares, Right? Actually, No
Alternative Distributions


## Why Is This Bad?

## Why Is This Bad?

Histograms: binning always throws away information, adds lots of error
log-sized bins are only infinitessimally better

## Why Is This Bad?

Histograms: binning always throws away information, adds lots of error
log-sized bins are only infinitessimally better
CDF or rank-size plot: values are not independent; inefficient

## Why Is This Bad?

Histograms: binning always throws away information, adds lots of error
log-sized bins are only infinitessimally better
CDF or rank-size plot: values are not independent; inefficient Least-squares line:

- Not a normalized distribution,
- All the inferential assumptions for regression fail
- Always has avoidable error as an estimate of $\alpha$
- Easily get large $R^{2}$ for non-power-law distributions


## Some Distributions Which Are Not Power Laws

Log-normal: $\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ :

## Some Distributions Which Are Not Power Laws

Log-normal: $\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ :

$$
p(x)=\frac{1}{\left(1-\Phi\left(\frac{\ln x_{\min }-\mu}{\sigma}\right)\right) x \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

## Some Distributions Which Are Not Power Laws

Log-normal: $\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ :

$$
p(x)=\frac{1}{\left(1-\Phi\left(\frac{\ln x_{\min }-\mu}{\sigma}\right)\right) x \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Stretched exponential/Weibull: $X^{\beta} \sim \operatorname{Exponential}(\lambda)$

## Some Distributions Which Are Not Power Laws

Log-normal: $\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ :

$$
p(x)=\frac{1}{\left(1-\Phi\left(\frac{\ln x_{\min }-\mu}{\sigma}\right)\right) x \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Stretched exponential/Weibull: $X^{\beta} \sim \operatorname{Exponential}(\lambda)$

$$
p(x)=\beta \lambda e^{\lambda x_{\min }^{\beta} X^{\beta-1}} e^{-\lambda x^{\beta}}
$$

Power law with exponential cut-off ("negative gamma")

## Some Distributions Which Are Not Power Laws

Log-normal: $\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ :

$$
p(x)=\frac{1}{\left(1-\Phi\left(\frac{\ln x_{\min }-\mu}{\sigma}\right)\right) x \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Stretched exponential/Weibull: $X^{\beta} \sim \operatorname{Exponential}(\lambda)$

$$
p(x)=\beta \lambda e^{\lambda x_{\min }^{\beta} \chi^{\beta-1}} e^{-\lambda x^{\beta}}
$$

Power law with exponential cut-off ("negative gamma")

$$
p(x)=\frac{1 / L}{\Gamma\left(1-\alpha, x_{\min } / L\right)}(x / L)^{-\alpha} e^{-x / L}
$$

## Some Distributions Which Are Not Power Laws

Log-normal: $\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ :

$$
p(x)=\frac{1}{\left(1-\Phi\left(\frac{\ln x_{\min }-\mu}{\sigma}\right)\right) \times \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Stretched exponential/Weibull: $X^{\beta} \sim \operatorname{Exponential}(\lambda)$

$$
p(x)=\beta \lambda e^{\lambda x_{\min }^{\beta}} \chi^{\beta-1} e^{-\lambda x^{\beta}}
$$

Power law with exponential cut-off ("negative gamma")

$$
p(x)=\frac{1 / L}{\Gamma\left(1-\alpha, x_{\min } / L\right)}(x / L)^{-\alpha} e^{-x / L}
$$

like a power law for $x \ll L$, like an exponential for $x \gg L$
$\mathbf{R}^{\wedge} \mathbf{2}$ values from samples

$R^{2}$ for a log normal (limiting value $>0.9$ )

## Abusing linear regression makes the baby Gauss cry



## Blogospheric Navel-Gazing

Shirky [5]: in-degree of weblogs follows a power-law, many consequences for media ecology, etc., etc.

Data via [6]

## Blogospheric Navel-Gazing

Shirky [5]: in-degree of weblogs follows a power-law, many consequences for media ecology, etc., etc.


## Blogospheric Navel-Gazing

Shirky [5]: in-degree of weblogs follows a power-law, many consequences for media ecology, etc., etc.


Power Laws: What? So What?
Bad Practices
Better Practices No Really, So What? References

## Estimating the Exponent

 Estimating the Scaling Region Goodness-of-FitTesting Against Alternatives Visualization

## Estimating the Exponent

Use maximum likelihood

## Estimating the Exponent

Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

## Estimating the Exponent

## Use maximum likelihood

$$
\mathcal{L}\left(\alpha, x_{\min }\right)=n \log \frac{\alpha-1}{x_{\min }}-\alpha \sum_{i=1}^{n} \log \frac{x_{i}}{x_{\min }}
$$

## Estimating the Exponent

## Use maximum likelihood

$$
\begin{aligned}
\mathcal{L}\left(\alpha, x_{\min }\right) & =n \log \frac{\alpha-1}{x_{\min }}-\alpha \sum_{i=1}^{n} \log \frac{x_{i}}{x_{\min }} \\
\frac{\partial}{\partial \alpha} \mathcal{L} & =\frac{n}{\alpha-1}-\sum_{i=1}^{n} \log \frac{x_{i}}{x_{\min }}
\end{aligned}
$$

## Estimating the Exponent

## Use maximum likelihood

$$
\begin{aligned}
\mathcal{L}\left(\alpha, x_{\min }\right) & =n \log \frac{\alpha-1}{x_{\min }}-\alpha \sum_{i=1}^{n} \log \frac{x_{i}}{x_{\min }} \\
\frac{\partial}{\partial \alpha} \mathcal{L} & =\frac{n}{\alpha-1}-\sum_{i=1}^{n} \log \frac{x_{i}}{x_{\min }} \\
\widehat{\alpha} & =1+\frac{n}{\sum_{i=1}^{n} \log x_{i} / x_{\min }}
\end{aligned}
$$

Power Laws: What? So What?
Bad Practices Better Practices No Really, So What? References

## Estimating the Exponent

 Estimating the Scaling Region Goodness-of-FitTesting Against Alternatives Visualization

## Properties of the MLE

Consistent: $\widehat{\alpha} \rightarrow \alpha$

Power Laws: What? So What?

## Properties of the MLE

Consistent: $\widehat{\alpha} \rightarrow \alpha$
Standard error: $\operatorname{Var}[\hat{\alpha}]=n^{-1}(\alpha-1)^{2}+O\left(n^{-2}\right)$

## Properties of the MLE

Consistent: $\widehat{\alpha} \rightarrow \alpha$
Standard error: Var $[\hat{\alpha}]=n^{-1}(\alpha-1)^{2}+O\left(n^{-2}\right)$
Efficient: no consistent alternative with less variance
In particular, dominates regression

## Properties of the MLE

Consistent: $\widehat{\alpha} \rightarrow \alpha$
Standard error: Var $[\widehat{\alpha}]=n^{-1}(\alpha-1)^{2}+O\left(n^{-2}\right)$
Efficient: no consistent alternative with less variance
In particular, dominates regression
Asymptotically Gaussian: $\widehat{\alpha} \rightsquigarrow \mathcal{N}\left(\alpha, \frac{(\alpha-1)^{2}}{n}\right)$

## Properties of the MLE

Consistent: $\widehat{\alpha} \rightarrow \alpha$
Standard error: Var $[\hat{\alpha}]=n^{-1}(\alpha-1)^{2}+O\left(n^{-2}\right)$
Efficient: no consistent alternative with less variance
In particular, dominates regression
Asymptotically Gaussian: $\widehat{\alpha} \rightsquigarrow \mathcal{N}\left(\alpha, \frac{(\alpha-1)^{2}}{n}\right)$
Ancient: Worked out in the 1950s [7, 8]

## Properties of the MLE

Consistent: $\widehat{\alpha} \rightarrow \alpha$
Standard error: Var $[\widehat{\alpha}]=n^{-1}(\alpha-1)^{2}+O\left(n^{-2}\right)$
Efficient: no consistent alternative with less variance
In particular, dominates regression
Asymptotically Gaussian: $\widehat{\alpha} \rightsquigarrow \mathcal{N}\left(\alpha, \frac{(\alpha-1)^{2}}{n}\right)$
Ancient: Worked out in the 1950s [7, 8]
Computationally trivial

## $\widehat{\alpha}$ depends on $x_{\text {min }}$; "Hill" plot [9]

Estimating the Exponent
Estimating the Scaling Region Goodness-of-Fit
Testing Against Alternatives
Visualization

## $\widehat{\alpha}$ depends on $x_{\text {min }}$; "Hill" plot [9]

## Hill Plot for weblog in-degree



## Estimating the Scaling Region

Maximizing likelihood over $x_{\text {min }}$ leads to trouble (try it and see)

Estimating the Exponent Estimating the Scaling Region Goodness-of-Fit Testing Against Alternatives Visualization

## Estimating the Scaling Region

Maximizing likelihood over $x_{\text {min }}$ leads to trouble (try it and see) Only want the scaling region in the tail anyway

## Estimating the Scaling Region

Maximizing likelihood over $x_{\text {min }}$ leads to trouble (try it and see) Only want the scaling region in the tail anyway Minimize discrepancy between fitted and empirical distributions [10]:

$$
\begin{aligned}
\widehat{x_{\min }} & =\underset{x_{\min }}{\operatorname{argmin}} \max _{x \geq x_{\min }}\left|\hat{P}_{n}(x)-P\left(x ; \widehat{\alpha}, x_{\min }\right)\right| \\
& =\underset{x_{\min }}{\operatorname{argmin}} d_{K S}\left(\hat{P}_{n}, P\left(\widehat{\alpha}, x_{\min }\right)\right)
\end{aligned}
$$



Power Laws: What? So What?
Bad Practices Better Practices No Really, So What? References

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization


Cosma Shalizi
So, You Think You Have a Power Law?

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

In-degree distribution of weblogs, late 2003


Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

In-degree distribution of weblogs, late 2003


Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives Visualization

In-degree distribution of weblogs, late 2003


Power Laws: What? So What?
Bad Practices

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?

Power Laws: What? So What?
Bad Practices

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?
You shouldn't use $R^{2}$ that way for a regression

Power Laws: What? So What?
Bad Practices Better Practices No Really, So What? References

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives Visualization

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?
You shouldn't use $R^{2}$ that way for a regression
Use a goodness-of-fit test!

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?
You shouldn't use $R^{2}$ that way for a regression
Use a goodness-of-fit test!
Kolmogorov-Smirnov statistic is nice: for CDFs $P, Q$

$$
d_{K S}(P, Q)=\max _{x}|P(x)-Q(x)|
$$

Compare empirical CDF to theoretical one

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?
You shouldn't use $R^{2}$ that way for a regression
Use a goodness-of-fit test!
Kolmogorov-Smirnov statistic is nice: for CDFs $P, Q$

$$
d_{K S}(P, Q)=\max _{x}|P(x)-Q(x)|
$$

Compare empirical CDF to theoretical one
Tabulated $p$-values, assuming the theoretical CDF isn't estimated

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?
You shouldn't use $R^{2}$ that way for a regression
Use a goodness-of-fit test!
Kolmogorov-Smirnov statistic is nice: for CDFs $P, Q$

$$
d_{K S}(P, Q)=\max _{x}|P(x)-Q(x)|
$$

Compare empirical CDF to theoretical one
Tabulated $p$-values, assuming the theoretical CDF isn't estimated Analytic corrections via heroic probability theory [11, pp. 99ff]

## Goodness-of-Fit

How can we tell if it's a good fit or not, if we can't use $R^{2}$ ?
You shouldn't use $R^{2}$ that way for a regression
Use a goodness-of-fit test!
Kolmogorov-Smirnov statistic is nice: for CDFs $P, Q$

$$
d_{K S}(P, Q)=\max _{x}|P(x)-Q(x)|
$$

Compare empirical CDF to theoretical one
Tabulated $p$-values, assuming the theoretical CDF isn't estimated Analytic corrections via heroic probability theory [11, pp. 99ff] or, use the bootstrap, like a civilized person

Given: $n$ data points $x_{1: n}$
(1) Estimate $\alpha$ and $x_{\text {min }} ; n_{\text {tail }}=\#$ of data points $\geq x_{\text {min }}$
(2) Calculate $d_{K S}$ for data and best-fit power law $=d^{*}$
(3) Draw $n$ random values $b_{1}, \ldots b_{n}$ as follows:
(1) with probability $n_{\text {tail }} / n$, draw from power-law
(2) otherwise, pick one of the $x_{i}<x_{\text {min }}$ uniformly
(9) Find $\widehat{\alpha}, \widehat{x_{\min }}, d_{K S}$ for $b_{1: n}$
(0) Repeat many times to get distribution of $d_{K S}$ values
(0) $p$-value $=$ fraction of simulations where $d \geq d^{*}$

For the blogs: $p=6.6 \times 10^{-2}$

Power Laws: What? So What?
Bad Practices

Estimating the Exponent
Estimating the Scaling Region Goodness-of-Fit
Testing Against Alternatives Visualization

## Testing Against Alternatives

Compare against alternatives: more statistical power, more substantive information

Power Laws: What? So What?
Bad Practices

Estimating the Exponent

## Testing Against Alternatives

Compare against alternatives: more statistical power, more substantive information *IC is sub-optimal here

Power Laws: What? So What?
Bad Practices

## Testing Against Alternatives

Compare against alternatives: more statistical power, more substantive information *IC is sub-optimal here Better: Vuong's normalized log-likelihood-ratio test [12]

## Testing Against Alternatives

Compare against alternatives: more statistical power, more substantive information *IC is sub-optimal here
Better: Vuong's normalized log-likelihood-ratio test [12]
Two models, $\theta, \psi$

$$
\mathcal{R}(\psi, \theta)=\log p_{\psi}\left(x_{1: n}\right)-\log p_{\theta}\left(x_{1: n}\right)
$$

$\mathcal{R}(\psi, \theta)>0$ means: the data were more likely under $\psi$ than under $\theta$ How much more likely do they need to be?

Estimating the Exponent

## Distribution of Likelihood Ratios: Fixed Models

Assume $X_{1}, X_{2}, \ldots$ all IID, with true distribution $\nu$
Fix $\theta$ and $\psi$; what is distribution of $n^{-1} \mathcal{R}(\psi, \theta)$ ?

## Distribution of Likelihood Ratios: Fixed Models

Assume $X_{1}, X_{2}, \ldots$ all IID, with true distribution $\nu$
Fix $\theta$ and $\psi$; what is distribution of $n^{-1} \mathcal{R}(\psi, \theta)$ ?

$$
\begin{aligned}
n^{-1} \mathcal{R}(\psi, \theta) & =\frac{\log p_{\psi}\left(x_{1: n}\right)-\log p_{\theta}\left(x_{1: n}\right)}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\psi}\left(x_{i}\right)}{p_{\theta}\left(x_{i}\right)}
\end{aligned}
$$

## Distribution of Likelihood Ratios: Fixed Models

Assume $X_{1}, X_{2}, \ldots$ all IID, with true distribution $\nu$ Fix $\theta$ and $\psi$; what is distribution of $n^{-1} \mathcal{R}(\psi, \theta)$ ?

$$
\begin{aligned}
n^{-1} \mathcal{R}(\psi, \theta) & =\frac{\log p_{\psi}\left(x_{1: n}\right)-\log p_{\theta}\left(x_{1: n}\right)}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\psi}\left(x_{i}\right)}{p_{\theta}\left(x_{i}\right)}
\end{aligned}
$$

mean of IID terms so use law of large numbers:

$$
\frac{1}{n} \mathcal{R}(\psi, \theta) \rightarrow \mathbf{E}_{\nu}\left[\log \frac{p_{\psi}(X)}{p_{\theta}(X)}\right]=D(\nu \| \theta)-D(\nu \| \psi)
$$

## Distribution of Likelihood Ratios: Fixed Models

Assume $X_{1}, X_{2}, \ldots$ all IID, with true distribution $\nu$ Fix $\theta$ and $\psi$; what is distribution of $n^{-1} \mathcal{R}(\psi, \theta)$ ?

$$
\begin{aligned}
n^{-1} \mathcal{R}(\psi, \theta) & =\frac{\log p_{\psi}\left(x_{1: n}\right)-\log p_{\theta}\left(x_{1: n}\right)}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\psi}\left(x_{i}\right)}{p_{\theta}\left(x_{i}\right)}
\end{aligned}
$$

mean of IID terms so use law of large numbers:

$$
\frac{1}{n} \mathcal{R}(\psi, \theta) \rightarrow \mathbf{E}_{\nu}\left[\log \frac{p_{\psi}(X)}{p_{\theta}(X)}\right]=D(\nu \| \theta)-D(\nu \| \psi)
$$

$\mathcal{R}(\psi, \theta)>0 \approx \psi$ diverges less from $\nu$ than $\theta$ does

Use CLT:

$$
\frac{1}{\sqrt{n}} \mathcal{R}(\psi, \theta) \rightsquigarrow \mathcal{N}\left(\sqrt{n}(D(\nu \| \theta)-D(\nu \| \psi)), \omega_{\psi, \theta}^{2}\right)
$$

where

$$
\omega_{\psi, \theta}^{2}=\operatorname{Var}\left[\log \frac{p_{\psi}(X)}{p_{\theta}(X)}\right]
$$

so if the models are equally good, we get a mean-zero Gaussian but if one is better $\mathcal{R}(\psi, \theta) \rightarrow \pm \infty$, depending

## Distribution of $\mathcal{R}$ with Estimated Models

two classes of models $\Psi, \Theta ; \hat{\psi}, \hat{\theta}=\mathrm{ML}$ estimated models $\hat{\psi} \rightarrow \psi^{*}, \hat{\theta} \rightarrow \theta^{*}$ : converging to pseudo-truth; $\psi^{*} \neq \theta^{*}$ some regularity assumptions

## Distribution of $\mathcal{R}$ with Estimated Models

two classes of models $\Psi, \Theta ; \hat{\psi}, \hat{\theta}=\mathrm{ML}$ estimated models $\hat{\psi} \rightarrow \psi^{*}, \hat{\theta} \rightarrow \theta^{*}$ : converging to pseudo-truth; $\psi^{*} \neq \theta^{*}$ some regularity assumptions
Everything works out as if no estimation:

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \mathcal{R}(\hat{\psi}, \hat{\theta}) & \rightsquigarrow \mathcal{N}\left(\sqrt{n}\left(D\left(\nu \| \theta^{*}\right)-D\left(\nu \| \psi^{*}\right)\right), \omega_{\psi^{*}, \theta^{*}}^{2}\right) \\
\frac{1}{n} \mathcal{R}(\hat{\psi}, \hat{\theta}) & \rightarrow D\left(\nu \| \theta^{*}\right)-D\left(\nu \| \psi^{*}\right)
\end{aligned}
$$

$\widehat{\omega}^{2} \equiv \operatorname{Var}_{\text {sample }}\left[\log \frac{p_{\psi}(X)}{p_{\theta}(X)}\right] \rightarrow \omega_{\psi^{*}, \theta^{*}}^{2}$

Power Laws: What? So What?

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives Visualization

## Vuong's Test for Non-Nested Model Classes

Assume all conditions from before

## Vuong's Test for Non-Nested Model Classes

Assume all conditions from before
If the two models are really equally close to the truth,

$$
\frac{\mathcal{R}}{\sqrt{n \widehat{\omega}^{2}}} \rightsquigarrow \mathcal{N}(0,1)
$$

but if one is better, normalized $\log$ likelihood ratio goes to $\pm \infty$, telling you which is better

## Vuong's Test for Non-Nested Model Classes

Assume all conditions from before
If the two models are really equally close to the truth,

$$
\frac{\mathcal{R}}{\sqrt{n \widehat{\omega}^{2}}} \rightsquigarrow \mathcal{N}(0,1)
$$

but if one is better, normalized log likelihood ratio goes to $\pm \infty$, telling you which is better

- Don't need to adjust for parameter \#, but any o(n) adjustment is fine; [13] is probably better than *IC
- Does not assume that truth is in either $\Psi$ or $\Theta$
- Does assume $\psi^{*} \neq \theta^{*}$

Power Laws: What? So What?
Bad Practices

## Back to Blogs

Fit a log-normal to the same tail (to give the advantage to power law)

$$
\begin{aligned}
\mathcal{R}(\text { power law, log }- \text { normal }) & =-0.85 \\
\widehat{\omega} & =0.098 \\
\frac{\mathcal{R}}{\sqrt{n \widehat{\omega}^{2}}} & =-0.83
\end{aligned}
$$

so the log-normal fits better, but not by much - we'd see fluctuations at least that big $41 \%$ of the time if they were equally good

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives Visualization

## Fitting a log-normal to the complete data

In-degree distribution of weblogs, late 2003


Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives Visualization

## Fitting a log-normal to the complete data

In-degree distribution of weblogs, late 2003


Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives Visualization

## Fitting a log-normal to the complete data

In-degree distribution of weblogs, late 2003


Power Laws: What? So What?

Estimating the Exponent

## Visualization

Beyond the log-log plot: Handcock and Morris's relative distribution [14, 15]
Compare two whole distributions, not just mean/variance etc.

```
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization
```


## Visualization

Beyond the log-log plot: Handcock and Morris's relative distribution [14, 15]
Compare two whole distributions, not just mean/variance etc. Have a reference distribution, CDF $F_{0}$ (or just a reference sample) and a comparison sample $y_{1}, \ldots y_{n}$
Construct relative data

$$
r_{i}=F_{0}\left(y_{i}\right)
$$

relative CDF:

$$
G(r)=F\left(F_{0}^{-1}(r)\right)
$$

relative density

$$
g(r)=\frac{f\left(F_{0}^{-1}(r)\right)}{f_{0}\left(F_{0}^{-1}(r)\right)}
$$

- Relative data are uniform $\Leftrightarrow$ distributions are the same
- $g(r)$ tells us where and how the distributions differ
- Can estimate $G(r)$ by empirical CDF of $r_{i}$
- Can estimate $g(r)$ by non-parametric density estimation on $r_{i}$
- Invariant under any monotone transformation of the data (multiplication, taking logs, etc.)
- Related to Neyman's smooth test of goodness-of-fit
- Can adjust for covariates flexibly [15]

R package: reldist, from CRAN

Power Laws: What? So What?
Bad Practices

Estimating the Exponent
Estimating the Scaling Region Goodness-of-Fit
Testing Against Alternatives Visualization

## Relative Distribution with Power Laws

(1) Estimate power law distribution from data
(2) Use that as the reference distribution

Power Laws: What? So What?
Bad Practices Better Practices No Really, So What? References

Estimating the Exponent
Estimating the Scaling Region
Goodness-of-Fit
Testing Against Alternatives
Visualization


Cosma Shalizi
So, You Think You Have a Power Law?

## How Bad Is the Literature?

[10] looked at 24 claimed power laws

## How Bad Is the Literature?

## [10] looked at 24 claimed power laws

word frequency, protein interaction degree (yeast), metabolic network degree ( E . coli), Internet autonomous system network, calls received, intensity of wars, terrorist attack fatalities, bytes per HTTP request, species per genus, \# sightings per bird species, population affected by blackouts, sales of best-sellers, population of US cities, area of wildfires, solar flare intensity, earthquake magnitude, religious sect size, surname frequency, individual net worth, citation counts, \# papers authored, \# hits per URL, in-degree per URL, \# entries in e-mail address books

## How Bad Is the Literature?

[10] looked at 24 claimed power laws
word frequency, protein interaction degree (yeast), metabolic network degree ( E. coli), Internet autonomous system network, calls received, intensity of wars, terrorist attack fatalities, bytes per HTTP request, species per genus, \# sightings per bird species, population affected by blackouts, sales of best-sellers, population of US cities, area of wildfires, solar flare intensity, earthquake magnitude, religious sect size, surname frequency, individual net worth, citation counts, \# papers authored, \# hits per URL, in-degree per URL, \# entries in e-mail address books

Of these, the only clear power law is word frequency

## How Bad Is the Literature?

[10] looked at 24 claimed power laws
word frequency, protein interaction degree (yeast), metabolic network degree ( E. coli), Internet autonomous system network, calls received, intensity of wars, terrorist attack fatalities, bytes per HTTP request, species per genus, \# sightings per bird species, population affected by blackouts, sales of best-sellers, population of US cities, area of wildfires, solar flare intensity, earthquake magnitude, religious sect size, surname frequency, individual net worth, citation counts, \# papers authored, \# hits per URL, in-degree per URL, \# entries in e-mail address books

Of these, the only clear power law is word frequency The rest: indistinguishable from log-normal and/or stretched exponential; and/or cut-off significantly better than pure power law; and/or goodness-of-fit is just horrible

## What's Bad About Hallucinating Power Laws?

Scientists should not try to explain things which don't happen

## What's Bad About Hallucinating Power Laws?

Scientists should not try to explain things which don't happen e.g., a dozen years of theorizing why animal foraging patterns should follow a power law, after [16], when they don't [17]

## What's Bad About Hallucinating Power Laws?

Scientists should not try to explain things which don't happen e.g., a dozen years of theorizing why animal foraging patterns should follow a power law, after [16], when they don't [17]
Decision-makers waste resources planning for power laws which don't exist

## Does It Really Matter Whether It's a Power Law?

Maybe all that matters is that the distribution has a heavy tail Probably true for Shirky

## Does It Really Matter Whether It's a Power Law?

Maybe all that matters is that the distribution has a heavy tail Probably true for Shirky
Then don't say that it's a power law

## Does It Really Matter Whether It's a Power Law?

Maybe all that matters is that the distribution has a heavy tail
Probably true for Shirky
Then don't say that it's a power law
Do look at density estimation methods for heavy-tailed distributions [18, 19]

- Data-independent transformation from $[0, \infty)$ to $[0,1]$
- Nonparametric density estimate on $[0,1]$
- Inverse transform


## The Correct Line

(1) Lots of distributions give straightish log-log plots
(2) Regression on log-log plots is bad; don't do it, and don't believe those who do it.
(3) Use maximum likelihood to estimate the scaling exponent
(1) Use goodness of fit to estimate the scaling region
(3) Use goodness of fit tests to check goodness of fit

- Use Vuong's test to check alternatives
(0) Ask yourself whether you really care
[1] Herbert A. Simon. On a class of skew distribution functions. Biometrika, 42:425-440, 1955. URL http://www.jstor.org/pss/2333389.
[2] Yuji Ijiri and Herbert A. Simon. Skew Distributions and the Sizes of Business Firms. North-Holland, Amsterdam, 1977. With Charles P. Bonini and Theodore A. van Wormer.
[3] William J. Reed and Barry D. Hughes. From gene families and genera to incomes and Internet file sizes: Why power laws are so common in nature. Physical Review E, 66:067103, 2002. doi: 10.1103/PhysRevE.66.067103.
[4] B. A. Maguire, E. S. Pearson, and A. H. A. Wynn. The time intervals between industrial accidents. Biometrika, 39: 168-180, 1952. URL http://www.jstor.org/pss/2332475.
[5] Clay Shirky. Power laws, weblogs, and inequality. In Mitch Ratcliffe and Jon Lebkowsky, editors, Extreme Democracy,
forthcoming. URL http:
//www.shirky.com.writings/powerlaw_weblog.html.
[6] Henry Farrell and Daniel Drezner. The power and politics of blogs. Public Choice, 134:15-30, 2008. URL http://www. utsc.utoronto.ca/~farrell/blogpaperfinal.pdf.
[7] A. N. M. Muniruzzaman. On measures of location and dispersion and tests of hypotheses in a Pareto population. Bulletin of the Calcutta Statistical Association, 7:115-123, 1957.
[8] H. L. Seal. The maximum likelihood fitting of the discrete Pareto law. Journal of the Institute of Actuaries, 78:115-121, 1952. URL http://www.actuaries.org.uk/files/pdf/ library/JIA-078/0115-0121.pdf.
[9] B. M. Hill. A simple general approach to inference about the tail of a distribution. Annals of Statistics, 3:1163-1174, 1975.


## URL

http://projecteuclid.org/euclid.aos/1176343247.
[10] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51: 661-703, 2009. URL http://arxiv.org/abs/0706.1062.
[11] David Pollard. Convergence of Stochastic Processes. Springer Series in Statistics. Springer-Verlag, New York, 1984. URL http://www.stat.yale.edu/~pollard/1984book/.
[12] Quang H. Vuong. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57:307-333, 1989. URL http://www.jstor.org/pss/1912557.
[13] Hwan-sik Choi and Nicholas M. Kiefer. Differential geometry and bias correction in nonnested hypothesis testing. Online preprint, 2006. URL http://www.arts.cornell.edu/econ/ kiefer/GeometryMS6.pdf.
[14] Mark S. Handcock and Martina Morris. Relative distribution methods. Sociological Methodology, 28:53-97, 1998. URL http://www.jstor.org/pss/270964.
[15] Mark S. Handcock and Martina Morris. Relative Distribution Methods in the Social Sciences. Springer-Verlag, Berlin, 1999.
[16] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, and H. E. Stanley. Lévy flight search patterns of wandering albatrosses. Nature, 381:413-415, 1996. URL
http://polymer.bu.edu/hes/articles/vabmps96.pdf.
[17] Andrew M. Edwards, Richard A. Phillips, Nicholas W. Watkins, Mervyn P. Freeman, Eugene J. Murphy, Vsevolod Afanasyev, Sergey V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. Eugene Stanley, and Gandhimohan M. Viswanathan. Revisiting lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature, 449:

1044-1048, 2007. doi: 10.1038/nature06199. URL http: //polymer.bu.edu/hes/articles/epwfmabdrsgv07.pdf.
[18] Natalia M. Markovitch and Udo R. Krieger. Nonparametric estimation of long-tailed density functions and its application to the analysis of World Wide Web traffic. Performance Evaluation, 42:205-222, 2000. doi: 10.1016/S0166-5316(00)00031-6.
[19] Natalia Markovich. Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice. John Wiley, New York, 2007.

