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Abstract
In this paper, we present Google, a prototype of alarge-scale search engine which makes heavy use of the
structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much
more satifying search results than existing systems. The prototype with afull text and hyperlink database of
a least 24 million pagesis available at http://googlestanford.edu/ To engineer asearch engineisa
challenging task. Search enginesindex tensto hundreds of millions of web pagesinvolving acomparable
number of digtinct terms. They answer tens of millions of queries every day. Despite the importance of
large-scale search engines on the web, very little academic research has been done on them. Furthermore,
dueto rapid advance in technology and web proliferation, creating aweb search engine today isvery
different from three years ago. This paper provides an in-depth description of our large-scale web search
engine -- the first such detailed public description we know of to date. Apart from the problems of scaling
traditiond search techniquesto data of this magnitude, there are new technica chalengesinvolved with
using the additiona information present in hypertext to produce better search results. This paper addresses
this question of how to build apractica large-scale system which can exploit the additiond information
present in hypertext. Also welook at the problem of how to effectively ded with uncontrolled hypertext
collections where anyone can publish anything they warnt.
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1. Introduction

(Note: There are two versions of this paper -- a longer full version and a shorter printed version. The full
version is available on the web and the conference CD-ROM.)

Theweb creates new challengesfor information retrieval. The amount of information on the web isgrowing
rapidly, aswel asthe number of new usersinexperienced in the art of web research. People arelikely to surf the
web using itslink graph, often starting with high quality human maintained indices such as’Y ahoo! or with search
engines. Human maintained lists cover popular topics effectively but are subjective, expensive to build and
maintain, dow to improve, and cannot cover al esoteric topics. Automated search enginesthat rely on keyword
matching usudly return too many low quality matches. To make matters worse, some advertisers attempt to gain
peopl€e's attention by taking measures meant to midead automated search engines. We have built alarge-scale
search engine which addresses many of the problems of existing systems. It makes especiadly heavy use of the
additional structure present in hypertext to provide much higher quality search results. We chose our system name,

Google, becauseit is acommon spelling of googol, or 101% and fitswell with our goal of building very large-scale
search engines.

1.1 Web Search Engines -- Scaling Up: 1994 - 2000

Search engine technology has had to scae dramatically to keep up with the growth of the web. In 1994, one of
thefirst web search engines, the World Wide Web Worm (WWWW) [McBryan 94] had an index of 110,000
web pages and web accessible documents. As of November, 1997, the top search engines claim to index from 2
million (WebCrawler) to 100 million web documents (from Search Engine Waich). It isforeseesble that by the
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year 2000, a comprehensive index of the Web will contain over abillion documents. At the sametime, the number
of queries search engines handle has grown incredibly too. In March and April 1994, the World Wide Web
Worm received an average of about 1500 queries per day. In November 1997, Altavista claimed it handled
roughly 20 million queries per day. With the increasing number of users on the web, and automated systems which
query search engines, it islikely that top search engineswill handle hundreds of millions of queries per day by the
year 2000. The god of our system isto address many of the problems, both in quality and scalability, introduced
by scaling search engine technology to such extraordinary numbers.

1.2. Google: Scaling with the Web

Creating a search engine which scales even to today's web presents many chadlenges. Fast crawling technology is
needed to gather the web documents and keep them up to date. Storage space must be used efficiently to store
indices and, optionadly, the documents themsalves. Theindexing system must process hundreds of gigabytes of
data efficiently. Queries must be handled quickly, at arate of hundreds to thousands per second.

These tasks are becoming increasingly difficult as the Web grows. However, hardware performance and cost
haveimproved dramatically to partidly offset the difficulty. There are, however, several notable exceptionsto this
progress such as disk seek time and operating system robustness. In designing Google, we have considered both
the rate of growth of the Web and technologica changes. Google is designed to scale wdll to extremely large data
sets. It makes efficient use of storage space to Store the index. Its data structures are optimized for fast and
efficient access (see section 4.2). Further, we expect that the cost to index and store text or HTML will eventually
decline relative to the amount that will be available (see Appendix B). Thiswill result in favorable scaling
propertiesfor centraized systemslike Google.

1.3 Design Goals
1.3.1 Improved Search Quality

Our main god isto improve the quality of web search engines. In 1994, some people believed that acomplete
search index would make it possible to find anything easily. According to Best of the Web 1994 -- Navigators,
"The best navigation service should make it easy to find dmost anything on the Web (once dl the datais
entered).” However, the Web of 1997 is quite different. Anyone who has used a search engine recently, can
readily testify that the completeness of theindex is not the only factor in the quality of search results. "Junk results'
often wash out any resultsthat auser isinterested in. In fact, as of November 1997, only one of the top four
commercid search enginesfindsitsaf (returnsits own search page in response to its namein the top ten results).
One of the main causes of this problem isthat the number of documentsin the indices has been increasing by many
orders of magnitude, but the user's ability to look at documents has not. People are still only willing to look at the
first few tens of results. Because of this, asthe collection size grows, we need tools that have very high precison
(number of relevant documents returned, say in the top tens of results). Indeed, we want our notion of “relevant”
to only include the very best documents since there may be tens of thousands of dightly relevant documents. This
very high precison isimportant even at the expense of recall (the total number of relevant documentsthe systemis
ableto return). Thereisquite abit of recent optimism that the use of more hypertextua information can help
improve search and other applications [Marchiori 97] [Spertus 97] [Weiss 96] [Kleinberg 98]. In particular, link
structure [Page 98] and link text provide alot of information for making relevance judgments and qudlity filtering.
Google makes use of both link structure and anchor text (see Sections 2.1 and 2.2).

1.3.2 Academic Search Engine Research

Asde from tremendous growth, the Web has a so become increasingly commercia over time. In 1993, 1.5% of
web serverswere on .com domains. This number grew to over 60% in 1997. At the same time, search engines
have migrated from the academic domain to the commercid. Up until now most search engine devel opment has
gone on a companieswith little publication of technical details. This causes search engine technology to remain
largely ablack art and to be advertising oriented (see Appendix A). With Google, we have a strong goa to push
more development and understanding into the academic ream.
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Another important design god wasto build systems that reasonable numbers of people can actualy use. Usage
was important to us because we think some of the most interesting research will involve leveraging the vast amount
of usage data that is available from modern web systems. For example, there are many tens of millions of searches
performed every day. However, it isvery difficult to get this data, mainly becauseit is consdered commercidly
vauable.

Our find design god wasto build an architecture that can support novel research activities on large-scale web
data. To support nove research uses, Google stores all of the actua documentsit crawlsin compressed form.
One of our main godsin designing Google was to set up an environment where other researchers can comein
quickly, processlarge chunks of the web, and produce interesting results that would have been very difficult to
produce otherwise. In the short time the system has been up, there have dready been several papers using
databases generated by Google, and many others are underway. Another goad we have isto set up a Spacelab-
like environment where researchers or even students can propose and do interesting experiments on our large-
scale web data.

2. System Features

The Google search engine has two important features that help it produce high precison results. Firg, it makes use
of thelink structure of the Web to calculate a quality ranking for each web page. Thisranking is caled PageRank
and isdescribed in detail in [Page 98]. Second, Google utilizes link to improve search results.

2.1 PageRank: Bringing Order to the Web

The citation (link) graph of the web isan important resource that has largely gone unused in existing web search
engines. We have created maps containing as many as 518 million of these hyperlinks, asgnificant sample of the
total. These maps dlow rapid caculation of aweb page's *PageRank™, an objective measure of its citation
importance that corresponds well with peoplée's subjective idea of importance. Because of this correspondence,
PageRank is an excellent way to prioritize the results of web keyword searches. For most popular subjects, a
smple text matching search that is restricted to web page titles performs admirably when PageRank prioritizesthe
results (demo available at google.stanford.edu). For thetype of full text searchesin the main Google system,
PageRank also helpsagreat dedl.

2.1.1 Description of PageRank Calculation

Academic citation literature has been applied to the web, largely by counting citations or backlinksto agiven
page. This gives some gpproximation of apage'simportance or quality. PageRank extends thisidea by not
counting linksfrom &l pages equally, and by normaizing by the number of links on a page. PageRank is defined as
folows

We assume page A has pages T1...Tn which point to it (i.e., are citations). The parameter d is
a damping factor which can be set between 0 and 1. We usually set d to 0.85. There are more
details about d in the next section. Also C(A) is defined as the number of links going out of
page A. The PageRank of a page A is given as follows:

PR(A) = (1-d) + d (PR(TL)/C(T1) + ... + PR(Tn)/C(Tn))

Note that the PageRanks form a probability distribution over web pages, so the sum of all
web pages' PageRanks will be one.

PageRank or PR(A) can be cdculated using asmpleiterative dgorithm, and corresponds to the principal
elgenvector of the normalized link matrix of the web. Also, a PageRank for 26 million web pages can be
computed in afew hours on amedium size workstation. There are many other details which are beyond the scope

of this paper.
2.1.2 Intuitive Justification
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PageRank can be thought of asamodd of user behavior. We assume there isa"random surfer” whoisgiven a
web page a random and keeps clicking on links, never hitting "back” but eventually gets bored and starts on
another random page. The probability that the random surfer visits a page is its PageRank. And, the d damping
factor isthe probability at each page the "random surfer” will get bored and request another random page. One
important variation isto only add the damping factor d to asingle page, or agroup of pages. Thisalowsfor
persondization and can make it nearly impossible to ddliberately midead the sysslem in order to get ahigher
ranking. We have severd other extensionsto PageRank, again see[Page 99].

Another intuitive judtification is that a page can have ahigh PageRank if there are many pagesthat point to it, or if
there are some pages that point to it and have a high PageRank. Intuitively, pagesthat are wdl cited from many
places around the web are worth looking at. Also, pages that have perhaps only one citation from something like
the Yahoo! homepage are dso generdly worth looking at. If a page was not high quality, or was a broken link, it
isquite likely that Y ahoo's homepage would not link to it. PageRank handles both these cases and everything in
between by recursvely propagating weights through the link structure of the web.

2.2 Anchor Text

Thetext of linksistreated in aspecia way in our search engine. Most search engines associate the text of alink
with the page that the link is on. In addition, we associate it with the page the link pointsto. This has severa
advantages. Firdt, anchors often provide more accurate descriptions of web pages than the pages themselves.
Second, anchors may exist for documents which cannot be indexed by atext-based search engine, such asimages,
programs, and databases. This makes it possible to return web pages which have not actually been crawled. Note
that pages that have not been crawled can cause problems, since they are never checked for validity before being
returned to the user. In this case, the search engine can even return a page that never actualy existed, but had
hyperlinks pointing to it. However, it is possible to sort the results, so that this particular problem rarely happens.

Thisideaof propagating anchor text to the page it refers to wasimplemented in the World Wide Web Worm

[McBryan 94] especialy because it helps search non-text information, and expands the search coverage with
fewer downloaded documents. We use anchor propagation mostly because anchor text can help provide better
qudity results. Using anchor text efficiently istechnicaly difficult because of the large amounts of data which must
be processed. In our current crawl of 24 million pages, we had over 259 million anchors which we indexed.

2.3 Other Features

Aside from PageRank and the use of anchor text, Google has severd other features. Firgt, it haslocation
information for dl hitsand so it makes extensive use of proximity in search. Second, Google keepstrack of some
visua presentation details such asfont size of words. Wordsin alarger or bolder font are weighted higher than
other words. Third, full raw HTML of pagesisavailablein arepostory.

3 Related Work

Search research on the web has a short and concise history. The World Wide Web Worm (WWWW) [McBryan
94] was one of thefirst web search engines. It was subsequently followed by severa other academic search
engines, many of which are now public companies. Compared to the growth of the Web and the importance of
search engines there are precious few documents about recent search engines [ Pinkerton 94]. According to
Michad Mauldin (chief scientist, Lycos Inc) [Mauldin], "the various services (including Lycos) closaly guard the
details of these databases'. However, there has been afair amount of work on specific features of search engines.
Especialy well represented iswork which can get results by post-processing the results of existing commercia
search engines, or produce small scde"individuaized" search engines. Findly, there has been alot of research on
information retrieva systems, especidly on well controlled collections. In the next two sections, we discuss some
areas where this research needs to be extended to work better on the web.

3.1 Information Retrieval
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Work ininformation retrieva systems goes back many yearsand iswell devel oped [Witten 94]. However, most
of the research oninformation retrieva sysemsison small well controlled homogeneous collections such as
collections of scientific papers or news stories on arelated topic. Indeed, the primary benchmark for information
retrieva, the Text Retrieva Conference [TREC 96], usesafairly small, well controlled collection for their
benchmarks. The"Very Large Corpus’ benchmark isonly 20GB compared to the 147GB from our crawl of 24
million web pages. Thingsthat work well on TREC often do not produce good results on the web. For example,
the standard vector space mode tries to return the document that most closaly approximates the query, given that
both query and document are vectors defined by their word occurrence. On the web, this strategy often returns
very short documents that are the query plus afew words. For example, we have seen amgor search engine
return a page containing only "Bill Clinton Sucks' and picturefrom a"Bill Clinton" query. Some argue that on the
web, users should specify more accurately what they want and add more words to their query. We disagree
vehemently with this pogtion. If auser issuesaquery like "Bill Clinton™ they should get reasonable results since
thereisaenormous amount of high quaity information available on thistopic. Given exampleslike these, we
believe that the standard information retrieval work needs to be extended to deal effectively with the web.

3.2 Differences Between the Web and Well Controlled Collections

Theweb isavast collection of completely uncontrolled heterogeneous documents. Documents on the web have
extreme variaion interna to the documents, and aso in the externd metainformation that might be available. For
example, documents differ interndly in their language (both human and programming), vocabulary (emall
addresses, links, zip codes, phone numbers, product numbers), type or format (text, HTML, PDF, images,
sounds), and may even be machine generated (log files or output from a database). On the other hand, we define
externd metainformation asinformation that can be inferred about adocument, but is not contained within it.
Examples of externd metainformation include things like reputation of the source, update frequency, qudlity,
popularity or usage, and citations. Not only are the possible sources of externa metainformation varied, but the
things that are being measured vary many orders of magnitude as well. For example, compare the usage
information from amgjor homepage, like Y ahoo's which currently receives millions of page views every day with
an obscure higtorical article which might receive one view every ten years. Clearly, these two items must be
treated very differently by a search engine.

Another big difference between the web and traditional well controlled collectionsisthat thereisvirtualy no
control over what people can put on the web. Couple thisflexibility to publish anything with the enormous
influence of search enginesto route traffic and companies which ddiberately manipulating search enginesfor profit
become a serious problem. This problem that has not been addressed in traditional closed information retrieva
systems. Also, it isinteresting to note that metadata efforts have largely failed with web search engines, because
any text on the page which isnot directly represented to the user is abused to manipulate search engines. There
are even numerous companies which specidize in manipulating search engines for profit.

4 System Anatomy

Firg, wewill provideahigh leve discusson of the architecture. Then, there is some in-depth descriptions of
important data structures. Findly, the mgor applications. crawling, indexing, and searching will be examined in
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depth.

4.1 Google Architecture Overview

Inthis section, we will giveahigh level overview of how the
whole system works as pictured in Figure 1. Further sections
will discuss the gpplications and data structures not mentioned
inthis section. Most of Googleisimplemented in C or C++ for
efficiency and can runin elther Solarisor Linux.

In Google, the web crawling (downloading of web pages) is
done by severd distributed crawlers. Thereisa URL server
that sendslists of URLsto be fetched to the crawlers. The
web pagesthat are fetched are then sent to the storeserver.
The storeserver then compresses and stores the web pages
into arepository. Every web page has an associated 1D
number called adocl D which is assigned whenever anew
URL isparsed out of aweb page. Theindexing functionis
performed by the indexer and the sorter. The indexer performs
anumber of functions. It reads the repository, uncompresses
the documents, and parses them. Each document is converted : : c

into a set of word occurrences caled hits. The hits record the Figure 1. High Level Google Architecture
word, position in document, an gpproximation of font Sze, and capitdization. Theindexer distributes these hitsinto
aset of "barrels’, creating a partialy sorted forward index. Theindexer performs another important function. It
parsesout al thelinksin every web page and storesimportant i mfanmation about them in an anchorsfile. Thisfile
contains enough information to determine where each link points from and to, and the text of the link.

The URL resolver reads the anchorsfile and convertsrelative URL s into absolute URLs and in turn into doclDs. It
puts the anchor text into the forward index, associated with the doclD that the anchor pointsto. It aso generatesa
database of links which are pairs of doclDs. The links database is used to compute PageRanks for al the
documents.

The sorter takes the barrels, which are sorted by docl D (thisisasimplification, see Section 4.2.5), and resorts
them by wordI D to generate the inverted index. Thisis donein place so that little temporary space is needed for
this operation. The sorter also produces alist of wordlDs and offsetsinto the inverted index. A program caled
DumpL exicon takes thislist together with the lexicon produced by the indexer and generates anew lexicon to be
used by the searcher. The searcher isrun by aweb server and uses the lexicon built by DumpL exicon together
with theinverted index and the PageRanks to answer queries.

4.2 Major Data Structures

Googl€e's data structures are optimized so that alarge document collection can be crawled, indexed, and searched
with little cogt. Although, CPUs and bulk input output rates have improved dramatically over the years, adisk
seek till requires about 10 msto complete. Googleis designed to avoid disk seekswhenever possible, and this
has had a considerable influence on the design of the data structures.

4.2.1 BigFiles
BigFilesarevirtud files spanning multiple file syslems and are addressable by 64 bit integers. The alocation among
multiplefile sysemsis handled automaticaly. The BigFiles package aso handles dlocation and dedlocetion of file

descriptors, since the operating systems do not provide enough for our needs. BigFiles dso support rudimentary
compresson options.

4.2.2 Repository
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The repoditory containsthefull HTML of every web page. Each . citorv: 535 GB = 147 8 GB d
pageis compressed using zlib (see RFC1950). The choice of :5: CSI :I::' - i Compr'esse 5 L;r;ccﬁz press?

compression technique is a tradeoff between speed and sync| leng compressed packet ]
compression ratio. We chose zlib's speed over asignificant
improvement in compression offered by bzip. The compression

F;écket (stored compressed in repository)

rate of bzip was approximately 4 to 1 on the repository as [docid] ecode] urllen] pagelen] url] _ page |
compared to zlib's 3to 1 compression. In the repository, the
documents are stored one after the other and are prefixed by Figure 2. Repository Data Structure

doclID, length, and URL as can be seenin Figure2. The

repository requires no other data structures to be used in order to accessit. Thishdpswith data condgstency and
makes development much easier; we can rebuild al the other datastructures from only the repository and afile
which lists crawler errors,

4.2.3 Document Index

The document index keeps information about each document. It isafixed width ISAM (Index sequentia access
mode) index, ordered by doclD. The information stored in each etiry includes the current document status, a
pointer into the repository, adocument checksum, and various gatigtics. If the document has been crawled, it dso
contains a pointer into a variable width file caled docinfo which containsits URL and title. Otherwise the pointer
pointsinto the URLIist which containsjust the URL. Thisdesign decision was driven by the desireto have a
reasonably compact data structure, and the ability to fetch arecord in one disk seek during a search

Additiondly, thereisafilewhich isused to convert URLsinto doclDs. Itisalist of URL checksumswith their
corresponding docl Ds and is sorted by checksum. In order to find thedocl D of aparticular URL, the URL's
checksum is computed and a binary search is performed on the checksums fileto find itsdoclD. URLs may be
converted into docl Dsin batch by doing amerge with thisfile. Thisisthe technique the URL resolver usesto turn
URLSsinto docl Ds. This batch mode of update is crucia because otherwise we must perform one seek for every
link which assuming one disk would take more than amonth for our 322 million link dataset.

4.2.4 Lexicon

Thelexicon has severd different forms. Oneimportant change from earlier sysemsisthat thelexicon canfitin
memory for areasonable price. In the current implementation we can keep the lexicon in memory on amachine
with 256 MB of main memory. The current lexicon contains 14 million words (though some rare words were not
added to the lexicon). It isimplemented in two parts -- alist of the words (concatenated together but separated
by nulls) and a hash table of pointers. For various functions, the list of words has some auxiliary information which
is beyond the scope of this paper to explain fully.

4.2 .5 Hit Lists

A hit list correspondsto alist of occurrences of a particular word in aparticular document including position, font,
and capitalization information. Hit lists account for most of the space used in both the forward and the inverted
indices. Because of this, it isimportant to represent them as efficiently as possible. We considered severa
dternatives for encoding position, font, and capitaization -- smple encoding (atriple of integers), a compact
encoding (ahand optimized alocation of bits), and Huffman coding. In the end we chose a hand optimized
compact encoding since it required far less space than the smple encoding and far less bit manipulation than
Huffman coding. The details of the hits are shown in Figure 3.

Our compact encoding uses two bytesfor every hit. There are two types of hits: fancy hitsand plain hits. Fancy
hitsinclude hits occurring in aURL, title, anchor text, or metatag. Paimhitsindudie everything dse. A plain hit
consists of acapitaization bit, font Size, and 12 bits of word position in adocument (all positions higher than 4095
are labeled 4096). Font sizeis represented relative to the rest of the document using three bits (only 7 vaues are
actually used because 111 istheflag that sgndsafancy hit). A fancy hit condsts of acapitdization bit, the font
Szeset to 7 toindicateit isafancy hit, 4 bitsto encode the type of fancy hit, and 8 bits of position. For anchor
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hits, the 8 bits of pogition are split into 4 bitsfor position in anchor and 4 bitsfor a hash of the doclD the anchor
occursin. Thisgives us some limited phrase searching aslong as there are not that many anchorsfor a particular
word. We expect to update the way that anchor hits are stored to alow for greater resolution in the position and
docl Dhash fidlds. We use font size relative to the rest of the document because when searching, you do not want
to rank otherwiseidentica documents differently just because one of the documentsisin alarger font.

Hit: 2 bytes
Thelength of ahit list is stored before the hits themselves. To fglrf'ér;i gggi] Ir:qn;)p::37 pe! f 05'“83;,1,3: g
save space, the length of the hit list is combined with the anchor: [cap:T [Imp = 7 |type: 4 [hash:4 [pos. 4

wordlD in theforward index and the docl D in the inverted

index. Thislimitsit to 8 and 5 bits respectively (therearesome  Forward Barrels: fotal 43 GB

trickswhich allow 8 bits to be borrowed from thewordID). If ~ -Gecid wordic: 24 nfilts, 8 hit hit ait i

the length islonger than would fit in that many bits, an escape nullwordid|

codeis used in those bits, and the next two bytes contain the Ldocid] wordid: 24| nhits: 8] hit hit hit hit
wordid: 24| nhits: 8] hit hit hit hit

actud length. wordid: 24| nhits: 8] hit hit hit hit
null wordid

4.2.6 Forward Index

Lexicon: 293MB  Inverted Barrels: 41 GB
The forward index isactualy dready partially sorted. Itis “wordidl ndocs] | docid: 27] nhits:5[ hit hit hit hit]
stored in anumber of barrel's (we used 64). Each barrel holdsa i worddrndocs <. | [docid: 271 nhifs:5] hit hit hif]

' . . i wordid[ ndocs docid: 27[ nhits:5| hit hit hit hit]
range of wordID's. If adocument containswordsthat fal intoa -+ “a docid: 27] nhits:5] hit hit]
particular barrel, the doclD is recorded into the barrel,
followed by alist of wordID'swith hitlists which correspond to
those words. This scheme requires dightly more storage Figure 3. Forward and Reverse Indexes and the
because of duplicated doclDs but the differenceis very small Lexicon
for areasonable number of buckets and saves considerable
time and coding complexity in the fina indexing phase done by the sorter. Furthermore, instead of storing actual
wordID's, we store each wordID as arélative difference from the minimum wordID that fallsinto the barrel the
wordID isin. Thisway, we can use just 24 bitsfor the wordl D's in the unsorted barrdls, leaving 8 bitsfor the hit

ligt length.

4.2.7 Inverted Index

Theinverted index conssts of the same barrels as the forward index, except that they have been processed by the
sorter. For every valid wordI D, the lexicon contains a pointer into the barrel that wordID fdlsinto. It pointsto a
doclist of docl D'stogether with their corresponding hit lists. This doclist represents dl the occurrences of that
word in al documents.

Animportant issueisin what order the docl D's should appear in the doclist. One smple solution isto store them
sorted by docID. Thisalows for quick merging of different doclists for multiple word queries. Another optionisto
store them sorted by aranking of the occurrence of the word in each document. This makes answering one word
queriestrivid and makes it likely that the answers to multiple wodiqueviesarenear the start. However, mergingis
much more difficult. Also, this makes development much more difficult in that achange to the ranking function
requiresarebuild of the index. We chose a compromise between these options, keeping two sets of inverted
barrels-- one st for hit listswhich includetitle or anchor hits and another set for adl hit lists. Thisway, we check
the firgt set of barrelsfirst and if there are not enough matches within those barrel s we check the larger ones.

4.3 Crawling the Web

Running aweb crawler isachalenging task. There are tricky performance and reliability issues and even more
importantly, there are socid issues. Crawling isthe most fragile gpplication Snceit involvesinteracting with
hundreds of thousands of web servers and various name serverswhich are al beyond the control of the system.

In order to scale to hundreds of millions of web pages, Google has afast didtributed crawling system. A single
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URLserver serveslists of URLs to anumber of crawlers (we typicaly ran about 3). Both the URL server and the
crawlers areimplemented in Python. Each crawler keeps roughly 300 connections open at once. Thisis necessary
to retrieve web pages at afast enough pace. At peak speeds, the system can crawl over 100 web pages per
second using four crawlers. This amounts to roughly 600K per second of data. A mgor performance stressis
DNS lookup. Each crawler maintains aits own DNS cache o it does not need to do a DNS lookup before
crawling each document. Each of the hundreds of connections can bein anumber of different sates: looking up
DNS, connecting to host, sending request, and receiving response. These factors make the crawler acomplex
component of the system. It uses asynchronous 10 to manage events, and a number of queuesto move page
fetches from State to state.

It turns out that running a crawler which connects to more than half amillion servers, and generatestens of millions
of log entries generates afair amount of email and phone calls. Because of the vast number of people coming on
ling, there are dways those who do not know what a crawler is, becausethisisthefirst onethey have seen.
Almost daily, we receive an email something like, "Wow, you looked at alot of pages from my web site. How did
you likeit?" There are d so some people who do not know about the robots exclusion protocol, and think their
page should be protected from indexing by a statement like, "This page is copyrighted and should not be indexed",
which needlessto say is difficult for web crawlersto understand. Also, because of the huge amount of data
involved, unexpected things will happen. For example, our system tried to crawl an online game. Thisresulted in
lots of garbage messagesin the middle of their game! It turns out this was an easy problem to fix. But this problem
had not come up until we had downloaded tens of millions of pages. Because of the immense variation in web
pages and servers, it isvirtually impossible to test a crawler without running it on large part of the Internet.
Invariably, there are hundreds of obscure problemswhich may only occur on one page out of the whole web and
cause the crawler to crash, or worse, cause unpredictable or incorrect behavior. Systems which access large parts
of the Internet need to be designed to be very robust and carefully tested. Since large complex systems such as
crawlerswill invariably cause problems, there needs to be significant resources devoted to reading the email and
solving these problems as they come up.

4.4 Indexing the Web

o Parsing -- Any parser which is designed to run on the entire Web must handle ahuge array of possble
errors. These range from typosin HTML tagsto kilobytes of zerosin the middle of atag, non-ASCI|
characters, HTML tags nested hundreds deep, and a greet variety of other errorsthat chalenge anyone's
imagination to come up with equaly creative ones. For maximum speed, ingtead of using YACC to
generate a CFG parser, we use flex to generate alexica analyzer which we ouitfit with its own stack.
Deveoping this parser which runs at areasonable speed and is very robust involved afair amount of work.

« Indexing Documents into Barrels -- After each document is parsed, it is encoded into a number of
barrels. Every word is converted into awordI D by using an in-memory hash table -- the lexicon. New
additions to the lexicon hash table are logged to afile. Once the words are converted into wordID's, their
occurrencesin the current document are trandated into hit lists and are written into the forward barrels. The
main difficulty with pardl€ization of theindexing phaseisthat the lexicon needs to be shared. Instead of
sharing the lexicon, we took the approach of writing alog of al the extrawords that were not in abase
lexicon, which wefixed a 14 million words. That way multiple indexers can run in parallel and then the
small log file of extrawords can be processed by onefind indexer.

« Sorting -- In order to generate the inverted index, the sorter takes each of the forward barrels and sorts it
by wordID to produce an inverted barrel for title and anchor hitsand afull text inverted barrdl. This
process happens one barrel at atime, thus requiring little temporary storage. Also, we parallelize the sorting
phase to use as many machines aswe have smply by running multiple sorters, which can process different
buckets at the same time. Since the barrels don't fit into main memory, the sorter further subdividesthem
into baskets which do fit into memory based on wordID and docl D. Then the sorter, |oads each basket
into memory, sortsit and writesits contents into the short inverted barrel and the full inverted barrd.

4.5 Searching

The god of searching isto provide quaity search results efficiently. Many of the large commercia search engines
seemed to have made great progress in terms of efficiency. Therefore, we have focused more on quality of search
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in our research, athough we believe our solutions are scalable to commercia volumeswith abit more effort. The

google query evauation process isshow in Figure 4.

1. Parsethequery.
o ) ) 2. Convert wordsinto wordIDs.
To put alimit on response time, once a certain number (currently 3. Seek to the start of the dodlist in the
40,000) of matching documents are found, the searcher short barrd for every word.
automatically goesto step 8 in Figure 4. Thismeansthat it is 4. Scan through the doclists until thereiis
possible that sub-optimal results would be returned. We are adocument that matches al the
currently investigating other waysto solvethis problem. In the search terms.
past, we sorted the hits according to PageRank, which seemed to 5. Compute the rank of that document
[ mprove the gtuation. for the query.
6. If weareinthe short barrelsand at

4.5.1 The Ranking System the end of any doclist, seek to the

dart of the doclist in thefull barrdl for
Google maintains much more information about web documents every word and go to step 4.
than typicd search engines. Every hitlist includes position, font,and || 7. If we are not at the end of any doclist
capitalization information. Additionaly, wefactor in hitsfrom go to step 4.
anchor text and the PageRank of the document. Combining al of
thisinformation into arank is difficult. We designed our ranking Sort the documents that have
function so that no particular factor can have too much influence. matched by rank and return the top k.
First, consder the smplest case -- asingle word query. In order
to rank a document with asingle word query, Google looks at that Figure 4. Google Query Evauation

document's hit list for that word. Google considers each hit to be
one of severd different types (title, anchor, URL, plain text large font, plain text smal fort, ...), each of which has
itsown type-weight. The type-weights make up avector indexed by type. Google counts the number of hits of
each typeinthe hit list. Then every count is converted into a count-weight. Count-weightsincrease linearly with
counts at first but quickly taper off so that more than a certain count will not help. We take the dot product of the
vector of count-weights with the vector of type-weights to compute an IR score for the document. Finaly, the IR
score is combined with PageRank to give afina rank to the document.

For amulti-word search, the Situation is more complicated. Now multiple hit lists must be scanned through at once
50 that hits occurring close together in a document are weigihted higher than hits occurring far gpart. The hitsfrom
the multiple hit lists are matched up 0 that nearby hits are matched together. For every matched set of hits, a
proximity is computed. The proximity is based on how far gpart the hits are in the document (or anchor) but is
classfied into 10 different value "bins' ranging from a phrase match to "not even close'. Counts are computed not
only for every type of hit but for every type and proximity. Every type and proximity pair has atype-prox-weight.
The counts are converted into count-weights and we take the dot jproduct of the count-weights and the type-
prox-weights to compute an IR score. All of these numbers and matrices can al be displayed with the search
results using a special debug mode. These displays have been weny iheljpfiull iin developing the ranking system.

4.5.2 Feedback

The ranking function has many parameters like the type-weights and the type-prox-weights. Figuring out the right
vauesfor these parametersis something of ablack art. imardier to do this, we have auser feedback mechanismin
the search engine. A trusted user may optionally evauate al of the resultsthat are returned. This feedback is
saved. Then when we modify the ranking function, we can see the impact of this change on al previous searches
which were ranked. Although far from perfect, this gives us someideaof how achangein the ranking function
affectsthe search results.

5 Results and Performance

The most important measure of asearch
engineisthe quaity of its search results.

. o http://www.whitehouse.gov/
While acomplete user evauation isbeyond

(no date) (0K)

Query: bill clinton H

100.00%
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the scope of this paper, our own experience
with Google has shown it to produce better
results than the mgjor commercia search
engines for most searches. Asan example
which illustrates the use of PageRank,
anchor text, and proximity, Figure 4 shows
Googlé€'s results for asearch on "hill
clinton". These results demonsirates some
of Googlée'sfeatures. Theresultsare
clustered by server. This helps consderably
when sifting through result sets. A number
of results are from the whitehouse.gov
domain which iswhat one may reasonably
expect from such asearch. Currently, most
maor commercia search engines do not
return any results from whitehouse.gov,
much lesstheright ones. Notice that thereis
no title for thefirst result. Thisisbecauseit
was not crawled. Instead, Googlerelied on
anchor text to determine thiswas a good
answer to the query. Smilarly, thefifth
result isan email address which, of course,
isnot crawlable. It isaso aresult of anchor
text.

All of theresults are reasonably high quaity
pages and, at last check, none were broken
links. Thisislargdly becausethey al have
high PageRank. The PageRanks are the

20.03.2003 10:16 Uhr

http://www.whitehouse.gov/
Officeof the President
99.67% oo (DeC 23 1996) (2K)
http://www.whitehouse.gov/WH/EOP/OP/html/OP_Home.html
Welcome To The White House
99.98% memmmmmmm (NOV 09 1997) (5K)
http://www.whitehouse.gov/WH/Welcome.html
Send Electronic Mail to the President
99.86% (Jul 14 1997) (5K)
http://www.whitehouse.gov/WH/Mail/html/Mail_President.html
mailto:president@whitehouse.gov
99.98%
mailto: President@whitehouse.gov
99.27%
The"Unofficial" Bill Clinton
94.06% mmmmmmm (NOV 11 1997) (14K)
http://zpub.com/un/un-bc.html
Bill Clinton Meets The Shrinks
86.27% s (Jun 29 1997) (63K)
http://zpub.com/un/un-bc9.html
President Bill Clinton - The Dark Side
97.27% s (NOV 10 1997) (15K)
http://www.real change.org/clinton.htm

$3Bill Clinton
94.73% . (N0 date) (4K) http://www.gatewy.net/~tjohnson/

clintonl.html

Figure 4. Sample Results from Google

percentagesin red dong with bar graphs. Findly, there are no results about a Bill other than Clinton or about a
Clinton other than Bill. Thisis because we place heavy importance on the proximity of word occurrences. Of
course atrue test of the quality of a search engine would involve an extensive user study or results andysswhich
we do not have room for here. Instead, we invite the reader to try Google for themsealves at hitp://

google.gtanford.edu.

5.1 Storage Requirements

Asde from search quality, Google is designed to scale cost effectively to the size of the Web asit grows. One

aspect of thisisto use storage efficiently. Table 1 has a breakdown of some Statistics and storage requirements of
Google. Dueto compression thetota size of the repository is about 53 GB, just over onethird of thetota dataiit
stores. At current disk prices this makes the repository arelatively cheap source of useful data. More importantly,
thetota of al the data used by the search engine requires a comparable amount of storage, about 55 GB.
Furthermore, most queries can be answered using just the short inverted index. With better encoding and
compression of the Document Index, ahigh quaity web search engine may fit onto a 7GB drive of anew PC.
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| Storage Statistics |

|Compressed Repository  |(53.5GB |
It isimportant for a search engineto crawl and index efficiently. |Short Inverted | ndex H4_1 GB \

Thisway information can be kept up to date and mgjor changes

to the system can be tested relatively quickly. For Google, the [Full Inverted Index 137.2GB |
major operations are Crawling, Indexing, and Sorting. It is |Lexicon 1293 MB |
difficult to measure how long crawling took overal because disks Temporary Anchor Data

filled up, name servers crashed, or any number of other problems (notin total) 6.6 GB

which stopped the system. In tota it took roughly 9 daysto Docurment Index Indl.

download the 26 million pages (including errors). However, once . A 9.7GB
the system was running smoothly, it ran much faster, downloading Variable Width Data

the last 11 million pagesin just 63 hours, averaging just over 4 |Links Database 139GB |
million pages per day or 48.5 pages per second. We ran the | Total Without Repository|| 55.2 GB |
indexer and the crawler smultaneoudy. Theindexer ran just - -

faster than the crawlers. Thisis largely because we spent just | Total With Repository [108.7 GB

enough time optimizing theindexer so that it would not be a —
bottleneck. These optimizationsinduded bulk updatesto the | Web Page Statistics |
document index and placement of critical datastructuresonthe |[Number of Web Pages Fetched |24 million |

local disk. Theindexer runs a roughly 54 pages per second. The |[Number of Urls Seen [76.5 million

sorters can be run completely in pardld; using four machines, the . —

whole process of sorting takes about 24 hours. [Number of Email Addresses | 1.7 million |
[Number of 404's 1.6 million |

5.3 Search Performance

Improving the performance of search was not the mgjor focus of Table 1. Satigtics

our research up to this point. The current version of Google

answers most queriesin between 1 and 10 seconds. This ttmesi ssmasithy dlomiinaited by disk 10 over NFS (since
disks are spread over anumber of machines). Furthermore, Google does not have any optimizations such as
query caching, subindices on common terms, and other common optimizations. We intend to speed up Google
considerably through distribution and hardware, software, and ailgmiithmicimprovements. Our target isto be able
to handle severa hundred queries per second. Table 2 has some samlle query times from the current version of
Google. They are repested to show the speedups resulting fromcached 10.

Same Query
) Initial Query Repeated (10
6 Conclusions mostly cached)
o _ Query CPU | Total |[CPU |[Total
Gpoglelsotéesgned to _t:jea;]_scﬁiablj_search er?glnel. The Time(s)(|Time(s)|| Time(s)|[Time(s)
primary god isto provide high quaity search results
over arapidly growing World Wide Web. Google |d gore HO'OQ H2'13 HO'O6 HO'OG ‘
employsanumber of techniquesto improve seerch. vice 177 384 166 180
quality induding page rank, anchor text, and proximity president
information. Furthermore, Google is acomplete hard
architecture for gathering web pages, indexing them, disks 025 486 020 0.2
and performing search queries over them. <ach
engines 131 963 |[1.16 ||1.16
6.1 Future Work

Table 2. Search Times

A large-scale web search engine is acomplex system and much remainsto be done. Our immediate goals are to
improve search efficiency and to scae to gpproximately 100 million web pages. Some smpleimprovementsto
effidency include query caching, smart disk alocation, and subindices. Another area which requires much research
IS updates. We must have smart agorithms to decide what old web pages should be recrawled and what new
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ones should be crawled. Work toward this goa has been donein [Cho 98]. One promising area of research is
using proxy cachesto build search databases, since they are demand driven. We are planning to add smple
features supported by commercia search engineslike boolean operators, negation, and semming. However, other
features are just Sarting to be explored such as relevance feedback and clustering (Google currently supports a
smple hostname based clustering). We aso plan to support user context (like the user's location), and result
summarization. We are aso working to extend the use of link structure and link text. Simple experimentsindicate
PageRank can be persondized by increasing the weight of a user's home page or bookmarks. Asfor link text, we
are experimenting with using text surrounding linksin addition to thelink text itself. A Web search engineisavery
rich environment for research ideas. We have far too many to list here so we do not expect this Future Work
section to become much shorter in the near future.

6.2 High Quality Search

The biggest problem facing users of web search enginestoday isthe quality of the resultsthey get back. While the
results are often amusing and expand users horizons, they are often frustrating and consume precioustime. For
example, the top result for asearch for "Bill Clinton™ on one of the most popular commercia search engines was
the Bill Clinton Joke of the Day: April 14, 1997. Google is designed to provide higher quaity search so asthe
Web continues to grow rapidly, information can be found easily. In order to accomplish this Google makes heavy
use of hypertextua information conssting of link structure and link (anchor) text. Google aso uses proximity and
font information. While evauation of a search engineisdifficult, we have subjectively found that Google returns
higher qudity search resultsthan current commercia search engines. The andysis of link structure via PageRank
alows Google to evaluate the quality of web pages. The use of link text as a description of what the link pointsto
helps the search engine return relevant (and to some degree high quality) results. Finaly, the use of proximity
information hel psincrease rlevance agreat ded for many queries.

6.3 Scalable Architecture

Asdefrom the qudity of search, Googleisdesigned to scae. It must be efficient in both space and time, and
constant factors are very important when dedling with the entire Web. In implementing Google, we have seen
bottlenecks in CPU, memory access, memory capacity, disk seeks, disk throughput, disk capacity, and network
10. Google has evolved to overcome anumber of these bottlenecks during various operations. Google's major
data structures make efficient use of available storage pace. Furthermore, the crawling, indexing, and sorting
operations are efficient enough to be able to build an index of a substantial portion of the web -- 24 million pages,
in less than one week. We expect to be able to build an index of 100 million pages in less than amonth.

6.4 A Research Tool

In addition to being a high quality search engine, Google is aresearch tool. The data Google has collected has
dready resulted in many other papers submitted to conferences and many more on the way. Recent research such
as [Abiteboul 97] has shown anumber of limitations to queries about the Web that may be answered without
having the Web available locdly. Thismeansthat Google (or asimilar system) isnot only avauable research tool
but a necessary one for awide range of applications. We hope Google will be aresource for searchers and
researchers al around the world and will spark the next generation of search engine technology.
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8 Appendix A: Advertising and Mixed Motives

Currently, the predominant business modd for commercia search engines is advertisng. The goadsof the
advertising businessmodel do not aways correspond to providing quality search to users. For example, in our
prototype search engine one of the top resultsfor cellular phoneis " The Effect of Cellular Phone Use Upon Driver
Attention”, astudy which explainsin great detail the distractions and risk associated with conversing on acell
phone while driving. This search result came up first because of its high importance asjudged by the PageRank
agorithm, an gpproximetion of citation importance on the web [Page, 9§]. It is clear that asearch enginewhich
was taking money for showing cdlular phone adswould have difficulty justifying the page that our system returned
to its paying advertisers. For thistype of reason and historical experience with other media[Bagdikian 83], we
expect that advertisng funded search engineswill be inherently biased towards the advertisers and away from the
needs of the consumers.

Sinceitisvery difficult even for expertsto eva uate search engines, search engine biasis particularly insgdious. A
good example was OpenText, which was reported to be selling companies the right to be listed at the top of the
search resultsfor particular queries[Marchiori 97]. Thistype of biasis much more insdiousthan advertising,
because it isnot clear who "deserves' to be there, and who iswilling to pay money to be listed. Thisbusiness
model resulted in an uproar, and OpenText has ceased to be aviable search engine. But less blatant bias are likely
to betolerated by the market. For example, a search engine could add a small factor to search resultsfrom
"“friendly" companies, and subtract afactor from results from competitors. Thistype of biasisvery difficult to
detect but could gtill have asgnificant effect on the market. Furthermore, advertising income often provides an
incentive to provide poor quality search results. For example, we noticed amagjor search engine would not return
alarge airline's homepage when the airline's name was given as aquery. It so happened that the airline had placed
an expengve ad, linked to the query that wasits name. A better search engine would not have required this ad, and
possbly resulted in the loss of the revenue from the airline to the search engine. In generd, it could be argued from
the consumer point of view that the better the search engineis, the fewer advertisements will be needed for the
consumer to find what they want. This of course erodes the advertising supported business mode of the existing
search engines. However, there will dways be money from advertisers who want a customer to switch products,
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or have something thet is genuindy new. But we believe the issue of advertising causes enough mixed incentives
that it iscrucia to have acompetitive search engine that is transparent and in the academic realm.

9 Appendix B: Scalability

9. 1 Scalability of Google

We have designed Google to be scaable in the near term to agoa of 100 million web pages. We have just
received disk and machinesto handle roughly that amount. All of the time consuming parts of the system are
pardldize and roughly linear time. Theseinclude thingslike the crawlers, indexers, and sorters. We a so think that
most of the data structures will dedl gracefully with the expansion. However, at 100 million web pageswe will be
very close up againg al sorts of operating system limitsin the common operating systems (currently we run on
both Solaris and Linux). These include things like addressable memory, number of open file descriptors, network
sockets and bandwidth, and many others. We believe expanding to alot more than 100 million pageswould
greatly increase the complexity of our system.

9.2 Scalability of Centralized Indexing Architectures

Asthe capabilities of computersincrease, it becomes possble to index avery large amount of text for a
reasonable cost. Of course, other more bandwidth intensive media such asvideo islikely to become more
pervasive. But, because the cost of production of text islow compared to medialike video, text islikely to remain
very pervasve. Also, it islikely that soon we will have speech recognition that does a reasonable job converting
gpeech into text, expanding the amount of text available. All of this provides amazing possibilitiesfor centralized
indexing. Hereisanilludrative example. We assume we want to index everything everyone in the US has written
for ayear. We assume that there are 250 million people in the US and they write an average of 10k per day. That
works out to be about 850 terabytes. Also assume that indexing aterabyte can be done now for areasonable
cost. We aso assume that the indexing methods used over the text are linear, or nearly linear inthelir complexity.
Given dl these assumptions we can compute how long it would take before we could index our 850 terabytesfor a
reasonable cost assuming certain growth factors. Moore's Law was defined in 1965 as a doubling every 18
monthsin processor power. It has held remarkably true, not just for processors, but for other important system
parameters such asdisk aswell. If we assume that Moore's law holds for the future, we need only 10 more
doublings, or 15 yearsto reach our god of indexing everything everyonein the US has written for ayear for a
price that a small company could afford. Of course, hardware experts are somewhat concerned Moore's Law
may not continue to hold for the next 15 years, but there are certainly alot of interesting centralized applications
evenif we only get part of theway to our hypothetical example.

Of course adistributed systems like Gloss [Gravano 94] or Harvest will often be the most efficient and elegant
technical solution for indexing, but it seems difficult to convince the world to use these systems becauise of the high
adminigtration costs of setting up large numbers of ingtdlations. Of coursg, it isquite likely that reducing the
administration cost dragtically is possible. If that happens, and everyone starts running adistributed indexing
system, searching would certainly improve dragticaly.

Because humans can only type or speak afinite amount, and as computers continue improving, text indexing will
scale even better than it does now. Of course there could be an infinite amount of machine generated content, but
just indexing huge amounts of human generated content seems tremendoudy useful. So we are optimistic that our
centralized web search engine architecture will improve in its ability to cover the pertinent text information over
time and that thereisabright future for search.
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