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Wallis’ Formula

Wallis’ Formula is the amazing limit

lim
n→∞

(
2 · 2 · 4 · 4 · 6 · 6 . . . (2n) · (2n)

1 · 3 · 3 · 5 · 5 . . . (2n− 1) · (2n− 1) · (2n+ 1)

)
=
π

2
.

1 One proof of Wallis’ formula uses a recursion formula from
integration by parts of powers of sine.

2 Another proof uses only basic algebra on the partial
products, the Pythagorean Theorem, and πr2 for the area
of a circle.

3 A complex analysis proof uses the infinite product
expansion for the sine function.
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Gaussian Probability Integral

1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1.

First complete evaluation by Laplace in 1774.

Polar coordinates, due to Poisson, popularized by Sturm.

Volume integration by shells.

Double Integral, change of variables, product of integrals,
one is an arctan.

Interpolation between two integrals, one is an arctan.

Approximate e−x2
with (1− x2/n)n on [0,

√
n], change

variables to sine functions, use Wallis formula.
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Forms of Stirling’s Formula

The easy ones in order of increasing precision:

1

n
√
n! ∼ n

e
.

2

n! ≈
√

2πnn+1/2e−n.

3

n! ∼
√

2πnn+1/2e−n .
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Forms of Stirling’s Formula

Inequalities in order of increasing precision:

1

n! =
√

2πnn+1/2e−n(1 + εn), |εn| <
A

n
.

2

√
2πnn+1/2e−n < n! <

√
2πnn+1/2e−n+1/(12(n−1/2)).

3 √
2πnn+1/2e−n < n! <

√
2πnn+1/2e−n+1/(12n) .

4

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n) .

5 ∣∣∣∣ n!√
2πnn+1/2e−n

− 1− 1
12n

∣∣∣∣ ≤ 1
288n2

+
1

9940n3
.
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Forms of Stirling’s Formula

Complex variable versions in order of increasing precision:

1

Γ(z + 1) ∼
√

2πzzze−z

(
1 +

1
12z

+
1

288z2
+ . . .

)
.

2

log(Γ(z + 1)) ∼ 1
2

log(2π) + (z +
1
2

) log(z)− z

+
1
2

∞∑
n=1

B2n

n(2n− 1)
1

z2n−1
.
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Overview of Proofs

Altogether

2 heuristic proofs

8 rigorous proofs

2 sketches of proofs using advanced complex variables
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Sequence-oriented Proofs

The proof of
n
√
n! ∼ n

e
follows from easy estimations of the power series of the
exponential. The n! comes from the denominator in the power
series.

A proof of
n! ∼

√
2πnn+1/2e−n

follows from showing xn = log
(

n!
nn+1/2e−n

)
increases to a limit.

Then use Wallis’ Formula to evaluate the limit.

The disadvantage of this proof is that it requires the form of
Stirling’s Formula in order to create the sequence which is the
main object of the proof.
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Integral-oriented Proofs

The proof of

n! =
√

2πnn+1/2e−n(1 + εn), |εn| <
A

n

and

√
2πnn+1/2e−n < n! <

√
2πnn+1/2e−n+1/(12(n−1/2)).

follow from converting log(n!) to
∑n

k=1 log(k). Then consider∑n
k=1 log(k) as an approximation to

∫
log(t) dt over some

interval.
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Integral-oriented Proofs

There are three ways to estimate the approximation:

1 Use the Euler-Maclaurin summation formula, which gives
an explicit form for the error.

2 Break into integrals over unit intervals, then estimate the
log(k)−

∫ k+1
k log(t) dt approximation with the

trapezoidal rule.

3 Break into integrals over unit-length intervals, then

estimate the difference log(k)−
∫ k+1/2
k−1/2 log(t) dt with

Taylor series.

In each case, the limit constant
√

2π is evaluated with Wallis’
formula.
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Proofs using the Gamma Function

Γ(t+ 1) =
∫ ∞

0
xte−x dx

The Gamma Function is the continuous representation of the
factorial, so estimating the integral is natural.

Note that xte−x has its maximum value at x = t. That is,
most of the value of the Gamma Function comes from values
of x near t.

Change variables, estimate, repeat!

Show that an integral resulting in the estimate approaches the
Gaussian probability integral to get the asymptotic constant.
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Proofs using Complex Variables

Many complex variables books give a proof using Gauss’s
Formula

Γ(z) = lim
n→∞

nzn!
z(z + 1)(z + 2) . . . (z + n)

and a version of the Euler-Maclaurin summation formula.
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Proofs using Complex Variables

log(Γ(z + 1)) ∼ 1
2

log(2π) + (z +
1
2

) log(z)− z

+
1
2

∞∑
n=1

B2n

n(2n− 1)
1

z2n−1
.

Derivation of the asymptotic limit for Γ(z + 1):

1 Start with the digamma function,

2 Expand the integrand in a power series,

3 Define the Bernoulli numbers Bn,

4 Use the definition of the Gamma function as the derivative
of the logarithm of the digamma function,

5 Derive the asymptotic expansion.
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Proofs using Probability Theory

n! ≈
√

2πnn+1/2e−n.

A heuristic proof uses

1 On the one hand, the distribution of the sum of Poisson
random variables.

2 On the other hand, the central limit theorem.

3 The constant is evaluated with a form of the Gaussian
probability integral.
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Proofs using Probability Theory

lim
n→∞

√
2πnnne−n

n!
= 1.

A rigorous proof uses the same general idea expressed with the
product of characteristic functions of Poisson random variables,
then estimating the resulting exponentials. The proof shows
the characteristic function of the sum of Poisson random
variables converges to the characteristic function of a normal
random variable with corresponding variance.
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