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Wolfe in 1976 suggested that patterns of breast paren-
chymal complexity, formed by the x-ray attenuation 

of fatty, fibroglandular, and stromal tissues (1), are asso-
ciated with breast cancer risk (2). Breast density ratings, 
based on the extent of mammographic density, are rou-
tinely used clinically to characterize the breast parenchyma. 
High breast density has been associated with greater risk of 
breast cancer (3–5). Additionally, breast density has been 
associated with masking of cancers leading to interval can-
cers (6) in mammographic screening.

Density measures aim to capture the relative amount 
of fibroglandular tissue in the breast (7); however, they are 
increasingly considered to be coarse measures, being lim-
ited in fully capturing the complexity of the breast paren-
chymal pattern (8). This has motivated research toward 

complementing quantitative density measures with more 
granular characterization of parenchymal complexity and 
their association to breast cancer risk and detection.

Early studies with BRCA1 and BRCA2 (BRCA1/2) car-
riers have shown that computerized measures of mammo-
graphic parenchymal texture from the retroareolar breast 
region can distinguish BRCA1/2 carriers from low-risk 
women (9,10). Recent studies of case-control samples from 
screening populations have also shown that parenchymal 
texture features (either from the retroareolar region or the 
entire breast area) are significantly associated with breast 
cancer independent of breast density (11–15). Neverthe-
less, to our knowledge, no studies to date have attempted 
to define distinct imaging phenotypes that reflect intrinsic 
complexity of the breast parenchymal tissue.
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Purpose:  To identify phenotypes of mammographic parenchymal complexity by using radiomic features and to evaluate their as-
sociations with breast density and other breast cancer risk factors.

Materials and Methods:  Computerized image analysis was used to quantify breast density and extract parenchymal texture features in 
a cross-sectional sample of women screened with digital mammography from September 1, 2012, to February 28, 2013 (n = 2029; 
age range, 35–75 years; mean age, 55.9 years). Unsupervised clustering was applied to identify and reproduce phenotypes of paren-
chymal complexity in separate training (n = 1339) and test sets (n = 690). Differences across phenotypes by age, body mass index, 
breast density, and estimated breast cancer risk were assessed by using Fisher exact, x2, and Kruskal-Wallis tests. Conditional logistic 
regression was used to evaluate preliminary associations between the detected phenotypes and breast cancer in an independent case-
control sample (76 women diagnosed with breast cancer and 158 control participants) matched on age.

Results:  Unsupervised clustering in the screening sample identified four phenotypes with increasing parenchymal complexity that 
were reproducible between training and test sets (P = .001). Breast density was not strongly correlated with phenotype category  
(R2 = 0.24 for linear trend). The low- to intermediate-complexity phenotype (prevalence, 390 of 2029 [19%]) had the lowest pro-
portion of dense breasts (eight of 390 [2.1%]), whereas similar proportions were observed across other phenotypes (from 140 of 
291 [48.1%] in the high-complexity phenotype to 275 of 511 [53.8%] in the low-complexity phenotype). In the independent 
case-control sample, phenotypes showed a significant association with breast cancer (P = .001), resulting in higher discrimina-
tory capacity when added to a model with breast density and body mass index (area under the curve, 0.84 vs 0.80; P = .03 for 
comparison).

Conclusion:  Radiomic phenotypes capture mammographic parenchymal complexity beyond conventional breast density measures 
and established breast cancer risk factors.
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associations between breast cancer and the phenotypes identi-
fied from our cross-sectional screening sample. Briefly, women 
diagnosed with primary invasive breast cancer were retrospec-
tively ascertained from a study previously completed at our 
institution designed to determine the value of multimodality 
imaging for breast cancer screening, detection, and staging. 
The inclusion criteria of the study recruited women at high 
risk for breast cancer because of BRCA1/2 mutation, greater 
than or equal to 25% estimated lifetime risk by using the 
Gail or Claus models, history of lobular carcinoma in situ or  
atypical hyperplasia, history of chest wall radiation before  
puberty, or recently diagnosed contralateral breast cancer; 
women with a mammographically detected suspicious finding  
(BI-RADS 4) following screening and/or diagnostic evalu-
ation of women with suspicious palpable mass directed to  
biopsy; and women with newly diagnosed breast cancer pre-
senting for staging. Control participants were randomly se-
lected asymptomatic women who underwent breast cancer 
screening with digital mammography at our institution over 
the same period. To be consistent with the screening sample 
used for phenotype identification, only the subset of white 
women was included in our analysis, resulting in a conve-
nience sample of 76 women diagnosed with breast cancer 
(cases) and 158 women with no breast cancer diagnosis 
(control participants) (228 of 424 [54%] of total sample). 
All women had raw digital mammograms available (Senogra-
phe 2000D and DS; GE Healthcare, Little Chalfont, United 
Kingdom). Whereas our prior studies evaluated individual 
measures of breast density and texture (14,19), here we used 
this sample to perform independent evaluation of the ra-
diomic breast complexity phenotypes, identified in our larger 
screening sample, in association to breast cancer.

Breast density estimation.—The previously validated, pub-
licly available, and fully automated Laboratory for Indi-
vidualized Breast Radiodensity Assessment (LIBRA, version 
1.0.3) software (19,20) was used to quantitatively measure 
breast percent density (PD) (Fig E1 [online]). LIBRA has 
been shown to have good agreement with the established 
semiautomated Cumulus method and exhibit significant as-
sociations to breast cancer (19). For our study, both views 
were analyzed with LIBRA for each breast and PD measures 
were averaged to derive per-woman estimates (see Appendix 
E1 [online] for details). Assessment of breast density per the 
fourth edition of the BI-RADS Atlas (18) was abstracted 
from clinical reports as (a) fatty, (b) scattered fibroglandu-
lar densities, (c) heterogeneously dense, and (d) extremely 
dense. Women were categorized as having nondense versus 
dense breast density by grouping categories a–b versus c–d, 
respectively.

Parenchymal complexity analysis.—Parenchymal complexity 
was quantified by using custom-developed fully automated soft-
ware (Matlab, version 9.4; Mathworks, Natick, Mass) (14) that 
uses a lattice-based strategy (Fig E1 [online]) to extract a range of 
mammographic texture features, including four main types: his-
togram, co-occurrence, run-length, and structural. Briefly, gray-

Abbreviations
BI-RADS = Breast Imaging Reporting and Data System, BMI = body 
mass index, LIBRA = Laboratory for Individualized Breast Radiodensity 
Assessment, PD = percent density

Summary
Radiomic phenotypes reflect intrinsic properties of mammographic 
parenchymal complexity beyond breast density and have an indepen-
dent association with breast cancer.

Implications for Patient Care
nn Radiomic phenotypes can assess mammographic parenchymal 

complexity and may provide additional information for risk assess-
ment beyond breast density.

nn Radiomic phenotypes may ultimately augment breast cancer risk 
prediction models.

The goal of our study was to identify phenotypes of mam-
mographic parenchymal complexity by using radiomic features 
and to evaluate their associations with breast density and other 
breast cancer risk factors. We hypothesized that by capturing 
various patterns or complexities of the breast parenchyma in a 
more refined and quantitative manner, we can provide informa-
tion beyond mammographic density and established risk factors 
in association to breast cancer.

Materials and Methods
Requirement of obtaining consent for our Health Insurance 
Portability and Accountability Act–compliant retrospective 
study was waived by our institutional review board.

Study Population

Cross-sectional sample of screening population for phe-
notype identification.—Our cross-sectional sample included 
all white women consecutively presenting for routine screen-
ing during a 6-month period, including any breast cancers 
identified at the time of screening or within 1 year of screen-
ing (n = 2241). Women were imaged per U.S. Food and Drug 
Administration–approved protocol consisting of full-field digital 
mammography and breast tomosynthesis in both mediolateral 
oblique and craniocaudal views (Selenia Dimensions; Hologic, 
Bedford, Mass). For the purposes of our study, raw (ie, “For Pro-
cessing”) digital mammography images were analyzed. As part of 
routine screening, women were given a risk factor questionnaire 
used to estimate breast cancer risk with the National Cancer In-
stitute’s Breast Cancer Risk Assessment Tool (16) and the Breast 
Cancer Surveillance Consortium Risk Calculator (17). High risk 
was defined as 5-year risk greater than 1.67%. Risk factor vari-
ables included age, race, age at menarche, parity, age at first live 
birth, first-degree relatives with breast cancer, number of prior 
benign biopsies, body mass index (BMI), and American College 
of Radiology’s Breast Imaging Reporting and Data System (BI-
RADS) breast density score (18).

Case-control sample for evaluating associations to breast 
cancer.—As a preliminary evaluation, we used an independent, 
previously published, case-control sample (14,19) to examine 
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ing outcomes across parenchymal phenotypes were assessed 
with the Fisher exact, x2, and Kruskal-Wallis tests for discrete 
and continuous covariates, respectively. Missing BMI data were 
imputed by using the Markov Chain Monte Carlo method for 
full imputation on the basis of age and continuous breast den-
sity measures. Five imputations were carried out to produce 
five imputed values for each observation, which were then av-
eraged to produce the final imputed values for analysis (27). 
Associations between the continuous breast PD estimates and 
corresponding complexity scores were also evaluated with lin-
ear regression. For our case-control sample, differences in age, 
BMI, and PD between cases and control participants were as-
sessed with Wilcoxon signed-rank test. Because of small num-
bers, women were grouped into two BMI categories (low BMI, 
,25 kg/m2 and high BMI, 25 kg/m2) and complete-case 
analysis was used for the adjusted models without imputation 
for missing BMI data (31 of 228, 14%). Associations between 
phenotypes and breast cancer were assessed with logistic regres-
sion, both unadjusted and adjusted for covariates. Phenotypes 
were coded as a categorical variable with the most prevalent 
phenotype used as the reference. Associations were described 
with the odds ratio, and phenotype contribution to the model 
was assessed with the likelihood ratio test (28). Discriminatory 
performance was estimated with the area under the curve of 

level histogram features are first-order statistics describing the 
distribution of gray-level intensities (21). Co-occurrence features 
consider the spatial relationships of pixel intensities in different 
directions and are based on the gray-level co-occurrence matrix 
that encodes the relative frequency of neighboring intensity val-
ues (22). Run-length features capture the coarseness of texture 
in specified directions by measuring strings of consecutive pixels 
(ie, runs) that have the same gray-level intensity along specific 
linear orientations (23). Finally, structural features reflect the 
architectural composition of the parenchyma by characterizing 
the directionality of flowlike structures and intensity variations 
between neighboring pixels (24,25). Measures from each lattice 
point, the number of which depends on breast size (and there-
fore can be different for each breast), were averaged over each 
mammographic view and for both breasts to create a per-woman 
measure for each feature. This resulted in a feature vector of 29 
features characterizing parenchymal complexity for each woman 
(see Appendix E1 [online] for details).

Phenotype identification in the cross-sectional screening 
sample.—We performed unsupervised hierarchical clustering 
on the woman-specific feature vectors, similar in concept to 
the approach originally used for the discovery of the intrinsic 
molecular subtypes for breast cancer (26). Prior to clustering, 
each feature was standardized in the entire sample by using 
z score normalization (27), and the sign for each feature was 
chosen such that negative values corresponded to low complex-
ity and positive values corresponded to high complexity for 
consistent interpretation across features. We first visually in-
spected the histograms of the z-scored features. To ensure that 
the analyzed features would be informative for clustering, we 
excluded features with extremely low variation (interquartile 
range ,1). Additionally, to ensure that the analyzed features 
did not deviate significantly from a normal distribution, we 
excluded those with extreme skewness. Five features satisfied 
both criteria and were excluded. This resulted in 24 of 29 avail-
able features, which were subsequently fed into the clustering 
algorithm (see Appendix E1 [online] for details). To assess 
phenotype reproducibility, we randomly divided our screening 
sample into separate training (n = 1339) and test (n = 690) sets. 
After clusters were determined to be reproducible in the train-
ing and test sets, the sets were combined for further analysis. 
A complexity score was derived for each woman by averaging 
their corresponding normalized feature vector values.

Phenotype classification in the case-control sample.— 
Parenchymal texture analysis was performed with the same  
approach as in our screening sample. Features in the case-control 
sample were standardized independently and women were clas-
sified into phenotypes based on their proximity to the cluster 
centroid of the phenotypes identified in the cross-sectional 
screening sample, based on the minimum Euclidean distance 
of the corresponding feature vectors.

Statistical Analysis
For our cross-sectional screening sample, differences in age, 
BMI, breast density, estimates of breast cancer risk, and screen-

Figure 1:  Flowchart shows inclusion and exclu-
sion criteria for cross-sectional screening sample 
analyzed in study for parenchymal complexity 
phenotype identification.
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women with the lowest complexity were the youngest (me-
dian, 47.3 years). Women with the highest complexity had 
the lowest BMI (21.1 kg/m2) and highest breast PD of 23% 
(P = .001) (Figs 3, 4). Overall, breast PD was not strongly 
correlated to the parenchymal phenotypes (R2 = 0.24 for 
linear association) (Fig E3 [online]).

The proportion of women with dense breasts also differed 
among phenotypes (Table 2, Fig E4 [online]); particularly for 
the low- to intermediate-complexity cluster compared with 
the other phenotypes (P = .001). The low- to intermediate-
complexity cluster had the lowest proportion of women with 
dense breasts (eight of 390 [2.1%]), whereas similar propor-
tions were observed across the other phenotypes (from 140 of 
291 [48.1%] to 275 of 511 [53.8%]). BI-RADS density also 
had a low correlation with the breast complexity phenotypes 
(Table 2) (Spearman r, 0.11; P = .001).

The proportions of women with high risk as estimated 
by using the Gail and the Breast Cancer Surveillance Con-
sortium risk models also differed across phenotypes. The 
low- to intermediate-complexity phenotype had the highest 
proportion of women at high 5-year risk estimated with the 
Gail model (186 of 390 [47.7%]; P = .03), but the lowest 
proportion of women with high risk as estimated with the 
Breast Cancer Surveillance Consortium model (138 of 390 
[35.3%]; P = .001), which includes breast density (Figs E4, 
E5 [online]). The intermediate- to high- complexity pheno-
type had the highest proportion of women at high 5-year risk 
estimated with the Breast Cancer Surveillance Consortium 
model (413 of 837 [49.3%]; P = .001), compared with the 
low-complexity and low- to intermediate-complexity pheno-
types. Finally, there was no difference across phenotypes for 
the total of 18 cancers that were detected. (P . .05) (Table 
E1 [online]).

the receiver operating characteristic and DeLong test was used 
to evaluate gain in performance. All statistical analyses were 
performed with the R software (version 3.1.1; R Foundation 
for Statistical Computing, Vienna, Austria).

Results

Phenotype Identification (Cross-sectional Screening 
Sample)
Women with implants (n = 45) or other image artifacts 
(n = 13) (including blurring, compression artifacts, ex-
tremely calcified tissue, unusual intensity profiles on the 
breast edge, etc) known to influence the application of 
computerized algorithms were excluded (n = 58). From 
the remaining sample (n = 2183), only women with com-
plete breast cancer risk factor data required for the Gail 
and Breast Cancer Surveillance Consortium risk mod-
els were included in our study sample (n = 2029) (Fig 1).  
Demographics, risk factor characteristics, and screening out-
comes were not significantly different between the training 
and the test sets (Table 1). Unsupervised clustering identi-
fied four distinct parenchymal phenotypes (Fig 2a), ranked 
based on their complexity score, as follows: low (light green, 
511 of 2029 [25.2%]), low to intermediate (dark green, 390 
of 2029 [19.2%]), intermediate to high (dark red, 837 of 
2029 [41.3%]), and high complexity (bright red, 291 of 
2029 [14.3%]). Phenotypes were reproducible in the sepa-
rate training and test sets (P = .001) (Fig 2b). When exam-
ining the full sample (Fig E2 [online]), differences for age, 
BMI, and breast PD were observed across phenotypes (P = 
.001) (Fig 3). Women with low to intermediate complexity 
had the highest age (median, 59.3 years) and BMI (31.3 
kg/m2) but the lowest average breast PD of 8%, whereas 

Table 1: Characteristics of the Screening Sample Used for Phenotype Identification

Characteristic Entire Cohort (n = 2029) Training Sample (n = 1339) Testing Sample (n = 690) P Value*
Age (y) 55.9 6 9.4 55.8 6 9.3 56.0 6 9.5 .56
Body mass index (kg/m2) 26.4 6 6.0 26.4 6 6.1 26.4 6 5.9 .48
  Missing data† 164 (8.1) 116 (8.7) 48 (7.0) …
Gail model 5-y risk (%) 1.8 6 1.1 1.8 6 1.1 1.8 6 1.1 .50
Gail model lifetime risk (%) 10.8 6 4.9 10.9 6 4.9 10.8 6 4.9 .99
BCSC model 5-y risk (%) 1.67 6 0.9 1.67 6 0.9 1.69 6 0.9 .68
BI-RADS density† .07
  Fatty 150 (7.4) 108 (8.1) 42 (6.1)
  Scattered fibroglandular densities 1027 (50.6) 665 (49.7) 362 (52.5)
  Heterogeneously dense 800 (39.4) 525 (39.2) 275 (39.9)
  Extremely dense 52 (2.6) 41 (3.1) 11 (1.6)
Callback† 171 (8.4) 111 (8.3) 60 (8.7) .76
Referred to biopsy† 45 (2.2) 28 (2.1) 17 (2.5) .59
Detected cancers† 18 (0.9) 12 (0.9) 6 (0.9) .95
Percent density 17.5 6 10.6 17.7 6 10.8 17.2 6 10.4 .41

Note.—Unless otherwise specified, data are means 6 standard deviations. BCSC = Breast Cancer Surveillance Consortium, BI-RADS = 
Breast Imaging Reporting and Data System.
* P values for comparison of sample characteristics across training and test samples were calculated with Wilcoxon rank-sum test for con-
tinuous variables and Pearson x2 test for categorical variables.
† Data are numbers, with percentages in parentheses.
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Figure 2:  Heat map generated by unsu-
pervised hierarchical clustering of extracted 
radiomic features, applied to separate 
(a) training and (b) test sets of screening 
sample for phenotype identification, shows 
cluster membership (top color bar) with 
complexity-based color scheme (ie, light 
green = low parenchymal complexity, dark 
green = low to intermediate parenchymal 
complexity, dark red = intermediate to high 
parenchymal complexity, bright red = high 
parenchymal complexity). Each column in 
heat map represents a woman and each 
row represents a specific radiomic feature, 
with standardized feature values ordered 
according to parenchymal complexity (ie, 
low complexity = 23 standard deviations 
depicted by green, high complexity = 3 
standard deviations depicted by red in 
color bar on top left). Dendrogram at top 
represents grouping of women in distinct 
phenotypes, whereas dendrogram on left 
represents groupings of extracted features 
with similar information. Corresponding 
color maps represent distributions of demo-
graphics, risk factor data, and screening 
outcomes for each phenotype (top) and 
categories of extracted features (left).
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Figure 3:  Phenotype-specific violin plots show distributions from left to right of age (in years), body mass index (BMI) (in kg/
m2), and percentage of density across different parenchymal complexity phenotypes. Plots are arranged in order of increasing 
parenchymal complexity (from light green to bright red), and solid bars at top indicate significant pairwise differences in cor-
responding distributions of age, BMI, and percentage of density for different phenotypes. LIBRA = Laboratory for Individualized 
Breast Radiodensity Assessment.

Associations to Breast Cancer (Case-Control 
Sample)
Women diagnosed with breast cancer had a higher proportion 
of low-complexity and low- tointermediate- complexity phe-
notypes, but also higher BMI and higher breast PD (Table 3). 
Radiomics phenotypes were significantly associated with breast 
cancer, both in unadjusted (Table 4) and in models account-
ing for breast PD and BMI (Table 4). The likelihood ratio test 
revealed model improvement (P = .001) with the inclusion of 
the complexity phenotypes having an area under the curve of 
0.84 (95% confidence interval: 0.78, 0.89), compared with a 
baseline model including only breast PD and BMI with area 
under the curve of 0.80 (95% confidence interval: 0.74, 0.87) (P = 
.03 for the comparison).

Discussion
In our study, we showed that radiomic phenotypes reflect in-
trinsic properties of mammographic parenchymal complexity 
beyond breast density and have an independent association to 
breast cancer. Unlike mammographic density, texture features 
can capture the spatial distribution of the more subtle and lo-
calized complexity of the parenchymal pattern. We identified 
four phenotypes that represent different degrees of parenchymal 
complexity and were differentially associated with age, BMI, 
breast density, and other established risk factors. The low- to 
intermediate-complexity phenotype had the lowest proportion 
of dense breasts (eight of 390 [2.1%]), whereas similar propor-
tions were observed across other phenotypes (from 140 of 291 
[48.1%] to 275 of 511 [53.8%]). These phenotypes were also 
associated with breast cancer, even when accounting for breast 
density and BMI, resulting in higher discriminatory capacity 
(area under the curve, 0.84 vs 0.80; P = .03 for comparison), 
suggesting their potential to provide complementary informa-
tion for improving estimation of breast cancer risk.

Different from prior studies, which relied on sampling pri-
marily the retroareolar breast region (9,10) or single feature 
measurements from the entire breast (11–15), our study uses a 
lattice-based strategy to extract texture features from multiple 
regions covering the entire breast to better capture the hetero-
geneity of the parenchymal pattern. In addition, most previous 
studies have evaluated parenchymal texture analysis in super-
vised classification (9–15). Here we expand on prior work (14) 
to identify radiomic phenotypes generated from unsupervised 
hierarchical clustering to gain insight into the variation of po-
tentially intrinsic mammographic parenchymal patterns on a 
population basis. By reducing the high-dimensional radiomic 
features into concrete and robust phenotype groups, our ap-
proach is principled and could ultimately alleviate potential 
overfitting in risk prediction models, thereby augmenting their 
ability to generalize in larger populations.

Both qualitative and quantitative breast density measures 
varied across complexity phenotypes. This is expected because 
breast density is an inherent component of the parenchymal 
pattern. Nevertheless, density was different primarily for the 
low- to intermediate-complexity phenotype but similar across 
the other phenotype clusters. Interestingly, the lowest complex-
ity phenotype had the highest proportion of women with high 
breast density, whereas the low- to intermediate-complexity 
phenotype had few women with high breast density. This ob-
servation further supports the complementary aspects of the 
parenchymal pattern captured with the complexity phenotypes 
compared with density. For example, women with very dense 
breasts could have low overall complexity because their entire 
breast is predominantly dense, therefore rendering a rather ho-
mogeneous parenchymal pattern, whereas women with scat-
tered fibroglandular densities may have a more complex paren-
chymal pattern due to the presence of higher degree of inherent 
heterogeneity in their parenchymal tissue.
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Figure 4:  Images show examples of negative digital screening mammograms of women with (a) high density and high complexity (percent den-
sity [PD], 42%; complexity score [CS], 0.6), (b) high density and low complexity (PD, 43%; CS, 20.6), (c) low density and high complexity (PD, 
14%; CS, 0.7), and (d) low density and low complexity (PD, 8%; CS, 20.7), demonstrating differences in breast density versus breast complexity. 
Corresponding age and body mass index for these women were (a) 54 years and 19.5 kg/m2, (b) 46 years and 28.7 kg/m2, (c) 57 years and 
17.9 kg/m2, and (d) 52 years and 48.6 kg/m2, respectively.

Table 2: Proportion of Women with Dense Breasts (BI-RADS Density Categories c and 
d) in Screening Sample across the Identified Parenchymal Complexity Phenotypes

Parenchymal Complexity Phenotypes

Density Category Light Green Dark Green Dark Red Bright Red Total
Low density* 236 382 408 151 1177
High density† 275 8 429 140 852
High density (%) 53.8 2.1 51.3 48.1 42
  Total‡ 511 (25.2) 390 (19.2) 837 (41.3) 291 (14.3) 2029

Note.—Test for linear association between membership in phenotypes of increasing parenchy-
mal complexity and Breast Imaging Reporting and Data System (BI-RADS) density shows weak 
association between breast density and parenchymal complexity phenotype clusters (Spearman r 
correlation for linear trend, 0.11; 95% confidence interval: 0.07, 0.15; P = .001). Light green = low 
complexity, dark green = low to intermediate complexity, dark red = intermediate to high complex-
ity, bright red = high complexity.
* Indicates BI-RADS categories a–b.
† Indicates BI-RADS categories c–d.
‡ Data in parentheses are percentages.

Important limitations of our study must also be noted. 
As a first step, our analyses were restricted to white women 
to avoid any potentially unknown feature differences due to 
ethnicity. In addition, images were analyzed by using a previ-
ously validated fixed feature set for texture analysis. Further, 
the extracted features were averaged within and across breasts 
to generate a parsimonious feature set given our relatively 
small sample, albeit limiting the information extracted. We 
also did not have information on menopause status and use of 

postmenopausal hormone ther-
apy, which could affect breast 
density and the extracted paren-
chymal texture features. In ad-
dition, our case-control set was 
a relatively small convenience 
sample, with limited power to 
detect associations of the phe-
notypes with breast cancer. Our 
screening sample was also not 
sufficiently powered to detect sig-
nificant associations with screen-
ing outcomes. Finally, we did not 
have available tissue or sufficient 
numbers of corresponding biop-
sies or tumor subtypes in these 
populations to allow for biologic 
interpretation of the observed 
phenotypes, which will be the 

subject of future investigation. We expect these parenchymal 
phenotypes to provide greater insight to the established his-
tologic associations with breast density, including potentially 
the lack of or partial involution and increased breast density 
(29,30). In prior studies, we have seen large percentages of 
women with high density and partial involution (30), who  
may represent women in the low-complexity phenotype. Given 
the intriguing preliminary evidence, further work will seek 
to use larger, multiethnic cohorts with more comprehensive 



Radiomic Phenotypes of Mammographic Parenchymal Complexity

48	 radiology.rsna.org  n  Radiology: Volume 290: Number 1—January 2019

Disclosures of Conflicts of Interest: D.K. Activities related to the present 
article: disclosed no relevant relationships. Activities not related to the present 
article: disclosed no relevant relationships. Other relationships: holds patent no. 
US8634610B2. S.J.W. Activities related to the present article: disclosed no rel-
evant relationships. Activities not related to the present article: has grants/grants 
pending with the National Institutes of Health. Other relationships: disclosed no 
relevant relationships. A.O. disclosed no relevant relationships. L.P. disclosed no 
relevant relationships. M.K.H. disclosed no relevant relationships. A.G. disclosed 
no relevant relationships. D.H.W. disclosed no relevant relationships. C.B.H. 

feature sets and complemen-
tary approaches—such as deep 
learning—to independently 
validate these phenotypes in as-
sociation to breast cancer risk 
and screening outcomes for both 
digital mammography and breast 
tomosynthesis.

The identification of women 
at high risk for breast cancer is 
becoming increasingly important 
in guiding personalized screening 
and prevention. Use of routine 
breast screening is an optimal set-
ting for identifying image-based 
risk factors to improve this assess-
ment. In fact, studies have shown 
a potential to improve risk assess-
ment models by including breast 
density measures (31). We envi-
sion a breast cancer risk assess-
ment clinic in which fully auto-
mated risk assessment tools that 
include quantitative imaging data 
can be combined with education 
on risk assessment and the effec-
tiveness of screening mammogra-
phy. Such data-driven tools will 
aide in shared decision making 
surrounding tailored screening, 
surveillance, and preventative in-
terventions. Although important 
progress has been made, the gains 
in performance reported to date 
in risk model discriminatory ca-
pacity have been modest at best 
(31). Toward this end, our study 
defined distinct phenotypes of 
mammographic parenchymal 
complexity by using a quantita-
tive radiomic feature analysis 
approach. Overall, our data sug-
gests that these phenotypes cap-
ture intrinsic parenchymal com-
plexity characteristics that could 
supplement breast density and 
other established risk factors to 
ultimately improve estimation of 
breast cancer risk.

Author contributions: Guarantor of in-
tegrity of entire study, D.K.; study concepts/study design or data acquisition or data 
analysis/interpretation, all authors; manuscript drafting or manuscript revision for 
important intellectual content, all authors; approval of final version of submitted 
manuscript, all authors; agrees to ensure any questions related to the work are appro-
priately resolved, all authors; literature research, D.K., A.G., K.K., E.F.C., C.M.V.; 
clinical studies, D.H.W., E.F.C.; experimental studies, D.K., A.O., M.K.H., A.G.; 
statistical analysis, D.K., S.J.W., A.O., M.K.H., C.M.V.; and manuscript editing, 
D.K., S.J.W., A.O., M.K.H., A.G., D.H.W., C.B.H., K.K., K.B., E.F.C., C.M.V.

Table 4: Association between Parenchymal Complexity Phenotype and Breast  
Cancer Diagnosis (Logistic Regression), Unadjusted and Adjusted for Standardized 
Percent Density and BMI

Variable Unadjusted Odds Ratio P Value* Adjusted Odds Ratio† P Value*
Phenotype .001 .001
  Green 3.5 (1.8, 6.9) 2.5 (1.1, 6.0)
  Dark green 1.5 (0.7, 3.3) 2.3 (0.8, 6.7)
  Dark red Reference Reference
  Red 0.4 (0.1, 1.2) 0.1 (0.0, 0.5)
Percent density per  
    standard deviation

1.3 (1.0, 1.8) .027 2.7 (1.7, 4.4) .001

Note.—Data in parentheses are 95% confidence intervals. Likelihood ratio test for presence of 
interaction between phenotype and percent density is not statistically significant (P = .363). Likeli-
hood ratio test for presence of interaction between phenotype and body mass index (BMI) is not 
statistically significant (P = .335). 
* P values are for the Type-3 hypothesis test, testing for overall association between the factor of 
interest and case-control status.
† Cases: n = 62. Control participants: n = 141.

Table 3: Characteristics for the Independent Case-Control Sample

Characteristic Overall (n = 234) Control (n = 158) Case (n = 76) P Value*
Phenotype .001
  Green 61 (26.1) 28 (17.7) 33 (43.4)
  Dark green 44 (18.8) 29 (18.4) 15 (19.7)
  Dark red 95 (40.6) 71 (44.9) 24 (31.6)
  Red 34 (14.5) 30 (19.0) 4 (5.3)
Age (y)† 53.9 6 7.9 53.8 6 7.8 54.0 6 8.2 .86
Age category (y) .93
  40–44 38 (16.2) 26 (16.5) 12 (15.8)
  45–49 35 (15.0) 23 (14.6) 12 (15.8)
  50–54 44 (18.8) 29 (18.4) 15 (19.7)
  55–59 67 (28.6) 48 (30.4) 19 (25.0)
  60–64 26 (11.1) 18 (11.4) 8 (10.5)
  65–69 18 (7.7) 10 (6.3) 8 (10.5)
  70–74 6 (2.6) 4 (2.5) 2 (2.6)
BMI (kg/m2)† 25.5 6 5.0 23.9 6 3.5 29.1 6 6.0 .001
BMI category
  Missing data 31 (13) … … …
  ,18.5 kg/m2 5 (2.5) 4 (2.8) 1 (1.6) .001
  18.5–24 kg/m2 108 (53.2) 94 (66.7) 14 (22.6) .001
  25–29 kg/m2 58 (28.6) 36 (25.5) 22 (35.5) .001
  30 kg/m2 32 (15.8) 7 (5.0) 25 (40.3) .001
Percent density† 30.6 6 14.9 29.1 6 14.2 33.8 6 15.7 .03

Note.—Unless otherwise specified, data are numbers, with percentages in parentheses. BMI = body 
mass index.
* P values for assessment of significant differences across case-control groups calculated with x2 and 
Fisher exact test for categorical variables, and Student t test for continuous variables.
† Data are means 6 standard deviations.
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