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Abstract

Advances in understanding the structural connectomes of human brain require improved 

approaches for the construction, comparison and integration of high-dimensional whole-brain 

tractography data from a large number of individuals. This article develops a population-based 

structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously 

characterizes a large number of white matter bundles within and across different subjects by 

registering different subjects’ brains based on coarse cortical parcellations, compressing the 

bundles of each connection, and extracting novel connection weights. A robust tractography 

algorithm and and streamline post-processing techniques, including dilation of gray matter 

regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of 

the extracted structural connectomes. The developed PSC framework can be used to reproducibly 

extract binary networks, weighted networks and streamline-based brain connectomes. We apply 

the PSC to Human Connectome Project data to illustrate its application in characterizing normal 

variations and heritability of structural connectomes in healthy subjects.
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1. Introduction

With recent advances in imaging technologies, large biomedical studies, such as the UK 

Biobank (Miller et al., 2016) and Human Connectome Project (HCP) (Sotiropoulos et al., 

2013; Van Essen et al., 2013), have collected multimodal imaging data (e.g., structural 

magnetic resonance imaging (sMRI) and diffusion MRI (dMRI)), and other associated data, 

such as clinical and genetic information. Mapping the brain’s structural connectome on the 

system level is critically important for understanding brain physiology, pathology and 

structural connectivity in both clinical and research-oriented applications. The structural 

connectome consists of grouped white matter (WM) trajectories that connect different brain 

regions, representing a comprehensive diagram of neural connections. To date, dMRI is the 

only noninvasive technique useful for estimating WM trajectories and water diffusivity along 

these trajectories in vivo. It has been widely used to quantify WM integrity and WM 

abnormalities associated with brain disorders.

At the population level, to quantify variations in the diffusion connectomes and local WM 

changes of healthy and diseased brains, there are roughly three broad analytical methods, 

including (i) standard region-based analysis (Lee et al., 2009; Alexander et al., 2007), (ii) 

voxel-based analysis (Smith et al., 2006; Schwarz et al., 2014; Snook et al., 2007), and (iii) 

tract-specific analysis (Fornito et al., 2013; Zhu et al., 2011; Yeatman et al., 2012; Cousineau 

et al., 2017; Jin et al., 2014; Heiervang et al., 2006; Ciccarelli et al., 2003; Wang et al., 

2016a; Wassermann et al., 2010; Garyfallidis et al., 2017; Olivetti et al., 2017; Sharmin et 

al., 2016). The region-based method often parcellates the brain into regions of interest 

(ROIs) that have anatomical meaning and studies the statistical properties of each region 

(Lee et al., 2009; Alexander et al., 2007). Although it is convenient to focus on specific 

regions, it suffers from the difficulty in identifying meaningful regions in WM, particularly 

among the long curved structures common in fiber tracts. The voxel-based analysis spatially 

normalizes brain images across subjects and performs statistical analysis at each voxel. One 

of the most popular voxel-based methods is the Tract-Based Spatial Statistics (TBSS) (Smith 

et al., 2006), which is based on the projection of fractional anisotropy (FA) maps of 

individual subjects onto a common mean FA tract skeleton. The voxel-based methods are 

limited due to their reliance on existing registration methods that lack the ability to explicitly 

model the underlying architecture of WM fibers, including the neural systems and circuits 

affected, in the registration process (Zalesky et al., 2010; Yeatman et al., 2012).

Compared to the region- and voxel-based methods, tract-specific analysis provides several 

desirable outputs. It can visualize specific WM bundles, quantitatively analyze the geometry 

of WM bundles, and analyze the diffusion properties along WM bundles. One of the most 

challenging tasks in this approach is to efficiently use the whole-brain tractography data to 

construct reproducible population-based structural connectome maps, while effectively 

accounting for variation across subjects within and between populations. The tract-specific 

approaches can be naturally grouped into two categories: fiber clustering-based (O’Donnell 

et al., 2013; Guevara et al., 2017; Jin et al., 2014; Guevara et al., 2011; Garyfallidis et al., 

2017) WM analysis and parcellation-based connectome analysis (O’Donnell et al., 2013; de 

Zhang et al. Page 2

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Reus and van den Heuvel, 2013; Zalesky et al., 2010). Although both method types perform 

segmentation of the WM bundles, they have different goals.

The advantage of methods based on fiber clustering is that they can use the shape, size and 

location of streamlines (also referred to as fiber curves or fiber tracts) to identify 

anatomically defined WM tracts, and study the WM integrity along these tracts (Jin et al., 

2011, 2014; Kochunov et al., 2015; O’Donnell et al., 2013). However, such methods heavily 

depend on the choice of clustering method and that of the similarity metric for comparing 

streamlines (Zhang et al., 2014). Also, they usually consider only part of the whole-brain 

fiber curves and may result in the loss of valuable information. In contrast, parcellation-

based methods (O’Donnell et al., 2013; de Reus and van den Heuvel, 2013) can utilize the 

whole-brain fiber curves and produce an adjacency V × V matrix Ai, where V is the number 

of ROIs and can vary from tens to hundreds according to the cortical parcellation methods 

used in (Desikan et al., 2006; Destrieux et al., 2010; Glasser et al., 2016; Cammoun et al., 

2012). The (u, υ)–th element of Ai represents a measure of the strength of connection 

between regions u and υ (de Reus and van den Heuvel, 2013; Fornito et al., 2013; Durante et 

al., 2017; Durante and Dunson, 2016; Cheng et al., 2012a; Zalesky et al., 2010). For a 

specific pair of ROIs, the most popular connectivity strength is an indicator (range of 0–1) of 

whether there is any streamline connecting them so that standard graph analysis may be 

applied. However, the use of such a binary connectivity matrix leads to an enormous loss of 

information such that all geometric and diffusivity information along the WM bundles is 

discarded.

In this paper, we develop a hybrid method (O’Donnell et al., 2013; Guevara et al., 2017) that 

can utilize the geometric information of streamlines, including shape, size and location, for a 

better parcellation-based connectome analysis. This approach allows us to increase the 

robustness of extracted WM bundles between two ROIs and extract discriminative and 

reproducible geometric features for network-based connectome analysis. Such robustness 

and reproducibility are critical for down-stream statistical analyses. Furthermore, we use a 

newly defined reproducibility measure and a test-retest dataset to optimize various tuning 

parameters in the construction of the structural connectome. This optimization procedure 

and the proposed global reproducibility measure distinguish this work from the existing 

reproducibility studies (Bastiani et al., 2012; Cheng et al., 2012b; Buchanan et al., 2014; 

Cousineau et al., 2017).

The comprehensive framework developed in this paper is termed population-based structural 
connectome (PSC) mapping, which is designed to reproducibly construct structural 

connectomes across subjects within and between populations. Figure 1 demonstrates a 

schematic overview of the PSC framework. Five major methodological contributions of this 

paper relative to the current approaches for analyzing tractograms are summarized as 

follows

• Most current techniques transform the full brain tractogram into a simplified 

adjacency matrix for groupwise network analysis. In contrast, the proposed PSC 

pipeline preserves the geometric information, which is crucial for quantifying 

brain connectivity and understanding its variation across subjects. The PSC 
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constructs a structural connectome across three different levels, from simple to 

complex, including the binary network, the weighted networks and the 

streamline-based connectome. Such a multi-level representation allows to 

perform brain network analysis at different levels of detail, inspect the brain 

connectome from different perspectives, and validate the findings in the space of 

WM bundles..

• One of our objectives is to increase the robustness and reproducibility of the of 

the reconstructed structural connectome. A test-retest dataset is used to select the 

tuning parameters in the PSC to optimize its reproducibility and preserve useful 

information in the connectome maps.

• We use a nonlinear spatial normalization method to decompose the variation of 

WM tracts into different components. More specifically, the shape component is 

separated from its confounding variables for the analysis of the shapes of tracts. 

Such a decomposition minimizes the variability across individual streamlines, 

while allowing us to efficiently compress streamlines in each connection.

• We use the PSC framework to perform comprehensive analyses of 856 subjects 

with high-resolution dMRI and T1 images in the HCP dataset. In contrast, as 

reviewed in Table 1 of Guevara et al. (2017), most existing methods were applied 

to whole-brain tractography datasets of fewer than 200 subjects.

• The open-source software and documentation for the PSC framework will be 

freely available online at http://www.nitrc.org/ and https://github.com/BIG-S2.

2. Materials and Methods

2.1. Overview

Let us focus on dMRI and sMRI data acquired for Q subjects. For each subject, we can use 

one of the state-of-the-art tractography algorithms (Girard et al., 2014; Smith et al., 2013) to 

reconstruct a tractography dataset Fi for i = 1, …, Q. Each Fi = {fi,1, …, fi,Ni} consists of Ni 

three-dimensional (3D) streamlines, where each fi,j is represented by an ordered sequence of 

3D points {pi,j,k = (xi,j,k, yi,j,k, zi,j,k)T ∈ ℝ3 : k = 1, …, mi,j} for j = 1, …, Ni. In most cases, 

to fully characterize the structural connectivity pattern of an individual human brain, Ni is 

larger than one million and mi,j can be hundreds. Mathematically, each streamline also can 

be represented as a parameterized curve in ℝ3 through spline fitting or simply connecting 

the sequence of points using piecewise linear functions. Let us denote this parameterized 

curve as fi,j : [0, 1] → ℝ3, where each fi,j(s) represents a point fi,j(s) = (xi,j(s), yi,j(s), zi,j(s))T 

∈ ℝ3 for s ∈ [0, 1].

The proposed PSC framework has three major components, as illustrated in the three 

rightmost columns in Figure 1. These are (i) reliable construction of the structural 

connectome for the whole brain; (ii) low-dimensional representation of streamlines in each 

connection; and (iii) multi-level connectome analysis. In Sections 2.2–2.4, we introduce 

each of these modules in detail. Section 2.5 introduces the quantitative evaluation of 

reproducibility. Section 2.6 describes two real datasets, a test-retest dataset and the HCP 

dataset.
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2.2. Reliable Construction of the Structural Connectome

HARDI tractography with anatomical priors—One of the key steps of the PSC 

framework is to reliably reconstruct the whole-brain structural connectome through state-of-

the-art tractography algorithms. A reliable reconstruction of the structural connectome is 

challenging because of the various positions, shapes, sizes, and lengths of the WM bundles 

(Fornito et al., 2013; Girard et al., 2014; Yeh et al., 2013; Basser et al., 2000; Smith et al., 

2012, 2013). For instance, homogeneously initiating streamlines in the WM induces over-

reconstruction for long streamlines, yet this is the most commonly used seeding strategy. It 

is crucial to carefully design the seeding procedure, stopping and masking criteria, and 

optimal parameters for tractography to reduce bias in the reconstruction of streamlines.

In this paper, we use the tractography algorithm presented by Girard et al. (2014). This 

method has reduced bias in streamline reconstruction because it borrows anatomical 

information from high-resolution T1-weighted image. The T1-weighted image is first softly 

segmented into different parts based on the tissue type, e.g., WM, gray matter (GM), and 

cerebrospinal fluid. This segmentation assigns a probability for each voxel being a certain 

type of tissue and thus provides a soft criterion for guiding the growth and termination of 

streamlines. For instance, WM bundles are expected to stop in the GM region and should not 

reach the cerebrospinal fluid. Moreover, streamlines are initialized from the interface 

between GM and WM to compensate for the streamline density bias that may be caused by 

the length of fiber bundles. Starting from these regions, in-house implementation of a state-

of-the-art probabilistic algorithm based on the fiber orientation distribution function 

(Descoteaux et al., 2009; Tournier et al., 2012) is used to propagate the streamlines. Also, a 

technique called particle filtering tractography is adapted (Girard et al., 2014) to reduce the 

number of streamlines that prematurely stop in the WM or cerebrospinal fluid. This 

technique stops most of the streamlines in the GM and at the GM-WM interface which, in 

turn, significantly improves the percentage of valid streamlines in the reconstruction. The 

parameters in our tractography algorithm, such as the maximum deviation angle, fiber 

orientation distribution function (ODF) threshold, and parameters for particle filtering, are 

carefully selected based on the evaluation of the global connectivity metrics in the 

Tractometer (Girard et al., 2014; Côté et al., 2013).

In our analysis of real data, on average, 1.15 × 105(±12, 219) voxels were identified as the 

seeding region (about 14 ~ 15% of the total brain volume) for each individual in the HCP 

dataset (with isotropic voxel size of 1.25 mm). The final tractography dataset for each 

subject contains approximately 1 million streamlines, and each streamline has a step size of 

0.2 mm.

Coarse brain parcellation and connectome extraction—We use an atlas with 

known parcellation to define the nodes of the structural connectivity network. Here, we 

consider two popular parcellation atlases, the Desikan-Killiany (Desikan et al., 2006) and 

Destrieux (Destrieux et al., 2010) atlases, at two resolutions. The Desikan-Killiany 

parcellation has 68 cortical surface regions with 34 nodes in each hemisphere, whereas 

Destrieux has 148 cortical regions with 74 nodes in each hemisphere. In addition, we 

include 17 subcortical regions, such as the hippocampus, caudate, putamen, pallidum, 
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amygdala, nucleus accumbens, and brainstem, among others. Freesurfer (Fischl, 2012) is 

used to perform the brain parcellation.

Given the parcellation of an individual brain, the streamline data are then grouped according 

to the regions that they connect. We process the T1-weighted image, the dMRI image and 

the tractography dataset using the following three steps to extract streamlines connecting any 

pair of regions: (i) Co-register the T1-weighted image to the b0 and FA images extracted 

from dMRI within each subject: A linear registration obtained using FLIRT (Jenkinson et 

al., 2002) is first applied and a non-linear registration using advanced normalization tools 

(ANTs) (Avants et al., 2011) is used to refine the registration. (ii) Warp Desikan-Killiany (or 

Destrieux) parcellation to an individual T1-weighted image using Freesurfer. (iii) Group 

each tractography dataset Fi into different bundles depending on the regions that each 

streamline connects.

Step iii is not as frequently used in the current literature as are steps i and ii. Most existing 

approaches use the endpoints of a streamline to identify the regions that it connects 

(Hagmann et al., 2008; Zalesky et al., 2010). However, the tractography algorithm may 

prematurely stop streamlines in WM (Girard et al., 2014). Moreover, streamlines can pass 

through multiple ROIs, especially for the subcortical regions. These issues can result in 

incomplete and false connections, leading to bias in the subsequent analysis. To overcome 

these issues, we develop three procedures in the PSC framework, cortex surface dilation, 
streamline cutting, and outlier streamline removing. The third column in Figure 1 illustrates 

these procedures.

2.2.1. Cortical surface dilation—We dilate each GM cortical region into WM in ψ 
voxels, where ψ is the parameter for controlling the amount of dilation. The tractography 

algorithm can prematurely stop the streamlines in the WM regions or at the GM-WM 

interface. However, the cortical ROIs extracted by Freesurfer only include the GM ROIs. 

Dilation of the cortical ROIs to include the GM-WM interface enables us to extract a 

complete set of WM pathways for each connection.

Similar dilation procedures have been used in the literature (Reveley et al., 2015; Donahue et 

al., 2016; Shadi et al., 2016b; Finger et al., 2012). As pointed out by Thomas et al. (2014), 

even though it may decrease the specificity (e.g., ability to avoid false connections), 

including some WM regions in the GM ROIs can increase the sensitivity (e.g., ability to 

detect true connections). Donahue et al. (2016) used the nearby WM voxels to decide 

whether two GM ROIs are connected, which improved the results by two times with respect 

to the study of van den Heuvel et al. (2015). These findings and the apparent limitations of 

the current tractography algorithm encourage us to explore the effect of dilation on the 

reproducibility and robustness of the extracted connectomes. The detailed algorithm for the 

dilation procedure is presented in the Supplementary Material, Section 1. Supplementary 

Figure 1 illustrates the effect of the dilation for an image with 1 mm isotropic resolution.

2.2.2. Streamline cutting—A key idea behind streamline cutting is to account for the 

possible passage of streamlines through multiple ROIs. Most tractography algorithms stop 

the propagation of streamlines based on certain pre-set stopping criteria; otherwise, the 
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streamline will grow continuously. It is common to have streamlines connecting multiple 

ROIs, especially subcortical ROIs. To extract a connection for any pair of ROIs on the path 

of a tract, we cut the tract into 
n
2  line segments if it passes n (n > 2) ROIs. A similar cutting 

operation has been proposed by Ziyan et al. (2009) in order to remove the erroneous part of 

the tract that deviates from a major fiber bundle.

Using the tractography algorithm by (Girard et al., 2014), it is very rare for the middle 

ROI(s) to be a cortical ROI because when a streamline reaches the cortical region, it triggers 

one of the stopping criteria with high probability. Thus, for streamlines that pass through 

multiple ROIs, most of the middle ROIs are subcortical regions. Therefore, this cutting 

procedure has a greater effect on subcortical-cortical connections than on cortical-cortical 

connections. It allows us to extract the parts of streamlines that connect two given regions, 

regardless of whether these streamlines start, end or pass through those two regions.

The combination of dilation and streamline cutting enables us to faithfully extract more 

complete and reliable WM pathways between two ROIs. Panel (a) and (b) of Figure 2 

compare the streamlines before and after applying streamline cutting and dilation for two 

selected pairs of ROIs. For the two examples in Figure 2, we identified about 10 times more 

streamlines after applying dilation and streamline cutting. Similar phenomena were observed 

for most pairs of ROIs, indicating that the procedures developed in the PSC framework can 

extract rich fiber bundles.

2.2.3. Removing outlier streamlines—In this step, our goal is to identify streamlines 

that do not follow major WM pathways as outliers in each connection. Almost all 

tractography algorithms (Girard et al., 2014) can produce false fiber tracts for various 

reasons, such as the accumulation of errors for streamline propagation, low resolution of 

dMRI, or the stopping criteria of streamline propagation. Removing these outliers can 

improve either the estimation of fiber bundles or the connection between two ROIs (Côté et 

al., 2015; Khatami et al., 2017). In Figure 1, item (3) in module 1 illustrates some apparent 

outlying streamlines in red for two randomly selected connections.

We choose a scalable outlier detection method based on the QuickBundle method 

(Garyfallidis et al., 2012) to rapidly remove outliers (Côté et al., 2015). The key idea of 

QuickBundle is to use the minimum average direct-flip (MDF) distance to classify 

streamlines based on a pre-set distance threshold θt. In PSC, streamlines in each connection 

have the same orientation, i.e., they all start from one region and end at the same other 

region. Utilizing this property, we replace the MDF distance by the simple 2 distance, 

d( f 1, f 2) = ‖ f 1 − f 2‖ = ∫ ( f 1(s) − f 2(s))2ds, for two streamlines f1 and f2 in a specific 

connection. Letting m be the number of sample points on each streamline, the computational 

complexity of computing such 2 distance is O(m), making the outlier removal step 

computationally efficient. Given a fixed θt, a streamline is assigned to a cluster if its 2 

distance to the cluster center is smaller than θt. The outliers then are the singleton clusters 

with very few streamlines inside.
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2.3. Efficient Representation and Analysis of Streamlines

After the preprocessing steps in Section 2.2, for a pair of ROIs, we obtain the streamlines 

that connect them. This streamline-based connectivity structure is illustrated in Figure 1, 

module 2. We refer to this special connectivity structure as the streamline connectivity cell 

structure (SCCS), where each cell contains streamlines that connect the corresponding ROIs. 

In most parcellation-based connectivity analysis pipelines, the streamlines are discarded 

because of the data size, since each SCCS may contain thousands of streamlines. However, 

the SCCS contains rich geometric information and enables tract-based analysis (O’Donnell 

et al., 2009; Prasad et al., 2014; Wang et al., 2016a; Wassermann et al., 2010), which is more 

discriminative than some summary statistics (Colby et al., 2012).

In this section, our goal is to develop an efficient representation system to enable us to 

compress and compare the SCCSs extracted from a large-scale neuroimaging dataset. To 

achieve this goal, this part of PSC includes two components: (i) a shape analysis framework 

to separate the variation of streamlines in each cell of the SCCS, and (ii) an encoding and 

decoding procedure to efficiently compress the SCCS.

2.3.1. Streamline variation decomposition—In each cell of the SCCS (e.g., first row 

of Figure 2), streamlines have very similar shape and are smooth. The shape here refers as 

the streamline after removing some shape confounding variables, e.g., translations, rotations, 

scaling and re-parameterization (Srivastava et al., 2011). Our idea for compression is to use 

a shape analysis framework (Srivastava et al., 2011; Corouge et al., 2004) to decompose all 

streamlines into different components and then represent the aligned shape component using 

a low-dimensional structure. All other components, such as rotation and translation, can be 

preserved by using a few parameters. Finally, the original streamlines can be recovered by 

recombining these components.

Let Ω(a,b) be the functional space of all WM bundles that connect ROIs a and b, and a 

smooth streamline f ∈ Ω(a,b) is a function f : [0, 1] → ℝ3. According to Srivastava et al. 

(2011), we can decompose the variation of streamlines in Ω(a,b) into translations, rotations, 

scalings, re-parameterizations, and shapes. This decomposition is quite flexible. For 

instance, we can merge some shape-confounding components into the shape component to 

simplify the decomposition. In Figure 3, we illustrate the remaining shape part of the 

simulated streamlines after separating different shape confounding components. As more 

shape-confounding components are separated and removed, the remaining shapes are more 

consistent across different streamlines.

We adapt an elastic shape analysis framework (Srivastava et al., 2011) to separate the 

translations, rotations, scalings and re-parameterizations from the shapes. It is assumed that 

we have a template streamline μ(a,b) (such template can be learned from the data) for each 

connection (a, b) in one SCCS. The template μ(a,b) is usually a centered 3D curve with a unit 

length, representing the shared geometric structure of streamlines in this connection. We can 

align streamlines {f1(·), …, fn(a,b) (·)} ∈ Ω(a,b) to this template to perform the decomposition. 

It is easy to separate the translation and scaling (Srivastava et al., 2011; Corouge et al., 

2004), respectively denoted as C and L, by centering and normalizing each streamline. 
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Without specifically stating otherwise, hereafter, we consider all streamlines to have been 

centered and normalized.

To separate rotation and re-parameterization, we represent each streamline as its square root 

velocity function (SRVF) q(s) = ḟ (s)/ | ḟ (s)|. A rotation of f by O ∈ SO(3) is denoted as O * f 
and its SRVF becomes O * q. Re-parameterization is represented as γ ∈ Γ, where Γ is the set 

of all orientation-preserving diffeomorphisms of [0, 1], γ : [0, 1] → [0, 1]. Re-

parameterization of f by γ is denoted as f(γ(s)), and its SRVF is denoted as (q, γ) = (q ◦ γ) γ̇, 

where ◦ denotes the composition of two functions. The following optimization is used to 

separate the translation and re-parameterization from a streamline fk with respect to the 

template μ(a,b):

(Ok, γk) = argmin
O ∈ SO(3), γ ∈ Γ

‖qμ(a, b)
− O ∗ (qk, γ)‖, (1)

where qk is the SRVF of fk and qμ(a,b) is the SRVF of μ(a,b). When the template μ(a,b) is 

unknown, or in the case that we need to learn a template from some training data, we can 

formulate the estimation of rotations, re-parameterizations and μ(a,b) as a joint optimization 

problem as follows:

(Ok, γk) = argmin
O ∈ SO(3), γ ∈ Γ

‖qμ(a, b)
− O ∗ (qk, γ)‖, (2)

qμ(a, b)
= n(a, b)

−1 ∑
k = 1

n(a, b)
Ok ∗ (qk, γk) for k = 1, …, n(a, b),

where n(a,b) is the total number of streamlines in the training data. The optimization of Eqn. 

(2) is done through an iterative procedure until convergence. We optimize Ok through 

Procrustes analysis (Corouge et al., 2004) and γk through dynamic programming (Srivastava 

et al., 2011). Finally, as illustrated in the last column of Figure 3, we obtain a collection of 

tightly aligned fiber tracts as the shape component, denoted as 

{ f k
∼ | f k

∼ = Ok ∗ ( f k ◦ γk) for k = 1, …, na, b}.

2.3.2. Encoding and decoding streamlines—Due to the variation decomposition, the 

cross-sectional variance of the remaining shape components f k
∼ (s) for any s ∈ [0, 1] is much 

smaller than that of the original streamlines. This phenomenon allows us to represent the 

shape component using a low-dimensional structure, which is the component that takes the 

most space to save. For each cell of the SCCS, we use a training dataset to learn a template 

streamline and a set of basis functions for efficiently representing the shapes of streamlines. 

Specifically, for each connection (a, b), we pool the streamlines from a set of representative 

subjects, extract the template streamline and shape component, and learn a set of basis 

functions using functional principal component analysis (fPCA) to represent the functional 
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space of the aligned streamlines. Let ϕl
i: [0, 1] ℝ be a basis function for i = 1, 2, and 3 and 

l = 1, …, M(a, b)
i , where M(a, b)

i  is the number of basis functions learned for the i-th coordinate, 

in which i = 1, 2, and 3 represent the x, y and z coordinates, respectively. We denote this 

representation coordinate as follows:

ℒ(a, b) = {μ(a, b), {ϕl
i: i = 1, 2, 3; l = 1, …, M(a, b)

i }}, (3)

in which the template fiber μ(a,b) is the origin of this coordinate system.

For a given streamline f in connection (a, b), we align it to μ(a,b) to extract the shape 

component f̃(·) after separating the rotation O, translation C, scaling L and re-

parameterization γ. We then encode the shape part as

f
∼(s) =

μ(a, b)
1 (s) + ∑l = 1

M(a, b)
1

cl
1ϕl

1(s)

μ(a, b)
2 (s) + ∑l = 1

M(a, b)
2

cl
2ϕl

2(s)

μ(a, b)
3 (s) + ∑l = 1

M(a, b)
3

cl
3ϕl

3(s)

+
ε1(s)
ε2(s)
ε3(s)

, (4)

where ε is the error term, cl
i is the coefficient corresponding to the basis function ϕl

i and 

M(a, b)
i  represents the total number of basis functions for i = 1, 2, and 3 that are used to 

approximate f̃(s) up to the error of ε(s) = (ε1(s), ε2(s), ε3(s))T.

Through this encoding procedure, we represent the streamline f as 

{C, O, L, γ, cl
i: i = 1, 2, 3; l = 1, …, M(a, b)

i }. The re-parameterization γ does not alter the 

streamline path (Srivastava et al., 2011) since it is only used to align streamlines to the 

template to reduce the cross-sectional variance. Thus, we can discard γ for the purpose of 

compression. The original streamline path can be recovered from 

{C, O, L, cl
i: i = 1, 2, 3; l = 1, …, M(a, b)

i }, which is a decoding procedure:

f = OT ∗ L ∗ f
∼ + C . (5)

Let ‖·‖2 be the 2 norm of a vector or matrix. A smaller ‖ε‖ corresponds to a more accurate 

representation of f, which requires more coefficients. We define a measure, called the 

compression ratio, as

ρ = 100(1 − Nc/Nr), (6)
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for evaluating the representation efficiency, where Nr is the number of parameters used to 

represent the raw streamline f and Nc is the number of parameters used to represent f̂ after 

compression.

The proposed encoding procedure is a learning-based approach. For each cell of the SCCS, 

we learn the common geometry of the streamlines (the template) and a set of basis functions 

to efficiently represent the deviation of an individual streamline from the template. To 

represent different data, such as tractography data associated with neurodegenerative 

disease, a new training process would be necessary. However, we emphasize that the 

proposed compression method is robust. The alignment process separates the shape from 

other shape-preserving transformations and the compression is conducted on the shape part. 

Given new tractography data, as long as the streamline shapes remain similar to those in the 

training dataset, the designed compression method should work well. In our PSC pipeline, 

for each connection based on the Desikan-Killiany and Destrieux parcellations, we provide a 

template streamline and a set of basis functions learned from HCP subjects. If a new subject 

has streamlines that cannot be precisely represented by the provided coordinate systems, a 

warning will be given and a new training procedure is recommended.

2.4. Multi-level Groupwise Connectome Analysis

We now obtain a parcellation-based tractography common space (PTCS) for each 

connection, which is given by PTCS = ∪a, b = 1
V (a, b) ⊗ ℒ(a, b). To the best of our knowledge, 

PTCS is the first common space of its kind to efficiently represent streamlines for 

parcellation-based connectome analysis. For any new subject, in PTSC, we can use (4) to 

transform all tractography data from the original 3D measurement space onto the coordinate 

system of PTCS, which is a compression process of the SCCS. Based on the saved 

(compressed) SCCS, we can carry out the groupwise connectome analysis at three different 

levels, from complex to simple: (i) the streamline level; (ii) the weighted network level; and 

(iii) the binary network level. See the illustration of multi-level groupwise connectome 

analysis in the rightmost column of Figure 1.

At the streamline level, our PSC framework saves the object SCCS, in which each cell 

contains the streamlines that connect the corresponding pair of regions. The geometric 

information of each streamline is well preserved in the SCCS. Since the streamlines in each 

cell of the SCCS are aligned to a template, we can directly compare their shapes without the 

misalignment issue. We also can calculate the WM integrity measures, such as FA and 

generalized FA (GFA), along all streamlines in each cell of the SCCS and perform statistical 

analysis for these diffusion measurements. The diffusion profile along with these tracts 

integrate both the geometric and diffusion properties of a connection.

At the weighted network level, the object of the SCCS is turned into an adjacency matrix, 

representing how different brain regions are connected. The scalar in each cell often 

represents the coupling strength between two ROIs. For example, the commonly used metric 

is the count of streamlines (Smith et al., 2012, 2013). However, that count is not considered 

to be reliable when measuring the coupling strength (Fornito et al., 2013; Smith et al., 2013; 

Jones et al., 2013). Instead of only using the count as the “connection strength”, we propose 
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to include multiple features of a connection to generate a tensor network for each brain. The 

tensor network has a dimension of V × V × P, where P represents the number of features and 

V represents the number of nodes. Each of the P matrices is a weighted network and 

describes one aspect of the connection. As illustrated in the bottom row of Figure 2, the 

following features are included in our PSC package.

1. Diffusion-related features. Diffusion properties along streamlines characterize 

the water diffusivity along WM streamlines for each ROI pair. For each 

streamline, our PSC package provides eight different diffusion-related features, 

the mean of FA, max FA, the mean of the mean diffusivity (MD), max MD, the 

mean of GFA, max GFA, the mean of the apparent fiber density (AFD) and max 

AFD. More diffusion-related features can be included in the PSC package in the 

future.

2. Geometry-related features. The average length, shape, and cluster 

configuration characterize the geometric information of streamlines for each ROI 

pair. The average length of streamlines in a connection reflects the intrinsic 

spatial distance between two regions. In the PTCS, the coefficients {cl
i}, i = 1, 2, 

3 of streamlines are natural shape information. We calculate the averages of 

{c1
i , …, cn

i } for i = 1, 2 and 3, and use them as three different shape features. In 

addition, we calculate the number of clusters using the Quickbundle method with 

a fixed θt, which is more robust to some confounding effects in the tractography 

reconstruction, such as the seeding strategy.

3. Endpoint-related features. We consider the features generated from the end 

points of streamlines for each ROI pair. We first extract the number of end points 

as a feature, which is the same as the count of streamlines. We also calculate the 

total connected surface area (CSA) for each ROI pair. Specifically, we treat each 

ROI as a 3D surface, as illustrated in Figure 2 (f). At each intersection between 

the surface and a streamline, we calculate the area covered by all small circles 

generated by streamlines. In the Supplementary Section 2, we present the 

detailed procedure to calculate the CSA feature. Note that the CSA feature is 

similar to the continuous connectivity feature proposed by Moyer et al. (2017), 

with both having the effect of smoothing the count matrix. However, the 

extracted weight in Moyer et al. (2017) depends on the density of the 

streamlines, whereas the CSA depends on the touching area. A weighted version 

of the CSA is also calculated by dividing the CSA by the total surface area of the 

two ROIs.

At the binary network level, we threshold the streamline count matrix into a binary matrix. 

Each element of the binary matrix indicates the presence or absence of a connection for a 

specific ROI pair. Statistical analysis of such binary networks (Durante and Dunson, 2016; 

Durante et al., 2017) and the inference of the network change with different phenotypes 

(Wang et al., 2016b) suggests that this type of data contains rich information. However, 

defining a proper threshold is not trivial at all (Shadi et al., 2016a). With a novel 

reproducibility evaluation metric and a test-retest dataset (introduced in Sections 2.5 and 2.6, 
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respectively), we are able to find a proper threshold for our PSC framework in order to turn 

the streamline count matrix into a binary network. Figure 4 presents some representative 

binary networks and weighted networks on the scale of V = 68 based on the cortical ROIs in 

the Desikan-Killiany atlas from a randomly selected subject in the HCP dataset.

2.5. Quantitative Evaluation of Reproducibility

Robustness and reproducibility are critical for a good structural connectome mapping 

pipeline. Based on a test-retest dataset (introduced in Section 2.6), we develop different 

quantitative metrics to evaluate the robustness and reproducibility of PSC under different 

preprocessing parameters. Currently, the reproducibility of the brain structural connectome 

is mainly evaluated through the intraclass correlation coefficient (ICC) (Prckovska et al., 

2016; Welton et al., 2015), which is defined as ICC = σbs
2 /(σbs

2 + σws
2 ), and its extensions, 

where σbs
2  represents the between-subject variance and σws

2  represents the within-subject 

variance under an analysis of variance (ANOVA) model. Since the ICC is limited to 

univariate variables (Shrout and Fleiss, 1979), we propose a distance-based ICC (dICC) to 

evaluate the reproducibility of complex connectivity representations, such as weighted 

networks. Specifically, the dICC is defined as dICC = (dbs
2 − dws

2 )/dbs
2 , where dbs

2  and dws
2

respectively represent the average squared distance between subjects and within multiple 

scans of a subject. Here, dbs
2  is analogous to the “total variance”, dws

2  to the “within-subject 

variance”, and dbs
2 − dws

2  to “between-subject variance”.

We need to define the distances for different representations of the structural connectome to 

calculate the dICC. We first consider the binary and weighted networks. For any two binary 

networks B1 and B2, we define their distance as db = |B1 − B2|, where |·| represents the 1 

metric. For two weighted networks A1 and A2, we use the 2 metric to calculate their 

distance dw1 = ‖A1 − A2‖. Note that it is possible to use other metrics to calculate the dICC, 

e.g., we first log-transform each weighted matrix and then calculate their 2 distances. These 

options are explored in the Supplementary Material, Section 3.

At the streamline level, it is not trivial to define a good metric to compare two SCCSs due to 

the complex structure of SCCSs. Specifically, each cell in the SCCS contains streamlines in 

the native subject space, and there are different numbers of streamlines for the same 

connection across subjects. Instead of directly comparing SCCSs, we extract and compare 

the mean diffusion profiles along streamlines, which depend on the spatial location of 

streamlines and the diffusivities along them. Subsequently, for each ROI pair, we calculate 

the 2 distance between their mean FA curves in order to calculate the associated dICC 

score for SCCSs.

2.6. Real Datasets

We use two real datasets, a test-retest dataset and the HCP dataset, to evaluate three different 

aspects of the developed PSC framework: robustness and reproducibility, representation 

efficiency, and the heritability of various extracted connectivity features.
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Test-Retest Dataset—The test-retest dataset represents a clinical acquisition. It consists 

of 11 healthy subjects, each of whom has 3 repeated acquisitions with an approximate two-

week interval between two consecutive acquisitions. A total of 33 acquisitions comprise this 

dataset. The average age of all subjects is 26 ± 2.4 years. The diffusion space (q-space) was 

acquired along 64 uniformly distributed directions with a b-value of b = 1000 s/mm2 and a 

single b0 (=0 s/mm2) image. The scan was done by using the single-shot echo-planar 

imaging sequence on a 1.5 Tesla Siemens MAGNE-TOM (128 × 1 28 matrix, 2 mm 

isotropic resolution, TR/TE 11000/98 ms and GRAPPA factor 2). An anatomical T1-

weighted 1 × 1 × 1 mm3 MPRAGE (TR/TE 6.57/2.52 ms) image was also acquired. The 

diffusion data were upsampled to 1 × 1 × 1 mm3 resolution using a trilinear interpolation 

and the T1-weighted image was registered on the upsampled b0 image. Quality control by 

manual inspection was used to verify the registration (Girard et al., 2014).

Human Connectome Project (HCP) Dataset—The HCP datasets represents a high-

resolution dMRI acquisition. A full dMRI session for the HCP data includes 6 runs (each 

approximately 10 minutes), representing 3 different gradient tables, with each table acquired 

once with right-to-left and left-to-right phase encoding polarities, respectively. Each gradient 

table includes approximately 90 diffusion weighting directions plus 6 b0 acquisitions 

interspersed throughout each run. Within each run, there are three shells of b = 1000, 2000, 

and 3000 s/mm2 interspersed with an approximately equal number of acquisitions on each 

shell. See Van Essen et al. (2012) and Sotiropoulos et al. (2013) for more details about the 

data acquisition and preprocessing. We have used all 3 shells for fiber ODF estimation. Only 

the b = 1000 data were used for diffusion tensor estimation and the calculation of diffusion 

tensor metrics, such as FA and MD. We extracted 856 subjects with both preprocessed dMRI 

and anatomical T1-weighted MRI data from the 900-subject release of the HCP dataset.

3. Experimental Results

In the experimental section, we evaluate the following four aspects of the PSC framework.

I. Choice of optimal parameters in PSC: There are several tuning parameters in 

PSC that are important for generating reproducible connectomes. The test-retest 

dataset together with the quantitative reproducibility measures enable us to select 

these parameters.

II. Validation of reproducibility: We are interested in validating and comparing the 

robustness and reproducibility of various connectomes extracted by PSC.

III. Evolution of the proposed compression method: We want to evaluate and 

compare the compression ratio of the SCCS with that of existing methods.

IV. Demonstration of groupwise analyses: The HCP dataset was processed using 

PSC. Using these data, we illustrate the potential applications of PSC in 

characterizing normal variations and heritability of structural connectomes in 

healthy subjects.
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3.1. Choosing the Parameters of PSC

There are several tuning parameters in PSC that are critical for generating robust structural 

connectomes. We use the test-retest dataset and the defined reproducibility metrics to select 

these tuning parameters.

Dilation parameter ψ—As described in Section 2.2, we dilate the GM cortical region into 

the WM area with ψ voxels. A proper choice of ψ is important. As ψ increases, each GM 

ROI contains a small portion of WM and thus, streamlines that stop at the GM-WM 

interface will be included in the extracted connections. However, a large ψ can increase the 

number of false positive connections.

Length filtering parameters—Most local tractography algorithms (Girard et al., 2014) 

are likely to generate short erroneous streamlines. Initialized from the WM-GM interface, 

most streamlines rapidly stop propagating since they immediately enter the GM region. It is 

routine to filter streamlines based on their length. Specifically, we filtered out streamlines 

with lengths outside of an interval [Llen, Ulen]. We set the upper bound Ulen to be 240 mm, 

since streamlines with lengths larger than 240 mm are deemed to be outliers. However, the 

effect of Llen on constructing structural connectomes is unknown.

We used the sub-network that consists of the nodes of cortical regions to determine the 

optimal values of ψ and Llen, since the dilation was done solely for the cortical region. 

Specifically, we considered the reproducibility of streamline count matrix under the 

Desikan-Killiany parcellation (V = 68 for cortical regions) on the test-retest dataset with 

different choices of (ψ, Llen). The reproducibility scores (dICC) are shown in Figure 5 (a). 

This reveals that ψ is a crucial parameter for reproducibility. By increasing ψ from 0 to 2, 

the reproducibility of the count matrices dramatically improves, whereas for ψ > 2, the 

improvement is negligible. Therefore, we set ψ = 2 (dilate 2 mm into WM since we have the 

isotropic 1 mm image resolution in the test-retest dataset). We also observe that filtering out 

short streamlines improves the reproducibility of the extracted count matrices. However, a 

large Llen can filter out a large portion of relatively short streamlines, making the structural 

connectome very sparse. We set Llen = 20 throughout this paper.

Outlier threshold—The clustering threshold θt in QuickBundle affects the outlier 

detection and feature extraction for each connection. We selected a set of candidate θts in (1, 

20) (mm) and then calculated the number of outliers identified for each θt. For θt > 10 mm, 

QuickBundle barely detected any outliers, whereas for θt < 5 mm, QuickBundle identified 

too many outliers. Since we focus on these apparent outlying streamlines that do not follow 

any major WM pathways, we conservatively set θt = 8 mm; the manual inspection validated 

our choice.

3.2. Reproducibility of Connectomes Produced by PSC

Since the structural connectome of a normal adult brain is temporally stable, a good PSC 

framework must produce similar structural connectomes based on different scans of the 

same person acquired within a few weeks. In this section, we evaluated and compared the 

reproducibility of structural connectomes at three different levels ranging from the binary 
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network and the weighted network to the whole-brain streamline data (saved in the SCCS) 

under two different cortical surface parcellations. The two parcellations are Desikan-Killiany 

(Desikan et al., 2006) with V = 68 cortical surface nodes and Destrieux (Destrieux et al., 

2010) with V = 148. The optimal parameters for dilation (ψ = 2 mm), streamline length 

filtering (Llen = 20 mm, Ulen = 240 mm) and outlier removal (θt = 8 mm)) were used in PSC 

to process the test-retest dataset.

3.2.1. Reproducibility at the binary network level—We considered the structural 

connectomes generated by PSC for all 33 scans in the test-retest dataset and thresholded 

each count adjacency matrix to obtain a binary network matrix Bi = Φ(Ai, θbin), where Φ is 

a threshold function defined as Φ(Ai(a, b), θbin) = 1(Ai(a, b) > θbin), in which 1(·) is an 

indicator function of an event. Finding a good threshold θbin is an important problem for 

brain network analysis (Li et al., 2012; Shadi et al., 2016a). Figure 6 presents the results of 

the reproducibility analysis. We observe only a small number of non-zero edges in the 

difference matrix of two scans of the same subject. In contrast, there are many more non-

zero edges in the difference matrix of two different subjects. For both parcellations, the 

dICC increases from 0.40 to around 0.64 as the threshold θbin increases from 0 to 100. Since 

the increasing rate in the range of (0, 20) is much higher than that in the range of (20, 100), 

we recommend to set θbin = 20 in PSC, where the dICC value is close to 0.59. Moreover, we 

observe that increasing V does not increase the dICC, which is consistent with the findings 

in the literature (Prckovska et al., 2016; Welton et al., 2015).

We also used the ICC to evaluate the reproducibility of topological features of the binary 

network and compared them with those in the existing literature (Prckovska et al., 2016; 

Welton et al., 2015; Zhao et al., 2015; Cheng et al., 2012a). Four selected topological 

features were calculated, the network density, characteristic path length, local efficiency, and 

clustering coefficient (Watts and Strogatz, 1998). The ICC(1,1), introduced by (Shrout and 

Fleiss, 1979), was calculated using all 33 binary networks obtained by using θbin = 20. Table 

1 summarizes the results. The ICC scores of these topological features are significantly 

higher than those in the literature (Cheng et al., 2012a; Welton et al., 2015). For instance, 

Cheng et al. (2012a) reported ICC scores in the range of 0.2 ~ 0.7 and Welton et al. (2015) 

reported ICC scores < 0.6. These results suggest that the proposed PSC can produce more 

robust binary networks.

3.2.2. Reproducibility at the weighted network level—Various weighted networks 

defined in Section 2.4 were extracted from the test-retest dataset by using PSC with the 

optimal parameters. We used the defined 2 distance to calculate the dICC scores under the 

two parcellations. Figure 5 (b) shows the dICC scores of different weighted networks. 

Among all network features, the mean FA, max FA and average length have relatively lower 

dICC scores, indicating that these three features are less discriminative or reproducible. The 

new CSA feature has the highest dICC scores under different parcellations. We consider 

CSA as a robust feature that may be better related to the “amount” of neurons connecting a 

pair of regions. In addition, we can see that the endpoint-related features have higher dICC 

scores than all other features, indicating that the endpoint-related features are very robust 

and reproducible under the PSC framework. By comparing the two resolutions of the 
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endpoint-related features, we observe that the dICC scores are higher at V = 68 than V = 

148.

We compared the proposed PSC framework with a general method from the literature (e.g. 

Roncal et al. (2013)) without using the GM ROI dilation, streamline cutting and outlier 

removal procedures. The streamline count matrix was extracted and then the binary matrix 

was generated by setting θbin = 0 to threshold the streamline count matrix. The 

reproducibility results for the count and binary matrices are presented in the last two 

columns of the bar chart in Figure 5 (b). Figure 7 compares the pairwise distance matrices of 

different features extracted from PSC and this general method. With the weighted networks 

generated by PSC, we observe a subject-specific block pattern along the diagonal, indicating 

strong reproducibility of weighted networks. The dICC scores are around 0.8 under both 

resolutions. In contrast, the corresponding pairwise distance matrices for the general method 

do not have such a clear block pattern and their dICC scores are much smaller. This 

indicates that the proposed PSC framework can extract much more reliable weighted 

networks compared with the standard method.

3.2.3. Reproducibility at the streamline level—Each cell of the SCCS contains the 

original streamlines for each connection extracted using PSC. At this stage, the streamlines 

have not been compressed yet. To perform the streamline-based analysis, we extracted the 

FA values along each streamline, treated them as a function from [0, 1] to ℝ, and calculated 

an average FA curve for each connection (or each cell of the SCCS). The 2 distance 

between mean FA curves is used to calculate the dICC score at each connection. In our 

experiment, the dICC scores were only evaluated at the connections that have at least 20 

streamlines in all subjects in the test-retest dataset. Figure 8 presents the results.

In Figure 8 panel (a), we show the streamlines connecting the left and right frontal sulci and 

the FA values along them from two scans of two randomly selected subjects in the test-retest 

dataset. These streamlines are part of the corpus callosum bundle. We observe that the 

streamlines and the FA values along them are different across subjects, but are very similar 

across multiple scans of the same subject. In Figure 8 (b) and (c), from left to right, we show 

the calculated dICC scores using the 2 distance between mean FA curves, the selected 

edges with dICC > 0.75, and the streamlines in a randomly selected subject corresponding to 

the selected edges with dICC> 0.75, respectively. The dICC scores for most connections are 

higher than 0.6, indicating good reproducibility of PSC at the streamline level. There are 144 

connections at the scale of V = 68 and 202 connections at that of V = 148 with dICC> 0.75. 

Since the PSC framework preserves both the networks (binary and weighted) and the 

streamlines (SCCS), we can readily map the connections with dICC> 0.75 back to the 

streamline space. From the mapped back streamlines, we see that the WM bundles that have 

high values of reproducibility are similar across different parcellations.

3.3. Connectome Representation Efficiency

In this section, we examine the representation efficiency of the proposed PTCS. Due to the 

flexibility of the proposed decomposition, we can separate different shape-preserving 

transformations and remove specific transformations from the shape component. In a 
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simulation study presented in the Supplementary Material, Section 4.1, we examine three 

different scenarios: extracting the shape component by separating (i) translations only, (ii) 

rotations and translations, and (iii) rotations, translations and re-parameterizations (scaling is 

preserved in the shape component since it does not help with the compression). It has been 

shown that by removing more shape-confounding parameters, we can achieve better 

representation efficiency (compression ratio). However, separating the re-parameterization 

parameters can be computationally expensive with naive implementations (Huang et al., 

2016; Srivastava et al., 2011). To speed up the alignment process, we can either use a fast 

alignment procedure (Huang et al., 2016) (a simulation study indicates that it is more than 

three times faster than the current dynamic programming implementation) or assume an 

identity re-parameterization for all streamlines (similar to scenario ii). In the following 

experiments, we used the latter approach for simplicity: the streamlines in each connection 

are only decomposed into rotation, translation and shape components.

Representation efficiency for streamlines in connections—We used the defined 

compression ratio to evaluate the representation efficiency of the PTCS. We considered 

streamlines in three representative connections under the Desikan-Killiany parcellation: (i) 

those connecting the left and right superior parietal lobule, which is part of the corpus 
callosum bundle, indexed as connection (L28, R28); (ii) those connecting the left caudal 

middle frontal gyrus and left superior parietal lobule, indexed as connection (L3, R28); and 

(iii) those connecting the brain stem and the left precentral gyrus as part of the corticospinal 

tracts, indexed as connection (LS9, R23). Figure 9 (a) presents those example bundles. To 

learn a PTCS for each connection, 20 subjects from HCP were used as the training set. 

Another 20 subjects were used as the test set for calculating the average compression ratio. 

The compression ratio was evaluated under different values of ε. The proposed method was 

compared with the classical cubic spline method and the linearization compression method 

in Presseau et al. (2015). Table 2 presents the comparison results. The PTCS outperforms the 

cubic spline and linearization compression methods in all cases. At the precision of ‖ε‖ = 

0.2 mm, we have ρ ≈ 98%. That is, with around 2% of parameters, we can almost perfectly 

recover the streamlines with the original image resolution of 1.25 × 1.25 × 1.25 mm3. The 

size of the whole HCP tractography dataset can be reduced from a few terabytes to dozens of 

gigabytes.

To further test the robustness of the PTCS learned from HCP subjects, we applied our PSC 

pipeline to three other datasets that have relatively low image quality. The detailed 

compression results are presented in the Supplementary Material, Section 4.2. Although 

there is a slight decrease in the compression ratios, we can still achieve comparable 

compression ratios in these datasets using the PTCS trained from the HCP data, indicating 

that the proposed compression method is very robust. The slight decrease in the compression 

ratio may be due to the low image resolution.

Impact of diffusion measures along bundles—Since tract-based studies often use 

dMRI diffusivity metrics, such as FA and MD, along WM bundles, we performed additional 

experiments to explore how our compression can impact the integrity of diffusivity 

information along WM bundles that connect two ROIs. Supplementary Table 3 shows that 
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the percentages of the mean FA and MD change. The mean FA and MD values along these 

tracts barely change when ‖ε‖ is smaller than 0.5. Figure 9 panel (c) and (d) present the 

mean FA and MD curves along streamlines in (L28, R28) when the tracts are compressed 

with different ‖ε‖ (a randomly selected HCP subject). Figure 9 indicates that PSC not only 

removes outliers and compresses streamlines, but also preserves the diffusion properties 

along the reconstructed streamlines after compression.

3.4. Groupwise Connectome Analysis

In this section, we demonstrate the use of PSC for groupwise analysis in a large cohort 

study. The whole HCP dataset was processed using PSC, and various representations of 

connectomes were extracted for future statistical analysis.

Heritability of the weighted network—Given the weighted networks extracted by PSC, 

we examined the heritability of the weighted structural networks of different cortical ROIs. 

Among 856 subjects in the HCP dataset, we identified 86 monozygotic twin pairs, 83 

dizygotic twin pairs, and 207 singleton subjects. In our heritability analysis, we used the 68 

× 68 mean FA weight matrix (under the Desikan-Killiany parcellation) as the phenotype of 

interest. Depending on the research focus, other weighted matrices, such as the CSA matrix, 

can be easily included in this analysis. We fitted an ACE model (Haseman and Elston, 1970; 

Neale and Cardon, 1992) as follows:

yij = xij
Tβ + aij + ci + eij, (7)

where {yij} with j = 1, 2 represent the mean FA measure for the i-th twin pair, a p × 1 vector 

xij is a set of covariates and β represents the vector containing all the coefficients of the 

effect. There are three variance components in the above model, including the additive 

genetic variance aij N(0, σa
2), the common environmental variance ci N(0, σc

2), and the 

specific environmental effect eij N(0, σe
2). For the additive genetic effect, it is assumed that 

cor(ai1, ai2) = 1 for the monozygotic twin pairs and cor(ai1, ai2) = 0.5 for the dizygotic twin 

pairs. And eij N(0, σe
2) is assumed to be independent for different subjects. The genetic 

heritability was calculated as h2 = σa
2/(σa

2 + σc
2 + σe

2). To test the significance of the heritability 

h2, we particularly focused on testing whether the genetic variance σa
2 equals zero:

H0:σa
2 = 0 v . s . H1:σa

2 > 0 . (8)

Since a large proportion of connections are zero-inflated where the normal assumption of 

model (7) is violated, we only kept 672 connections. These connections were selected based 

on the criterion that each of them has less than 5% of zero weights among all HCP subjects. 

Based on model (7), the maximum likelihood estimates of (β, σa
2, σc

2, σe
2) were obtained and 

the log-likelihood ratio test (LRT) was applied to test the significance. The results are 
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presented in Figure 10, in which panel (a) shows the estimated heritability scores for the 

mean FA weighted matrix, panel (b) shows the p-values of the significant edges (with a 

threshold of α = 0.05) after Bonferroni correction, panel (c) shows the selected 28 

significant connections with heritability scores greater than 0.8, and panel (d) shows the 

streamlines of the 28 connections. In the Supplementary Table 4, we present the ROI names, 

heritability scores and adjusted p-values of the 28 selected connections. Our results reveal 

that some well-known fiber bundles, including the left and right arcuate fasciculus bundles, 

the right inferior longitudinal fasciculus bundle, the right uncinate fasciculus bundle, the 

optic radiation bundle, and a large portion of the corpus callosum bundle, are highly 

heritable. This finding is consistent with the results in the existing literature (Kochunov et 

al., 2015).

Heritability of streamlines—At the streamline level, we conducted heritability analysis 

on the mean FA along streamlines in each cell of the SCCS. The same set of subjects from 

the previous experiment was used here. We fitted a functional version of the ACE model 

proposed in (Luo et al., 2017):

yij(s) = xij
Tβ(s) + aij(s) + ci(s) + eij(s), s ∈ [0, 1], (9)

where yij(s) with j = 1, 2 represent the mean FA curve for the i-th twin pair at a point s ∈ [0, 

1]. Age, gender, handedness and an intercept term were added in xij ∈ ℝ4 and β(s) is a 

vector of four functional covariate coefficients. The three variance components aij(s) ~ GP(0, 

Σa), ci(s) ~ GP(0, Σc), eij(s) ~ GP(0, Σe) are Gaussian processes that at a fixed point s ∈ [0, 1] 

have the same assumptions as in the previous ACE model (7). Then heritability is estimated 

along each curve as h2(s) = Σa(s, s)/[Σa(s, s) + Σc(s, s) + Σe(s, s)] locally. To test the 

significance of heritability, we performed both local and global tests. For a specific point s0 

∈ [0, 1], we focused on testing locally whether the genetic variance Σa(s0, s0) is equal to 

zero:

H0: ∑a (s0, s0) = 0 v . s . H1: ∑a (s0, s0) > 0 . (10)

The weighted likelihood ratio statistic (WLRS) (Luo et al., 2017) was used to calculate the 

local p-values. For the global test on the entire curve, we tested whether all the locations 

have genetic variance equal to zero:

H0: ∑a (s, s) = 0, ∀s ∈ [0, 1] v . s . H1: ∑a (s, s) > 0, ∃s ∈ [0, 1] . (11)

The summation of the local WLRS along the tract curve was taken as a global statistic. We 

performed a wild bootstrap procedure (Zhu et al., 2012) to efficiently estimate the 

corresponding global p-value using 106 bootstrap replications. Bonferroni correction was 

applied to adjust for multiple comparisons of 256 connections under the test. Table 3 shows 

the top connections with global p-values less than or equal to 2.56 × 10−4 (the smallest 
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possible p-value based on our bootstrap sampling strategy). Figure 10 panels (e)–(h) present 

the results for a specific connection (L10, L34), in which panel (e) shows one example of the 

streamlines in (L10, L34), panel (f) shows one example of the mean FA curves along this 

connection for two pairs of monozygotic twins, panel (g) shows the heritability score along 

the curve and panel (h) shows the corresponding local p-values along the curve.

4. Discussion

We have developed a powerful PSC mapping framework for performing structural 

connectome analysis in large-scale neuroimaging studies. The multi-layer representation 

allows us to explore the brain structural connectome across three different levels. At the 

streamline level, the geometric information is well preserved, and the developed variance 

decomposition allows us to separate the streamlines into various components. The shape 

component usually needs a large number of parameters to represent, but the developed PTCS 

makes it possible to efficiently represent the shape information using a low-dimensional 

vector. At the weighted network level, we extract a dozen features from different aspects to 

better characterize the brain connectivity. Compared to the commonly used count feature, 

PSC not only provides several novel and robust measures but also describes each connection 

in a more comprehensive manner. A concatenation of all weighted networks leads to a tensor 

weighted network representation, which calls for novel statistical methods. At the binary 

network level, a systematic evaluation of reproducibility helps us to choose optimal 

thresholds to obtain robust binary networks.

We applied PSC to process both the test-retest dataset and the HCP dataset. The test-retest 

dataset is crucial for the development of PSC, based on which the reproducibility of the 

brain’s structural connectomes was evaluated across the three different levels. The tuning 

parameters of PSC were determined by optimizing the reproducibility results. In our study, 

we tried to explore some important questions when analyzing the structural connectomes.

Factors that affect connectome reproducibility

Through the newly defined dICC score, we can evaluate the reproducibility of the whole 

cortical brain connectome at the binary and weighted network levels. From the experimental 

results, we observe that dilation of the GM ROIs, fiber cutting, and filtering out short 

streamlines are crucial for improving the reproducibility of the weighted networks. Dilation 

and fiber cutting can overcome some of the drawbacks of the current tractography 

algorithms. Specifically, due to low image resolution and noise caused by imaging 

techniques and tractography algorithms, a decent amount of streamlines are stopped before 

reaching the GM ROIs. A recent study by Reveley et al. (2015) delineates three major 

causes of this: the low diffusion anisotropy, dominant superficial WM and sudden 

propagation changes of small axonal tracts. Dilation and fiber cutting can include pre-

stopped and non-stopped fibers, leading to more complete and robust streamlines. However, 

we note that dilation is only one strategy for reducing the drawbacks of current tractography 

algorithms. It also has the risk of increasing the false positive rate by introducing false 

connections. Moreover, the dilation parameter ψ is a key parameter that must be tuned in the 

PSC framework.
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In addition, among all the streamlines in a brain’s tractography data, a large portion are short 

ones (Girard et al., 2014). These short streamlines tend to be false positives more than the 

long ones. Thresholding some short streamlines can produce more robust connectomes 

based on our analyses of the test-retest dataset. To obtain a binary network, our results have 

shown that using a small threshold for the count matrix will produce much more robust 

binary networks. In the current setting (with about 106 streamlines in each tractography 

dataset), a threshold of 20 works well.

Note that the outlier removal strategy we use is relatively simple. The average fiber length 

between two ROIs can vary. Instead of using a fixed threshold θt, an adaptive one can be 

used to better classify streamlines in a connection and thus remove outliers more effectively. 

Since we have the test-retest dataset, a future direction will be to utilize these data as a 

training set and develop a supervised outlier streamline removal method.

Connectomes at different levels

From simple to complex, the developed PSC framework produces binary, weighted and 

streamline-based connectomes. Each format carries different information. For simplicity, the 

current literature focuses on the study of binary networks, however, the streamline-based 

connectome (referred to as the SCCS in this paper) carries much more information. For 

example, it contains the information carried by the binary network and most of the weighted 

networks. Our compression method allows us not only to project streamlines into a low-

dimensional common space, but also to apply statistical methods to efficiently model them. 

A study on the shapes of fiber curves (Zhang et al., 2016) has demonstrated that the shape is 

much more reproducible than the streamline count feature.

Heritability of diffusion profiles

As simple illustrations, we demonstrate the heritability of FA values extracted using the PSC 

framework. With the weighted mean FA matrix, we observed that many connections are 

highly heritable (with h2 > 0.8). Since PSC preserves the streamline based connectome, we 

can map the highly heritable connections back to the streamline space using the SCCS and 

study these streamlines. We found that well-known fiber bundles including the left and right 

arcuate fasciculus bundles, the right inferior longitudinal fasciculus bundle, the right 

uncinate fasciculus bundle, the optic radiation bundle, and a large portion of the corpus 

callosum bundle, are highly heritable. At the streamline level, using the mean FA curves, we 

can specifically analyze the local and global heritability along the streamlines and achieve 

results that are consistent with those obtained by using the weighted mean FA matrix.

Although we have demonstrated the use of PSC for groupwise connectome analyses, the 

power of PSC for groupwise analyses has not been fully explored yet, especially at the 

streamline level. A low-dimensional representation and the learned common space allow us 

to build efficient statistical models using the geometric information for the brain structural 

connectome. The variation decomposition is an alignment process, and shape components 

from different subjects are in the same coordinate system and can be directly used for 

modeling. In addition to the extracted features to characterize a particular connection, many 
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other features can be extracted, such as the topologic features generated through persistent 

homology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A systematic overview of the population-based structural connectome mapping framework. 

GM: gray matter, CM: connectivity matrix, ROI: region of interest, SCCS: streamline 

connectivity cell structure, PTCS: parcellation-based tractography common space, and PSC: 

population-based structural connectome.
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Figure 2. 
The top row shows the effect of using streamline cutting and dilation. In panels (a) and (b), 

we show the identified streamlines between two ROIs without streamline cutting and 

dilation, with only streamline cutting and with both streamline cutting and dilation, 

respectively, from left to right. The numbers the parentheses represent the number of fiber 

tracts. The dilated regions are marked in purple in each ROI. The bottom row shows the 

extracted features in PSC that describe the WM connectivity pattern between any ROI pair: 

panel (c) is an example of streamlines connecting the right and left paracentral lobules; 

panels (d)–(f) show different features extracted from the connection.
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Figure 3. 
The remaining shape component after separating different shape-preserving transformations 

in a simulated example. The first row shows the 3D curves; the second row shows the x, y, z 

coordinates. C: translation, L: scaling, O: rotation, and γ: re-parameterization.
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Figure 4. 
Examples of extracted brain networks using PSC calculated for a randomly selected HCP 

subject.
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Figure 5. 
Reproducibility study of the weighted networks. (a) Effect of parameters ψ and Llen on the 

reproducibility (measured by dICC) of streamline count matrix under the Desikan-Killiany 

parcellation. (b) Reproducibility score (dICC) of the final PSC extracted weighted networks 

based on ψ = 2, Llen = 20 and θt = 8 mm. A comparison of PSC with a general weighted 

network extraction framework is also shown.
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Figure 6. 
Reproducibility study at the binary network level. (a) The leftmost two columns show two 

binary network matrices from two different scans of the same subject. Column 3 shows the 

difference between the scans, and column 4 shows the difference between the 1st scan and 

that from a different subject. (b)–(c) Pairwise distance matrices between 33 binary networks 

extracted from the test-retest dataset. (d) Relationship between the threshold θbin and the 

dICC score.

Zhang et al. Page 33

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Comparison of PSC with a routine procedure of extracting the connectivity matrices from 

tractography data. The test-retest dataset is used here. The top row shows the pairwise 

distance matrices of the streamline count and the CSA matrices produced by PSC. The 

bottom row shows pairwise distance matrices of the streamline count matrices and the binary 

network matrices produced by the routine procedure. To compare with the binary networks 

produced by PSC, readers can refer to Figure 6.
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Figure 8. 
Reproducibility analysis of PSC at the streamline level. (a) Extracted streamlines connecting 

left and right frontal sulci from two subjects in the test-retest dataset. The FA value along 

each streamline and the mean FA curves (in solid green) are also plotted; (b) and (c) 

Reproducibility analysis based on the mean FA curves at the scale V = 68 and V = 148, 

respectively. In each panel, we show the dICC score matrix, selected edges with the dICC > 

0.75, and the streamlines corresponding to the selected edges, from left to right, respectively. 

A: anterior; P: posterior; R: right; and L: left.
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Figure 9. 
Evaluation of the proposed compression method. (a) Raw streamlines in connections (L28, 

R28), (L3, R28) and (LS9, R23) in a subject from the HCP dataset, which require 21.4 MB 

disk space. (b) Reconstructed compressed streamlines from PSC with ‖ε‖ = 0.2 mm which 

require only 0.49 MB disk space. (c–d) Mean FA and MD curves along the streamlines in 

(L28, R28) when the streamlines are compressed with different values of ‖ε‖.
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Figure 10. 
The top row illustrates the heritability analysis using the mean FA weighted matrix: (a) 

Estimated heritability scores for each connection based on the mean FA weighted matrix; (b) 

P-values of the significant edges (with a threshold of α = 0.05) after Bonferroni correction; 

(c) Selected significant connections with heritability scores greater than 0.8; (d) 

Corresponding streamlines in the selected connections in (c). The bottom row illustrates the 

heritability analysis using mean FA curves along streamlines: (e) Selected connection; (f) 

Mean FA curves along streamlines in this connection for two pairs of monozygotic twins; 

(g) Heritability score along the curve; and (h) P-value along the curve. A: anterior; P: 

posterior; R: right; L: left and MZ: monozygotic.
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Table 1

ICC score of selected topological features on the test-retest dataset.

Scale Density Characteristic
Path Length

Local Efficiency Clustering
Coefficient

V = 68, θr = 10 0.925 0.745 0.789 0.800

V = 68, θr = 20 0.890 0.814 0.802 0.791

V = 68, θr = 50 0.877 0.679 0.791 0.793

V = 148, θr = 10 0.933 0.911 0.887 0.803

V = 148, θr = 20 0.908 0.874 0.908 0.767

V = 148, θr = 50 0.893 0.759 0.861 0.824
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Table 3

Selected connections with the possible smallest global p-values from streamline-level analysis. The global p-

values are evaluated based on 106 bootstrap runs and are adjusted using Bonferroni correction. The heritability 

scores at the weighted network level (using mean FA values) and the adjusted p-values are also presented for 

comparison.

ROI1 ROI2 global pval network-h2 network-pval

L10 (lh-lateraloccipital) L34 (lh-insula) ≤2.56E−04 0.827 8.34E−07

L10 (lh-lateraloccipital) R24 (rh-precuneus) ≤2.56E−04 0.417 5.32E−04

L12 (lh-lingual) L34 (lh-insula) <2.56E−04 0.622 1.67E−04

L23 (lh-precentral) R16 (rh-paracentral) ≤2.56E−04 0.311 1.01E−05

L23 (lh-precentral) R23 (rh-precentral) ≤2.56E−04 0.608 3.08E−05

L24 (lh-precuneus) R24 (rh-precuneus) ≤2.56E−04 0.241 1.54E−01

L24 (lh-precuneus) R28 (rh-supparietal) ≤2.56E−04 0.239 1.19E−03

L26 (lh-rostlmidfron) R26 (rh-rostmidfron) ≤2.56E−04 0.383 7.90E−05

L26 (lh-rostralmidfron) R25 (rh-supfrontal) ≤2.56E−04 0.745 1.84E−06

L27 (lh-supfrontal) R25 (rh-supfrontal) ≤2.56E−04 0.767 5.00E−11

L28 (lh-supparietal) R9 (rh-isthcingulate) ≤2.56E−04 0.37 1.00E+00

L28 (lh-supparietal) R24 (rh-precuneus) ≤2.56E−04 0.439 1.19E−06

L28 (lh-supparietal) R28 (rh-supparietal) ≤2.56E−04 0.804 5.99E−06

R10 (rh-lateraloccipital) R34 (rh-insula) ≤2.56E−04 0.306 2.50E−01

R28 (rh-supparietal) R34 (rh-insula) ≤2.56E−04 0.436 1.00E+00
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