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ABSTRACT This paper describes a novel multichannel signal denoising approach based on multivari-
ate variational mode decomposition (MVMD). MVMD is the extended version of the variational mode
decomposition (VMD) algorithm for multichannel data sets. Unlike previousMEMD (multivariate empirical
mode decomposition)-based denoising methods, the proposed scheme not only has a precise mathematical
framework but also can better align the common frequency modes of the signals. Therefore, it has good
robustness for non-stationary signals with low SNR. Based on the similarity measurement between the
probability density function (pdf) of the input signal and each mode by Hausdorff distance(HD), the interval
thresholding and partial reconstruction denoising of band-limited intrinsic mode functions (BLIMFs) are per-
formed in the algorithm. Besides, to take advantage of the characteristics of channel diversity, the subspace
projection method is used to further denoise the multivariable signals. We demonstrate the effectiveness of
the proposed approach through results obtained from extensive simulations involving test (synthetic) and
real-world multivariate data set.

INDEX TERMS MVMD, VMD, oscillatory modes.

I. INTRODUCTION
Removing white gaussian noise (WGN) from interested data
is very important in real signal processing applications.
For example, in communication and network applications,
noise from data acquisition equipment (sensors), thermal
noise from atomic vibration in conductors, and quantization
noise can be effectively modeled by independent Gaussian
distribution.

In recent years, the development of data acquisition tools
has emphasized the need to process multi-channel (multivari-
ate) data directly, from communication [1] to biomedicine
[2]. To realize joint denoising of multi-channel signals,
a multivariate extension of single-variable wavelet denois-
ing (MWD) was proposed in [3]. This method combined N
univariate wavelet denoisingwith principal component analy-
sis (PCA) of the observed signal, which has a better denoising
effect than the traditional channel-based wavelet denoising
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method. In addition, a similar multivariate wavelet denoising
method is proposed in [4]. Both of them are sensitive to
channel offset. Lately, synchrosqueezing transform (SST) has
been used in multivariable denoising (MWSD), which takes
into account the threshold technology of the multivariable
oscillation [5]. When the signal has a fixed frequency in
the analysis window, this algorithm is proved to be very
effective for multivariable denoising. However, in most cases,
the received signal shows a large frequency hopping. In this
case, the performance of the denoising method based on SST
deteriorates. Furthermore, the calculation of synchrosqueez-
ing transform based on wavelet is also time-consuming,
which is not fit for real-time signal processing.

EMD which is now widely used to recursively decompose
signals into different modes of unknown but independent
spectral bands. Empirical mode decomposition is a com-
pletely adaptive data-driven tool for non-stationary signal
decomposition [6]. Multivariate empirical mode decompo-
sition based interval thresholding method (MEMD-IT) was
proposed in [7], IMFs were selected for partial reconstruction
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by using mode alignment characteristics. However, the inter-
val threshold is used on the channel and does not take into
account the correlation in the same index IMFs. Hence, [8]
mainly introduces a subspace denoising method based on
multivariate extensions of empirical mode decomposition
(MEMD), here we call this method MEMD-SP. But mode-
mixing among different channels of MEMD [9] is also prob-
lematic. In 2017, MEMD-ITSP method was used to denoise
the multivariable signals and further to utilize the channel
diversity in [10]. Due to the lack of mathematical theory and
specified degrees of freedom, the robustness of the algorithm
is reduced.

To overcome this problem, Dragomiretskiy and Zosso
[11] proposed a non-recursive algorithm, the variational
mode decomposition (VMD) model, which is similar to the
EMD algorithm. Compared to EMD, VMD can adaptively
decompose any signal into a set of band-limited intrinsic
mode functions (BLIMFs), estimate its center frequency
online, and extract all modes simultaneously. Therefore,
VMD is suitable for removing noise in non-stationary sig-
nals. In 2017, [12] proposed variational mode decomposition
denoising combined with the Hausdorff distance, the filtering
results obtained by this method showed the better effec-
tiveness of this method compared with EMD-based method.
Li et al. [13] discussed the threshold function influence in the
VMD method, the scaling exponent obtained by detrended
fluctuation analysis (DFA) is used as a threshold to dis-
tinguish random noise and signal between IMFs and the
reconstruction residual. However, these methods are meant
for single channels. The method of extending VMD to com-
plex value signal processing was proposed in 2017 [14].
The filter bank structure of complex VMD was studied, and
the bi-directional T-F spectrum of complex data based on
complex VMD was proposed. But it only applies to bivariate
data that contains two channels.

In 2019, ur Rehman and Aftab [15] first proposed the mul-
tivariable variational mode decomposition (MVMD) algo-
rithm, which is the extension of the VMD algorithm for
the multivariable or multichannel data set. Reference [15]
focuses on the ability of MVMD to produce joint oscillation
patterns in multivariate data, which is a prerequisite for many
practical applications involving non-stationary multivariate
data. But [15] doesn’t deal with signal denoising. On this
basis, this paper proposes a novel multivariate variational
mode decomposition denoising scheme that computed the
Hausdorff distance(HD) and combined with the subspace
(MVMD-HDSP). The proposed algorithm decomposes the
multivariable data by MVMD, and then estimates the PDF of
each extracted joint rotationmode. Next, based on the similar-
ity measure between the PDF of the input signal and the PDF
of eachmode, the interval threshold and partial reconstruction
are applied to denoise the BLIMFs through HD. Finally,
using the characteristics of channel diversity, the subspace
projection method is employed to further denoise the mul-
tivariable signals. In the process of denoising, this method
can not only fuse the internal correlation between multiple

data channels but also can yield joint oscillatory modes in
multivariate data which is very effective to denoise non-
stationary multivariate data. To verify the effectiveness of the
proposed scheme, the synthetic signal and the real signal are
simulated to support the analysis.

The structure of this paper is as follows. The second section
introduces the principle of the algorithm. In the third section,
the multivariable denoising method based on MVMD is pre-
sented in detail. In the fourth section, the performance of
the algorithm is verified by simulation, and the conclusion
is drawn in the fifth section.

II. BRIEF DESCRIPTION OF MULTIVARIATE
VARIATIONAL MODE DECOMPOSITION
The first extension of VMD namely multivariate VMD
(MVMD) was proposed by Naveed ur Rehman and Hania
Aftab in 2019 [15], The key of MVMD is to extract K
numbers of predefined multivariable modulation oscillations
uk (t) from the input data x(t) containingN data channels, that
is, x(t) = [x1(t), x2(t), . . . xN (t)]

x(t) =
K∑
k=1

uk (t), (1)

in which uk (t) = [u1(t), u2(t), . . . uN (t)].
When extracting the multivariable modulation oscillation

set {uk (t)}Kk=1 from the input data, firstly, the sum of the
bandwidth of the extracted mode should be minimized. Sec-
ondly, the extractedmodes can accurately recover the original
signal. We estimate the bandwidth of uk (t) using the L2
norm of the gradient function of analytic representation u+k (t).
The cost function of MVMD thus becomes the multivariate
extension of the cost function used in the correspondingVMD
optimization problem and is given by

g =
∑
k

∥∥∥∂t [e−jωk tu+k (t)]∥∥∥22, (2)

in Eq.(2), a single frequency component ωk is used for the
harmonic mixing of the entire vector u+k (t). So, in uk (t).
We need to look for multivariate oscillations with a single
common frequency component ωk in all channels. To esti-
mate the bandwidth of modulated multivariate oscillations,
we should shift the unilateral frequency spectrum in all chan-
nels of u+k (t) with the central frequency ωk and take the
Frobenius norm of the resulting matrix. The Frobenius norm
is taken as a direct extension of the L2 norm used in original
VMD to the matrices, which appear due to multiple channel
signal representation. And that a simple representation of this
function g is given as follows

g =
∑
k

∑
n

∥∥∥∂t [u+k,n(t)e−jωt t]∥∥∥2
2

, (3)

in which u+k,n(t) is the analytic modulated signal with channel
number n and mode number k . And u+k,n(t) is a complex value
signal in the single component. We now give the optimization
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problem of the MVMD

min{
uk,n

}
, {ωk}

{∑
k

∑
n

∥∥∥∂t [u+k,n(t)e−jωk t]∥∥∥2
2

}
s.t.XN (t) =

∑
k

uk,n(t), n = 1, 2, . . . ,N . (4)

It is important to note that throughout the channel, there
are multiple linear equality constraints in the model above.
Then the corresponding augmented Lagrangian function will
become the following model

L
({
uk,n

}
, {ωk} , λn

)
= α

K∑
k=1

N∑
n=1

∥∥∥∂tu+k,n(t)e−jωk t∥∥∥
2

2

+

N∑
n=1

∥∥∥∥∥xn(t)−
K∑
k=1

uk,n(t)

∥∥∥∥∥
2

2

+

N∑
n=1

〈
λn(t), xn(t)−

K∑
k=1

uk,n(t)

〉
, (5)

where, α is the balancing parameter of the ‘‘data-fidelity’’
constraint. We suggest making use of the Alternate Direction
Method of Multipliers (ADMM) [16] to solve the corre-
sponding unconstrained problem in Eq.(5). ADMM turns the
whole optimization problem into a series of iterative sub-
optimization problems. These sub-problems are easy to deal
with because they seek to minimize the cost function by iter-
ating over a single parameter/function of interest, rather than
optimizing the cost function for all optimization variables
simultaneously. All the estimated modes in the frequency
domain can be expressed as

ûl+1k,n (ω) =

x̂n(ω)−
k−1∑
i=1

ûl+1i,n (ω)−
K∑

i=k+1
ûli,n(ω)+

λ̂l (ω)
2

1+ 2α(ω − ωlk )
2 , (6)

in which x̂n(ω), λ̂(ω), ûi,n(ω), and û
n+1
k (ω) denote Fourier

transforms of xn(ω), λ(ω), ui,n(ω), and u
n+1
k (ω), respectively,

and the l is the iterations. Because wiener filter is embedded
in the algorithm, the VMD is more robust to sampling and
noise.

The estimated center frequency of the mode can be
obtained by the following formula

ωl+1k =

∫
∝

0 ω

∣∣∣ûl+1k,n (ω)
∣∣∣2dω∫

∝

0

∣∣∣ûl+1k,n (ω)
∣∣∣2dω , (7)

in which the new ωk is calculated at the center of gravity of
the associated the power spectrum of modes.

III. DENOISING APPROACH
For the signal polluted by Gaussian noise, the denoising
method based on VMD is better than that based on wavelet

and EMD [17]. From [15], we can obtain that MVMD algo-
rithm not only inherits all the advantages of VMD algorithm,
MVMD also provides dyadic binary filter bank performance
for WGN. In this section, Hausdorff distance is used to
calculate the distance measure of pdfs, and VMD denoising
based on [12] is extended to multivariate signals. The WGN
component is then separated from the selected BLIMFs using
an interval threshold.

A. PROBLEM FORMULATION
Consider a noiseless signal y(t) transmitted over multiple
channels, which is received by multiple sensors, with vary-
ing attenuation and time delays contaminated by the white
Gaussian noise ni(t)

si(t) = biy(t − τi)+ ni(t), i = 1, 2, . . .N , (8)

in which bi is the propagation attenuation and τi represents the
delay of signals from the ith sensor, N denotes the number of
channels.

When the MVMDmethod is used to decompose the signal
si(t) from low-frequency to high-frequency, the noiseless
signal mode is mainly the low frequency mode, while the
noise signal mode is mainly the high frequency mode. The
decomposition process as follows

s(t) =
M∑
m=1

BLIMFm +
K∑

m=M+1

BLIMFm + r(t), (9)

in which K represents the number of all decomposition
modes and r(t) represents the residue. BLIMF stands for
band-limited intrinsic mode functions. In Eq.(9), the modal
function from BLIMF1 to BLIMFM are the noiseless signal
modes, while the other modes are the noise modes. The
purpose of the decomposition is to get an estimate ŷ(t) of the
variable y(t) from s(t)

ŷ(t) =
m=M1∑
m=1

BLIMFm +
m=M∑

m=M1+1

BLIMF̂m

1 < M1 < M < K , (10)

in which BLIMF̂m is the thresholded modes, M1 and M
denotes the BLIMF indexes for the local reconstruction.
In the case of WGN, it is beneficial to remove the noise in
high-order BLIMFs and carry out optional thresholding for
low-order BLIMFs with low noise energy.

B. IDENTIFICATION OF RELEVANT MODES FOR
PARTIAL RECONSTRUCTION
In linear signal decomposition and time-frequency decompo-
sition, predefined basis functions are obtained by selecting
orthogonal structures. This ensures that there is no ‘‘leak-
age’’ of information between different modes and channels.
It has been proved in [15] that MVMD can be decomposed
into almost orthogonal rotation modes. With the increase of
the BLIMF order, the frequency content of joint rotational
modes changes from slow to fast. When MVMD algorithm
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FIGURE 1. Hausdorff distance H( P, Q) for the triangles (the radius of
each circle is Hausdorff distance).

is applied to the noise data, the explanation of the extracted
rotation mode is necessary to determine which mode contains
noiseless signal, which one contains noise signal, or which
one contains both.

Pdf can reflect the difference between the signal distribu-
tion. For this reason, we can obtain the pdfs of the input signal
and each mode by kernel density estimation. By calculating
the similarity between the pdfs, we can distinguish the rele-
vant mode and the irrelevant mode. Hausdorff distance(HD)
is a nonlinear operator used to measure the similarity between
two sets or two geometric shapes.With the distance to the cor-
responding sets increases, the contribution of sets becomes
more and more critical in the HD, so HD can be used to deter-
mine the geometric distance between densities. The radius of
each circle in Fig.1 is Hausdorff distance H (P, Q) and Fig.1
shows that Hausdorff distance gives an interesting measure
of their mutual proximity, by indicating the maximal distance
between any point of one polygon to the other polygon. Better
than the shortest distance, which applied only to one point of
each polygon, irrespective of all other points of the polygons.
For multi-channel, the two pdfs represented by P and Q,
the Hausdorff distance is defined as follows

HD(P,Q) = max(D(P,Q),D(Q,P)), (11)

D(P,Q) =
N∑
i=1

M∑
j=1

maxpij∈Pminqij∈Q
∥∥pij − qij∥∥, (12)

D(Q,P) =
M∑
j=1

N∑
i=1

maxqij∈Qminpij∈P
∥∥qij − pij∥∥, (13)

in which N denotes the number of channels, and M is the
number of the samples. In order to get the relevant modal
function, the similarity operator D(·) is used to calculate the
distance between the m-dimensional signal s(t) and the nth
BLIMF component.

L(n) = D
1≤n≤N

[f (s(t)), f (BLIMFn(t))] , (14)

whereD(·) is theHDoperator in Eq.(11), and f (·) is a function
of the pdf of the signal. When the distance L reaches the local
maximum for the first time, a subsequent mode is taken as the
last BLIMF component of the partial reconstruction.

By calculating the slope of the distance between adjacent
BLIMFs, the corresponding mode can be identified. If the
slope increases significantly, the similarity occurring after the
BLIMF will decrease rapidly. We define α as the maximum
slope of the distance between two adjacent modes and the

input signal.

α = max |L(n)− L(n+ 1)| , n = 1, 2, . . . ,N − 1. (15)

The index of this kth mode is identified by kth = n.

C. DENOISING BASED ON INTERVAL THRESHOLD
Although partial reconstruction can effectively suppress the
out-of-band noise, the noise in the same BLIMF compo-
nent as the signal cannot be effectively eliminated. Because
MVMD has good dyadic filter bank characteristics for WGN
[15], and it is generally believed that the last BLIMF compo-
nent contains most of the noise, so the noise power En in the
nth BLIMF decomposed by MVMD can be approximated by
the power EN of the last BLIMF decomposed by MVMD.

En =
EN
β
ρ−n, n = 1, 2, . . . ,N − 1, (16)

in which both β and ρ are parameters could be obtained
from a large number of experimental statistical results.
According towavelet threshold denoisingmethod, a universal
threshold is

Tn = C
√
En2 lnM , (17)

in which Tn is the threshold value of the nth BLIMF decom-
posed by MVMD, M represents the length of date and
C denotes a constant that increases the flexibility of the
threshold.

The direct application of either hard threshold or soft
threshold will lead to the discontinuity of reconstructed sig-
nals. Because BLIMF is an amplitude-modulated-frequency-
modulated(AM-FM) signal with a mean of zero. Therefore,
whether it is related to noise or not, it makes no sense for
any isolated BLIMF sample. The interval threshold is to take
the signal Wm

n =
[
wmn w

m
n+1

]
between two adjacent zero

intersection as a whole to judge whether it is noise dominant
or signal dominant according to the unipolar value hm(rmn )
related to this interval. Therefore, the soft interval threshold
is converted to

ĥm(Wm
n ) =

{
0,
∣∣hm(rmn )∣∣ ≤ Tn

sgn(hm(Wm
n ))(

∣∣hm(Wm
n )
∣∣− Tn), else. (18)

Different from the method of local reconstruction or
thresholding used in the univariate VMD denoising method,
both methods are introduced in this paper to the MVMD
denoising method, hereinafter referred to as MVMD-HD.
The calculated kth is the best candidate forM only for a single
local reconstruction [10]. But some high-frequency compo-
nents with smaller amplitudes will be removed. An empirical
way to choose the corresponding modes could be

M = max(1, kth − P), (19)

in which P denotes a constant that can be obtained after many
experiments according to the signal characteristics. Gener-
ally, the appropriate value of P is considered to be P = 4,
and as a rule of thumb,M1 is considered to be 1, which is the
result of repeated simulations of multiple data sets.

74042 VOLUME 8, 2020



P. Cao et al.: Multichannel Signal Denoising Using MVMD With Subspace Projection

D. DENOISING COMBINED WITH
SUBSPACE PROJECTION
In the MVMD-HD method proposed in the previous section,
BLIMFs is partially reconstructed using the mode alignment
characteristics of MVMD. However, the interval threshold is
channel-wise and does not consider the correlation within the
same index BLIMFs. Therefore, on the basis of the proposed
denoising scheme (MVMD-HD), we further make full use of
the subspace projection scheme to exploit the inter-channel
correlation in the input data.

If the receiving signal si(t) from multiple sensors are con-
sidered to be synchronous, that is, the τi in Eq.(8) is equal
to 0, the signals received in Eq.(8) can be represented as the
following matrix

S = BY + G = [s1, s2, . . . sN ] ∈ CM×N , (20)

in which M and N represent the number of observed sample
points and channels, respectively. G is a Gaussian noise of
unknown covariance matrix6g. The covariance matrix of the
observation signal matrix S is

RS = E(ST S). (21)

As the signal of interest in different channels are highly cor-
related, the covariance matrix RS can be further decomposed
by singular value decomposition (SVD) as

RS = U6UT
= [Uz,Un]

[
6zO
O6n

] [
UT
z

Un

]
= Uz6zUT

z +Un6nUT
n , (22)

where,

Uz
def
= [u1, u2, . . . , ur ]

Un
def
= [ur+1, ur+2, . . . , uN ]

6z = diag
(
σ 2
z1 + σ

2
g1 , σ

2
sz + σ

2
g2 , . . . , σ

2
zr + σ

2
gr

)
6n = diag

(
σ 2
gr+1 , σ

2
gr+2 , . . . , σ

2
gN

)
, , (23)

where σ 2
i and γ 2

i represent the nonzero eigenvalues of signal
and noise in the ith column, respectively. Thus, the obser-
vation matrix S can be projected into the signal subspace,
Span(Uz) = Span {u1, u2, . . . , ur } and noise subspace,
Span(Un) = Span {ur+1, ur+2, . . . , uN } by multiplying the
orthogonal matrix U .

F = SU . (24)

The subspace projection makes full use of the spatial diver-
sity characteristics of the observed signal S, and the signal
energy produces a focusing effect in the pre-r-dimensional
space, which improves the signal to noise ratio in the signal
subspace, and the transformed signal to noise ratio can be
expressed as

SNR = 10log10

(
Pz

r/NPg

)
= 10log10

(
N
r

)
+ 10log10

(
Pz
Pg

)
, (25)

in which, Pz and Pg denote the signal power and the noise
power respectively. It can be seen that the signal in the front
r dimension will obtain a total 10log10

(N
r

)
gain of SNR by

changing the bases.
Because MVMD can be regarded as a linear decomposi-

tion, the gain of subspace projection will be obtained through
the transformation of BLIMFs. The received signal will be
decomposed into

C = <S = [C1,C2, . . .CK ] , (26)

in which < represents the MVMD operator, C contains the
joint rotational modes and Ci is the ith BLIMF component
selected for thresholding, the subspace projection of Ci can
obtain a certain SNR gain, and the corresponding orthogonal
transform for Ci is

C̃i = UTCi, (27)

According to Eq.(10), the first M1 BLIMFs components
are unprocessed, and the last K − M + 1 BLIMFs directly
discarded. So in order to reduce complexity, only the compo-
nents that need to be thresholded can be performed subspace
transformation, and the thresholded BLIMFs after inverse
transform can be written as

Ĉi = U
_

C i, (28)

in which
_

C i denotes the BLIMFs processed by thresholded in
the transformation domain. Consequently, the finally denois-
ing matrix

_

F can be well recovered well by the following
formula

F̂ = <−1Ĉ, (29)

in which Ĉ includes the BLIMF subset
{
Ĉi
}
processed by

thresholded and the unprocessed subset
{
Cj
}
. Next, we will

call this denoising method MVMD-HDSP.

IV. SIMULATION RESULTS AND DISCUSSION
In this paper, the performance of the proposed multivariate
variational mode decomposition combined with the subspace
algorithm will be evaluated by comparing it with the latest
technology of multi-component signal denoising: multivari-
ate denoising using wavelet and principal component analy-
sis (MWD) [3], multivariate empirical mode decomposition
based interval thresholding (MEMD-IT) and the MEMD-IT
in conjunction with subspace projection(MEMD-ITSP) [10].
The synthetic quadrivariate signals with a length of 2048 used
in the experiment consisting of ‘Blocks’, ‘Bumps’, ‘Heavy
Sine’ and ‘Doppler’ in its four channels. We also use ampli-
tude modulated and frequency modulated (AM-FM) syn-
thetic signal Eq.(30) [12] with a length of 2048 to formmulti-
channel signals.

s = (1+ 0.5 ∗ cos(2 ∗ pi ∗ 24 ∗ t))

· ∗ cos(2 ∗ pi ∗ 40 ∗ t + cos(2 ∗ pi ∗ 5 ∗ t)). (30)

In addition, real world multivariate data sets are test in our
experiments, a trivariate wind speed signal with the length
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of 1440 obtained from a site in Jhimpir, Pakistan while the
bivariate float drift data with the length of 1116 was taken
during the Eastern Basin experiment (Sofar data) [18]. Via
through repeating simulation of multiple data sets, we take
the balancing parameter α = 2000, while for the heavy
sine signal and doppler signal, the mode number parameter
K = 15, and K = 5 in the rest of the test signals.

A. DENOISING PERFORMANCE OF SYNTHETIC
DATA SETS
The proposedmethod and the comparison method are applied
to the synthetic quadrivariate data which were added to the
multivariate Gaussian noise samples with balanced input
SNR = 5dB which is shown in Fig.2, and the resul-
tant denoised synthetic quadrivariate data are shown in
Fig.3(a)-Fig.3(d).

Table1 shows the average reconstructed SNR value of
denoising signal, calculated by I = 10 iterations, calculated

FIGURE 2. Time plots of synthetic quadrivariate signal (black) along with
its noisy versions (gray).

FIGURE 3. Time plots of synthetic quadrivariate signal along with the its
denoised versions obtained from MWD (top left), MEMD-IT (top right),
MEMD-ITSP (bottom left) and the proposed MVMD-HDSP (bottom right).

TABLE 1. SNR performance of different methods for synthetic
quadrivariate signal.

by MWD, MEMD-IT and MEMD-ITSP, and the proposed
MVMD-HDSP algorithm for the input SNR range of bal-
anced noise (−4dB to 5dB). and the best results are in bold.

As can be seen from the Fig.3 and Table 1, MWD’s per-
formance is generally poor, although it produces a relatively
high reconstructed SNR at a lower noise level (a higher input
SNR), it consistently performs poorly at a higher noise level
(a lower input SNR). MEMD-IT performs poorly in most
cases because they perform channel-by-channel de-noising,
ignoring inter-channel correlation in the data. Under a large
range of input SNR, due to the nature of Hausdorff distance
and the subspace operation characteristics of the proposed
MVMD, this method has a stronger ability to fuse inter-
channel correlation than MEMD-ITSP, therefore MVMD-
HDSP method is always superior to all other comparison
methods.

In order to evaluate the denoising effect of MVMD-HDSP,
we used amplitude modulated and frequency modulated
(AM-FM) signal with SNR between −4dB to 4dB to form
multi-channel signals for testing, it is representative of non-
linear and non-stationary signal. The AM-FM signal Eq.(30)
is shown in Fig.4.

1) INFLUENCE OF ASYNCHRONOUS FACTORS
Due to the influence of signal transmission environment,
most of the different channels have asynchronous character-
istics, so it is of great significance to study the asynchronous
characteristics among signal channels. To analyze the per-
formance of different methods on signals with asynchronous
characteristics, we used amplitude modulated and frequency
modulated (AM-FM) signal to formmulti-channel signals for
testing, taking into account different time offsets.

The joint denoising effect of different algorithms on asyn-
chronous signals is shown in Fig.5. In order to avoid complex-
ity, two signal channels are used in the simulation experiment,
and the input SNR in different channels is 2dB. When the
number of offset points 1 ≤ 40 (approximately 2% of the
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FIGURE 4. Amplitude modulated and frequency modulated (AM-FM)
signal.

FIGURE 5. Performance comparison of different algorithms for
interference suppression under asynchronous condition.

signal length), the performance of MWD based algorithms
degrades significantly, and the performance of MWD algo-
rithm is also very poor when the number of offset points
n > 40. The orthogonal transformation and principal com-
ponent analysis methods used in MWD are linear and not
fit for the asynchronous signals. The MEMD-IT algorithm
is insensitive to time offset because it does not perform the
linear transformation of signals between different channels.
At the same time, the MEMD-ITSP method depends on
the time offset between channels. Therefore, the denoising
performance of the MEMD-ITSP algorithm decreases with
the increase of time offset. In contrast, the MVMD-HDSP
achieves an almost constant improvement of SNR relative to
the time offset, and its performance is the best, for it can fuse
the internal correlation between multiple data channels.

2) INFLUENCE OF CHANNEL NOISE
UNBALANCED POWER FACTOR
We also consider the simulation of unbalanced power in
the data channel, for simplicity, let’s just consider the
synchronization case in the four channels. The SNR of the

FIGURE 6. Performance comparison of different algorithms for
interference suppression under unbalanced power condition.

four channels are −2dB, 0dB, 2dB and 4dB respectively.
Fig.6 shows the results of the ensemble average of 10 inde-
pendent noises. The PCA method in the MWD algorithm is a
linear transformation, which leads to the pollution of the sig-
nal in the high SNR channel by the low SNR signal, resulting
in the poor denoising performance of the MWD algorithm.
Due to the application of subspace projection, MEMD-ITSP
and MVMD-HDSP can make use of the correlation between
channels and better than MEMD-IT approach regardless of
the signal form. In addition, owing to the mode-alignment
property of MVMD-HDSP, its denoising effect is better than
that of MEMD-ITSP.

B. DENOISING PERFORMANCE OF REAL WORLD DATA
In addition to the synthetic signals, we have included denois-
ing results on the real world multivariate data sets of a
trivariate wind speed signal (with speeds along east-west,
north-south and vertical directions in its three channels) and
a sofar bivariate signal. The wind data were recorded from
a wind power generating site in Jhimpir, Pakistan while the
bivariate float drift data was taken during the Eastern Basin
experiment. Fig.7 and Fig.9 respectively show the trivari-
ate wind speed signal (black) and its noisy version (gray),
sofar bivariate signal (black), and its noisy version (gray).
Both of these noisy versions were added in the multivariable
WGN sample with balanced input SNR of 4dB. The resultant
denoised trivariate and bivariate real world data from MWD,
MEMD-IT, MEMD-ITSP and the proposed MVMD-HDSP
are respectively shown in Fig.8(a)-Fig.8(d) and Fig.10 (a) to
Fig.10 (d). In addition, their corresponding SNR is shown
in Table 2 and Table 3, respectively.

All of these methods have sound effects, but the method
proposed in this paper has an excellent tracking effect on the
original signal, especially in the period when the input signal
changes much, such as the time index= 600 and the endpoint
(time index = 1400) of the trivariate wind speed signal.
Indeed, in Table 2 and Table 3, the quantitative results of

extensive experiments performed on real signals have been
provided. The average reconstruction SNR of the denoised
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FIGURE 7. Time plots of trivariate real world signal (black) along with the
noisy versions (gray).

FIGURE 8. Time plots of trivariate real world signal along with the its
denoised versions obtained from MWD (top left), MEMD-IT (top right),
MEMD-ITSP (bottom left) and the proposed MVMD-HDSP (bottom right).

FIGURE 9. Time plots of bivariate real world signal (black) along with the
noisy versions (gray).

signal is shown in Table 2 and Table 3, calculated by I = 10
iterations, calculated by MWD, MEMD-IT and MEMD-
ITSP, and the proposed MVMD-HDSP algorithm for the

FIGURE 10. Time plots of bivariate real world signal along with the its
denoised versions obtained from MWD (top left), MEMD-IT (top right),
MEMD-ITSP (bottom left) and the proposed MVMD-HDSP (bottom right).

TABLE 2. SNR performance of different methods for trivariate real world
signal.

TABLE 3. SNR performance of different methods for bivariate real world
signal.

input SNR range of balanced noise (−4dB to 4dB), and the
best results are in bold.

Because the trivariate wind speed signal and the sofar
bivariate signal have the short stationary characteristics, and
the frequency change is slow, the four methods achieve
good denoising effect. However, under the condition of low
SNR, the MWD algorithm has high reconstruction SNR
values because of its own characteristics. From the whole
range of SNR(−4dB to 4dB), the MVMD-HDSP method
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outperformed, and the SNR of this method is improved by
1dB to 2dB compared with other methods, which verifies the
effectiveness of the algorithm.

V. CONCLUSION
A novel multivariate variational mode decomposition based
denoising method using subspace projection (MVMD-
HDSP) is proposed in this paper. This method attempts to
eliminate the noise in the input data by the statistical dif-
ference between the pdfs of WGN and the expected data.
We used Hausdorff distance to calculate the pdf distance of
multivariate matrices, and interval threshold for the identified
BLIMFs. Both the synthetic and real world multivariate data
are tested using four different algorithms. Simulation results
show that theMVMD-HDSP algorithm has a better denoising
effect than based on the MEMD algorithm and wavelet meth-
ods. This is because MVMD is more robust to WGN in that
themode-alignment of theMVMDalgorithm ismore obvious
than that of the MEMD algorithm, resulting in well-defined
subband filters than the MEMD algorithm.
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