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Introduction

The tissue engineering field has exponentially grown over the 
last decade and has progressively moved from being exclusively a 
lab-bench discipline to an emerging part of  today’s medical care. 
It has largely evolved from the pre-existing field of  biomaterials 
and consists of  the de novo engineering of  tissues and organs by 
combining scaffolds, cells and biological molecules, often draw-
ing cues from the most up-to-date knowledge in developmental 
biology [1]. Although this field is focused mainly on replacing 
damaged or lost tissues, it is often somewhat misnamed with the 
term “regenerative medicine”, which has a broader meaning. The 
latter encompasses research on self-healing – where the emphasis 
is rather placed on inducing the healing of  a target tissue by po-
tentiating the body’s own ability to regenerate, through the deliv-
ery of  biologically active agents, such as nucleic acids or proteins 
[2]. In addition, tissue engineering has revolutionized the study of  
human diseases and drug toxicity by supporting the development 
of  three-dimensional in vitro models that can mimic far more re-
alistically tissue-and organ-level structures and functions that are 
at the root of  disease [3]. While our complex immune system per-
forms remarkably well at keeping us safe from disease, its inherent 
ability to protect us from any foreign agent is also the main reason 

why the replacement of  body tissues and organs is so challenging 
[4]. Although surgical techniques for transplanting organs have 
improved tremendously, it is simply not possible to cope with the 
overwhelming demand for tissues and organs by retrieving them 
from volunteering donors [5]. Moreover, even in cases where a 
suitable donor is found and an organ is successfully transplanted, 
the therapeutic efficacy is only partial and temporary. The most 
important limitation is that the immune response against the im-
planted organ requires permanent immunosuppression and thus 
ensues a lifelong struggle against immune rejection [6]. Hence, 
tissue engineering aims at overcoming these hurdles by creating 
new tissues or organs from the cells of  the same patient who re-
ceives the treatment. This would eliminate the necessity of  either 
finding a compatible donor or using immunosuppressant drugs. 
There are four important factors that need to be considered in 
order to successfully engineer a tissue in vitro: an appropriate cell 
population, a scaffold that can support the cells, the right bio-
molecules (such as growth factors), and physical and mechanical 
stimuli to influence the proper development of  the construct into 
the target tissue [7]. Engineering such tissue surrogates at a scale 
that is clinically relevant brings about a major challenge: the diffu-
sion of  oxygen, nutrients and waste products. In the human body, 
most cells are found within 100-200μm from the nearest capillary, 
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which allows for that exchange to happen, and in the lab this can 
be simulated - or at least compensated for - through the use of  
perfusion bioreactors [8]. Without its own vascular network, any 
areas of  a construct that are beyond this diffusional limit will not 
be sufficiently oxygenated, resulting in cell death and, most likely, 
overall scaffold failure soon after implantation [8]. Therefore, the 
engineering of  artificial blood vessels and capillary networks is 
not only a major area of  interest within the field, but it is also 
one on which the future success of  the whole tissue engineering 
endeavour depends [9]. Advantages and disadvantages of  existing 
regenerative medicine approaches and the characteristics of  ideal 
vascular grafts are described in Table 1.

Cell Sources for Vascular Tissue Engineering

The basic strategy for cell-based vascular tissue engineering is de-
scribed in Figure 1 and consists of  3 fundamental steps: cell isola-
tion, in vitro amplification and implantation. Each tissue engineer-
ing strategy faces its own specific challenges and considerations 
with regards to the choice of  cells, but a number of  these are 
common to all, independent of  the target tissue. Firstly, it must 
be feasible to either directly obtain the required number of  cells, 
or devise a method of  inducing the proliferation of  the starting 
population to expand these to the necessary numbers, either in 
vitro or in situ [10]. Next, these cells should be as easy to isolate as 
possible. In this context, applications based on cells originating 
from peripheral blood or from relatively non-vital superficial tis-
sues (e.g. skin or adipose tissue) are more likely to be translated to 
the clinic than those created with cells that require more compli-
cated surgical interventions (e.g. bone marrow or vascular tissue). 
Cells also need to possess the correct phenotype, or be able to 

permanently differentiate into it, in order to perform the desired 
cellular functions such as ECM deposition, cytokine release, etc. 
Other requirements may include the ability of  these cells to in-
tegrate in a seamless manner with native cells and tissue, as well 
as to connect with the existent neural and/or vascular networks. 
Lastly, cells should be amenable to the chosen delivery method. 
For example, endothelial cells (ECs) must be delivered using a ma-
terial that is permissive to their adhesion via surface integrins as 
their survival is known to be intimately linked to this process [11]. 
Depending on the nature of  the approach and its specifications, a 
number of  different sources of  cells can be used for the engineer-
ing of  vascular tissues. Most patients with vascular disorders are 
elderly, thus mature vascular cells from these patients are not suit-
able for tissue engineering. As an example, smooth muscle cells 
(SMCs) isolated from the walls of  blood vessels have been shown 
to suffer from aging-associated cellular changes, such as decreased 
proliferation and collagen synthesis [12].

Embryonic stem cells (ESCs)

Embryonic stem cells are derived from the inner cell mass of  
the pre-implantation blastocyst and are capable of  differentiation 
into all mature cell types. In addition to their pluripotency, ESCs 
can also replicate indefinitely while in their undifferentiated state, 
mainly due to their high telomerase activity. Originally, ES cell 
lines were derived by co-culture on growth arrested mouse em-
bryonic fibroblasts [13], but more recently they have also been 
derived under Good Manufacturing Practice (GMP) conditions 
using human fibroblasts or amnion epithelial cells while avoiding 
the use of  animal products in the culture medium [14, 15], reduc-
ing the risk of  animal-borne disease transmission and improving 

Table 1. Current Vascular Tissue Engineering Approaches.

Advantages Disadvantages
Allograft •   Correct morphology and tissue functionality

•   Disease cure by introduction of  functional cells 
     from healthy donor
•   Standardization and commercialization

•   Potential immunogenicity
•   Reduced availability

Autograft •   No immunogenicity and no risk of  rejection •  Not always possible (poor health)
•  Unsuitable to treat genetic (or even 
epigenetic) diseases

Xenograft •  Abundant
•  Easily sourced

•  Risk of  rejection
•  Needs to be decellularized
•  Risk of  zoonotic disease transmission
•  Morphological and physiological 
   differences between species

Synthetic
Graft

•  Unlimited supply
•  Organ-, disease- and individual-specific design 
   (personalised medicine)
•  Specific mechanical and hydrodynamic properties

•  Thrombogenicity
•  Cytotoxicity
•  Poor patency

Ideal 
Graft

•  Complete integration and growth within the host
•  Viability and durability post-implant
•  Lack of  immunogenicity and thrombogenicity

•  FDA approval
•  Does not yet exist

Allografts (cells/tissues from different individual of  the same species) are the most common approach and offer the advantage of  
treating genetic conditions but have the disadvantage of  being immunogenic. Autografts (obtained from the patient) have the advan-

tage of  no immunogenicity but often are limited by the health of  the patient and cannot treat genetic diseases. Xenografts (from differ-
ent species) pose risk of  rejection (immunogenicity) and zoonotic disease transmission. Synthetic graft are convenient but displayed so 

far poor therapeutic efficacy in humans.
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their clinical applicability. Several groups have managed to dif-
ferentiate human ECSs into ECs, with various degrees of  success, 
and demonstrate their ability to form capillary networks in vivo 
using murine ischaemic hind limb models [16, 17]. The differen-
tiation of  ESCs has also been guided towards a SMC phenotype 
[18-20], which could be valuable for the in vitro generation of  arte-
rial vessels. Although ESCs constitute a suitable cell source for in 
vitro disease and drug toxicity modelling and also provide useful 
insights into the de novo formation of  blood vessels (i.e. vascu-
logenesis) [21], their clinical use is severally hampered by ethical 
issues that arise from the necessary destruction of  human em-
bryos [22]. In addition, another major hurdle has been the poten-
tial for teratoma formation as a result of  administering patients 
with pluripotent cells. However, in recent reports of  long-term 
patients, no adverse effects of  this nature were shown, despite 
the immunosuppressant regimen that they were on [23]. Crucially, 
just like with transplanted organs, ESCs need to be matched to 
individual patients to avoid immune rejection, thus their future 
application in the engineering of  organs and tissues is dependent 
on the creation of  vast stem cell banks.

Mesenchymal Stem Cells (MSCs)

Amongst adult stem cells, mesenchymal stem cells (MSCs) exhibit 
unique characteristics, which make them of  great interest for re-
generative purposes [24]. MSCs appear to reside in niches in a 
variety of  tissues and can differentiate into numerous lineages to 
repair damaged tissues, including connective tissue, bone, carti-
lage or fat [25]. These undifferentiated cells were isolated origi-
nally from the bone marrow, but have been since detected and 
isolated in many other adult tissues such as muscle [26], dental 
pulp [27], lung [28, 29], saphenous vein [30], liver or adipose tis-
sue [31], thus providing less invasive sources of  MSCs for therapy. 
As with ESCs, these cells have greater in vitro expansion capac-
ity, but are also known for actively secreting trophic factors that 
promote tissue regeneration and regulate the immune system [32, 
33]. MSCs from bone marrow (BM-MSCs) have been extensively 
investigated in vascular tissue engineering [34], especially to study 
the interplay between ECM, growth factors and mechanical forc-
es in the differentiation these cells into SMCs during their seed-

ing in vascular grafts [35, 36]. Equally, MSCs from adipose tissue 
(often called AD-SCs) and muscle have been differentiated into 
contractile SMCs [37, 38], proliferating on both decellularized 
veins [39] and artificial scaffolds which had satisfactory mechani-
cal strength [38, 40, 41]. Nevertheless, MSCs appear to be un-
able to differentiate into ECs in vitro or in situ, a quality necessary 
for the lumenisation of  grafts or the formation of  microvascular 
networks. Researchers have implanted vascular grafts loaded with 
GFP-labelled BM-MSCs and shown that, despite the beneficial 
effect of  MSCs on the formation of  an endothelial lining, this 
layer had its origin in the host tissue and not from the implanted 
stem cells [42]. Accordingly, BM-MSCs injected into immunode-
ficient mice cannot form capillary networks on their own but are 
able to assist in the stabilisation of  networks formed by endothe-
lial progenitor cells (EPCs) through the secretion of  a plethora of  
a pro-angiogenic factors [43, 44]. This lack of  differentiation abil-
ity towards an endothelial phenotype may be due to the epigenetic 
methylation of  CD31 and VE-cadherin promoters, as observed 
in AD-SCs [45]. A hypothesis that has been gaining increasing 
support suggests that most tissue resident MSCs originate within 
the perivascular space and not directly from the bone marrow 
[46], being often labelled as pericyte/adventitial progenitor cells 
[47, 48]. As blood vessels are ubiquitously present throughout the 
body, these MSCs can be rapidly recruited to areas in need of  
repair in their vicinity [49].

Induced Pluripotent Stem Cells (iPSCs)

In the last decade, the discovery of  a method for reprogramming 
mature cells into pluripotent stem cells by Shinya Yamanaka’s lab 
[50] has provided a new cell source for tissue engineering that 
bypasses the immunogenic and ethical issues of  other stem cell 
types. This reprogramming is based on the introduction of  four 
specific genes encoding transcription factors (also known as 
Yamanaka factors) and prompts adult cells to regress into a stem 
cell-like state, with comparable self-renewal ability and differentia-
tion potential as ESCs. Similar to the latter, iPSCs can be differen-
tiated into ECs [51], SMCs [52, 53] and pericytes [54]. Zanotelli et 
al., have shown that ECs obtained this way can self-assemble into 
capillary networks when cultured in peptide-functionalized poly 

Figure 1. Key Stages in the Tissue Engineering Cycle.
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Cell isolation
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Cells are harvested from a patient, and expanded ex vivo. These are then seeded on an appropriate scaffold and cultured with biochemi-
cal and mechanical stimuli. The engineered tissue or organ is then implanted back into the patient to substitute or repair the diseased 

organ.
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(ethylene glycol) hydrogels in a manner that is representative of  
the physiological vascular morphogenesis [55]. Additionally, Wang 
et al., has shown that human iPSC-derived SMCs can be success-
fully cultured onto macroporouspoly (L-lactide) (PLLA) scaffolds 
and maintain their phenotype after subcutaneous implantation for 
at least 2 weeks [56]. In recent years, a new line of  research has 
emerged which is focused on the direct conversion of  adult cells 
into other cell types, including ECs [57, 58] and SMCs [59], while 
avoiding an intermediate pluripotency stage [60]. This shorter 
process can be achieved through transdifferentiation, in which 
lineage-specific factors are ectopically expressed, or through di-
rect reprogramming, that includes an initial partial reprogram-
ming towards the pluripotent state. ECs generated using this par-
tial iPS technology improved neovascularization and blood flow 
recovery when injected in a hindlimb ischaemia model, and could 
re-establish the endothelial lining of  decellularized vessels in vitro, 
maintaining their patency [57]. In addition, co-seeding of  these 
vascular grafts with SMCs obtained from partial iPSCs (PiPSCs) 
led to improved survival following implantation in mice, when 
compared with cell-free grafts [59]. Besides the potential of  the 
iPSC technology in providing autologous cell sources for regener-
ative purposes, it is also ideally suited for disease modelling, as the 
cells generated with these techniques maintain the genetic muta-
tions that were already present in the starting cell population [61].

Endothelial Progenitor Cells (EPCs)

Early endothelial progenitor cells (eEPCs)

The first putative kind of  circulating progenitor was proposed 
by Asahara and colleagues in 1997 and was derived by culturing 
the adherent CD34+ mononuclear cell (MNC) fraction from 
peripheral blood on to fibronectin coated plates [62]. After 3-7 
days, they differentiate and express a number of  endothelial/pro-
genitor cell surface markers such as CD133, CD34 and vascular 
endothelial growth factor receptor (VEGFR-2), and were thus 
labelled as early endothelial progenitor cells (eEPCs). Although 
these cells were shown to enhance angiogenesis in a mouse model 
of  hindlimb ischaemia [62, 63], their capacity to differentiate into 
ECs was questioned in subsequent studies implying an haemat-
opoietic origin and showing that these cells did not exhibit a cob-
blestone morphology typical of  endothelial cells or formed vas-
cular networks [64-66]. Accordingly, a later study by Medina et al., 
determined that eEPCs share a greater extent of  their proteome 
with monocytes than with mature ECs, based on transcriptional 
and protein profiling of  different endothelial progenitors [67]. 
Moreover, in the same study, caveolae and adherens junctions 
typical of  ECs could not be detected in these cells. It is now fairly 
well agreed in the field that these short-lived eEPCs contribute 
to neovascularization by secreting angiogenic growth factors and 
cytokines, such as VEGF or interleukin 8, rather than forming 
new blood vessels themselves [68]. Therefore, it appears to be 
more correct to consider these cells as pro-angiogenic monocytes 
rather than true endothelial progenitors and, for this reason, they 
should be used with caution in therapeutic angiogenesis [67, 69].

Endothelial Colony Forming Cells (ECFCs)

Different to eEPCs, the so-called endothelial colony forming cells 
(ECFCs) are regarded as a true type of  endothelial progenitor and 
show a lack of  expression of  hematopoietic markers [70]. These 

cells are also derived from the MNC fraction of  blood but are 
instead obtained as large colonies of  adherent endothelial CD45- 
cells with cobblestone morphology after 2-3 weeks of  culture on 
dishes coated with matrix proteins (e.g. collagen) [71]. For this 
reason, these cells are also referred as late EPCs or outgrowth en-
dothelial cells (OECs) in some research groups, which often gen-
erates some confusion in the field [72]. This isolation method was 
first described by Ingram et al., and is believed to induce the dif-
ferentiation of  a rare population of  CD34+/CD133-/CD146+ 
progenitors into ECs, as these cells can be obtained from both 
the total MNC fraction as well as from the referred MNC subsets 
from peripheral blood and cord blood [73, 74]. Although the ex-
pression of  CD34+ at their surface points to the bone marrow 
as their probable source, it is not known with certainty if  these 
progenitors are released directly from this tissue into the blood-
stream or if  they originate from the wall of  bigger vessels, with 
conflicting reports suggesting both origins [75, 76]. ECFCs are 
characterized by the expression of  EC markers, such as CD31, 
VEGFR-2, CD146 and von Willebrand factor and absence of  leu-
kocyte markers expression (i.e. CD14 or CD45) [70]. Functionally, 
ECFCs are known for taking up acetylated low-density lipopro-
tein (Ac-LDL) and being able to form tubes in vitro on Matrigel as 
well as capillary networks in vivo [77-79]. Additionally, these cells 
exhibit a highly proliferative profile and considerable self-renewal 
capacity, but unlike stem cells, their fate is already committed, thus 
do not present any risk of  teratoma formation [80]. 

As with iPSCs, ECFCs can be isolated from any person, hence 
they are ideally suited for autologous therapies aimed at treating 
ischaemic diseases or for the generation of  vascular grafts [81], as 
well as a tool for studying vascular diseases [82]. However, these 
applications have also been hampered due their low frequency in 
blood, with less than 1 colony obtained per 20 mL [70]. Fortu-
nately, due to the relatively non-invasive nature of  blood cell col-
lection, this procedure can be repeated several times to improve 
the likelihood of  successfully isolating these cells. Some research-
ers have alternatively attempted to increase the number of  circu-
lating EPCs prior to blood drawing by promoting their release 
into the bloodstream with a variety of  compounds, such as with 
the CXCR4 antagonist AMD3100 [83-85]. Of  interest to the pro-
spective utilization of  these cells for human therapeutic purposes, 
an animal product-free ECFC isolation and culture method was 
developed by replacing the foetal bovine serum in the endothelial 
growth medium (EGM) with pooled human platelet lysate (hPL), 
getting one step closer to the GMP requirements for clinical 
use [86]. Additionally, our group has recently demonstrated that 
ECFCs are capable of  forming complete microvascular networks 
in vitro when encapsulated in a gel-like version of  this platelet-
derived material, suggesting a patient-specific way of  delivering 
these cells for regenerative purposes [87].

In summary, blood constitutes a source of  both EPCs and pro-
angiogenic hematopoietic cells, which can be exploited to syner-
gistically promote vascular repair and overall healing of  damaged 
tissues [88]. A schematic of  ECFC isolation is shown in Figure 2.

Scaffold-Based Approaches for Vascular Tissue 
Engineering

The engineering of  vascular tissues is subdivided into two main 
development areas: microvascular networks and vascular grafts. 
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The first involves the creation of  capillary networks with the aim 
of  improving blood perfusion and reducing ischaemia in dam-
aged tissues [89]. Some examples are myocardial infarction, where 
the promotion of  local blood supply is necessary to match the 
considerable oxygen demand of  the infarcted myocardium and 
guarantee its survival [90], and chronic wounds, where insufficient 
blood vessel network has been shown to hinder full tissue repair 
[91]. The second comprises the development of  replacements for 
greater calibre vessels to be used in bypass surgeries as an alterna-
tive to the use of  autologous venous or arterial grafts.

Microvascular Networks

Hydrogels present several advantages that make them the ide-
al material type to fulfil these demands. The gelation process 
through which these hydrophilic networks are formed allows 
them to be moulded in vitro into any desired shape, while permit-
ting the homogenous dispersion of  cells throughout them, or be 
injected without damaging the targeted and surrounding tissues 
during delivery [92]. Due their high water content and perme-
ability, the diffusion of  oxygen, nutrients as well as secreted mol-
ecules is greatly facilitated, which is essential for cell survival. The 
mechanical profile of  these materials also resembles that of  most 
vascularized soft tissues, thus they are able to flex in concert with 
deformations of  host tissue [93]. Their application is not restrict-
ed to soft tissues though, as their mouldable nature allows them 
to be combined with harder materials into bi-phasic scaffolds in 
order to meet the required stiffness parameters, as for example 
in the case of  engineered bone implants [94]. Hydrogels can be 
derived from synthetic polymers, such as polyethylene glycol, 
(PEG), or from natural materials, including silk fibroin, alginate, 
Matrigel, chitosan, collagen and fibrin, and have been extensively 
reviewed by others [92, 95, 96]. Depending on their specific ori-
gin, natural hydrogels have a number of  advantages, including an 
inherent ability to bind biomolecules (e.g. growth factors), low 
cost, improved cell adhesion due to inclusion of  integrin-binding 
sequences or susceptibility to cell-mediated proteolytic degrada-
tion [97]. However, there are also drawbacks linked to the use of  
these natural materials, which include issues with purification and 
batch replicability, immunogenicity or pathogen transmission. 

Synthetic hydrogels are advantageous compared to collagen-or 
fibrin-based hydrogels due to the greater control over material 
characteristics (including mechanical properties), reduced batch-
to-batch variability and absence of  disease transmission risk [93]. 
Their superior tunability also allows the design of  hydrogels that 
can react to environmental conditions, changing properties de-

pending on factors such as temperature or pH [98]. Neverthe-
less, these polymers need to be modified in order to promote cell 
adhesion or degradation, through coupling of  integrin-binding 
domains (e.g. RGD peptides) and sequences cleavable by matrix 
metalloproteinase, respectively. In addition, while ECM proteins 
can naturally bind to most angiogenic GFs, synthetic polymers 
can only efficiently achieve that following chemical modification 
[99]. As a consequence, the final cost of  synthetic hydrogels for 
tissue engineering can be considerably higher than that of  natural 
ones. Finally, any new synthetic polymer needs to go through a 
rigorous process of  safety assessment, as many synthetic poly-
mers are potentially cytotoxic [100]. Therefore, synthetic and nat-
ural materials can be combined, exploiting the unique properties 
of  each type to obtain a hydrogel with superior overall properties 
compared to its individual constituents. Such synergistic effect 
has been recently shown by mixing fibrin and PEG hydrogels in 
the delivery stem cell-derived ECs in an animal model [101]. The 
fibrin component allowed the formation of  a vascular network 
and infiltration of  supporting pericytes, while PEG increased 
the stability and longevity of  the injectable scaffolds. In a similar 
manner, Deng et al., showed that the crosslinking of  collagen hy-
drogels with chitosan improves their mechanical properties and 
increases the in vivo vascular growth into these matrices [102].

Artificial Vascular Grafts

Synthetic grafts for large-caliber arterial replacement (inter-
nal diameter > 6 mm) have already proven rather success-
ful in the clinical setting and are usually produced out of  non-
degradable poly(ethylene terephthalate) (Dacron®), expanded 
poly(tetrafluoroethylene) (Teflon®) or polyurethanes[103, 104]. 
The lower shear stress near the walls of  bigger vessels (e.g. aor-
ta), limits thrombogenicity and leads to satisfactory results with 
these grafts in terms of  patency and durability, despite incom-
plete endothelialization. However, in the case of  small-diameter 
artery (e.g. coronary artery) grafts made of  the same materials, the 
shear stress is higher resulting in thrombus formation and intimal 
hyperplasia at the anastomotic site [105, 106]. Coating of  these 
Teflon-based grafts with heparin has been attempted with a par-
tial improvement in patency rates [107]. Nonetheless, this surface 
treatment is likely to provide short-lasting benefits for the period 
immediately following implantation. Because of  the limitation of  
artificial blood vessel implants, most of  the vascular interventions 
are performed using autologous grafts, such as the saphenous 
vein. In spite of  being the current gold standard, the performance 
of  these veins is still not at a satisfactory level, mainly due to the 
mechanical mismatch. Veins have thinner walls than arteries and 

Figure 2. Summary of  isolation method for ECFCs from peripheral blood, as first described by Ingram et al., [70].
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do not have the mechanical properties to efficiently withstand the 
higher arterial pressure. This leads to aneurism formation, fol-
lowed by thickening of  the vessel wall (intimal hyperplasia) and 
accelerated atherosclerosis [108, 109]. Additionally, one third of  
the patients with peripheral artery disease do not have suitable 
veins that can be used as autografts and the harvesting of  these 
veins may also result in donor site morbidity [34], thus there is a 
great demand for an artificial alternative.

There have been two main strategies for engineering vascular 
grafts: in vitro and in situ. The first aims at generating functional 
constructs in the laboratory by using cells, scaffolds and biore-
actors [110]. In this case, a biodegradable synthetic or naturally 
derived scaffold is seeded with ECs, SMCs, MSCs or a combina-
tion of  these. Before being implanted, constructs are cultured in 
a pulsatile flow bioreactor to mimic the physiological conditions 
and stimulate cells to remodel the scaffold into the different lay-
ers of  the blood vessel. Due to its long in vitro culture period, this 
approach is not suitable for urgent interventions. Nevertheless, a 
great number of  vascular interventions can be planned with suf-
ficient time to fabricate such a kind of  graft. The other approach 
is to engineer a cell-free graft that can selectively recruit cells from 
the host and allow the remodelling to happen in situ. Because no 
in vitro incubation is necessary, these grafts can be made available 
immediately to surgeons as well as at a lower cost. In a recent 
example of  this type of  approach, an electrospun vascular graft 
was modified with recombinant mussel adhesive protein fused to 
RGD peptides to promote cellular recruitment in situ [111]. This 
led to enhanced re-endothelialization by mobilized ECs/EPCs 
and lower graft failure in an in vivo rabbit model. 

Independently of  the approach followed, lab-engineered grafts 
are designed with a set of  specifications in mind, with the final 
goal of  mimicking the native tissue. The most important mechan-
ical requirements are a burst pressure ≥ 1,700 mmHg (similar to 
that of  saphenous vein) and the ability to resist the cyclic strain of  
the hemodynamic environment for 30 days in vitro without dilat-
ing [112]. It is crucial that the elasticity of  the graft is as close as 
possible to that of  the native vessel, as any compliance mismatch 
leads to turbulence in the blood flow near anastomoses, which in 
turn increases platelet activation and thrombus formation [113]. 
Strategies aimed at reducing the thrombogenicity of  the surface 
are often based on the chemical modification the surface with 
clotting inhibitors or through seeding/capture of  ECs/EPCs 
[114]. In order to be properly integrated over time, the implanted 
scaffold should also allow the ingrowth of  cells from the host, 
while modulating their cell fate and differentiation to form new 
tissue. This could be controlled by the microscopic properties, 
such as porosity, topography, surface chemistry and bioactivity 
[115] and applies not only to vascular specific cell types but also 
to immune cells that mediate the inflammatory response to the 
implant. For example, it has been shown, that the polarization of  
macrophages towards the tissue remodelling (M2) phenotype on 
vascular grafts can be promoted by increasing the fibre thickness 
and porosity of  the scaffolds, leading to enhanced ECM depo-
sition by the invading cells [116]. The newly synthetized ECM 
gradually takes over the mechanical integrity of  the graft, whilst 
the scaffold materials are degraded.

Therefore, the scaffold’s degradation rate is another essential pa-
rameter to be considered and should be in tune with ECM deposi-

tion [117]. In this context, synthetic biodegradable polymers are 
the first choice for vascular grafts as, compared to natural materi-
als, they provide a much greater control over the degradation rate 
and other parameters such as porosity, elasticity or microscopic 
structure [118]. Degradable polyesters, including poly(glycolic 
acid) (PGA), poly(lactic acid) (PLA), poly(caprolactone) (PCL) 
and their co-polymers, are the most frequently used in this ap-
proach. These polymers are known to be degraded at defined 
rates, thus are often combined in the same scaffold to achieve the 
ideal degradation rate for the different graft layers. An interest-
ing example is the work by Lim et al., in which a vascular graft 
was fabricated using poly(lactide-co-ε-caprolactone) (PLCL) and 
further reinforced with PGA fibres [119]. Following seeding of  
vascular cells differentiated from autologous BM stem cells, grafts 
were implanted into the abdominal aorta of  dogs and remained 
patent for the whole duration of  the study (8 weeks). In summary, 
scaffolds for vascular grafts should be designed so that they act 
as an antithrombotic interface with the blood, providing a pro-
visional template for the regeneration of  the new arterial vessel, 
while preventing inflammatory processes that can lead to throm-
bosis and intimal hyperplasia, especially at the graft anastomoses.

Conclusion

In summary, the combined advances of  vascular cell biology and 
biomaterial sciences offer a variety of  options for the develop-
ment of  cell-based regenerative medicine approaches for cardio-
vascular biology. In the future, particular attention will need to 
be dedicated to determine cell sources and biomaterials suitable 
for the specific medical needs of  the pathology and the clinical 
state targeted. Rigorous and high-powered studies on the efficacy 
of  cell-based or cell/material-based remedies will need to focus 
on specific cardiovascular conditions and progress swiftly from in 
vitro to in vivo to clinical settings. Although recent years brought 
enormous improvements in the characterisation, standardisation 
and safety of  both cells and biomaterials, patient safety will re-
main the central focus and probably the biggest hurdle for the 
development of  cell therapy approaches applied to cardiovascular 
regenerative medicine.
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