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The Nested L-Shaped Decomposition Subproblem

Foreachstaget=1,...,H —1,scenariok =1,...,K!

NLDS(t, k) : min(c}) x} + 6},

st Wixf = h — T xt ) (k)

D ixp > df . j=1,....rk (ok) (1)
EiiXi+ 0k > ek j=1,....5(0}) 2)
xt >0

@ KC!: number of distinct scenarios at stage t
@ a(k): ancestor of scenario k at stage t — 1
° Xa(k) current solution from a(k)

@ Constraints (1): feasibility cuts

@ Constraints (2): optimality cuts



Nested L-Shaped Method

Building block: NLDS(t, k): problem at stage t, scenario k

@ Repeated application of the L-shaped method

@ Variants depending on how we traverse the scenario tree

> Pho Ok
Cut «—
t—1,a(k)

NLDS(t, k)

X
—— Trial solution
t+1, D (k)

@ a(k): ancestor of scenario k

@ D'*'(k): descendants of scenario k in period t + 1



@ Node: (t=1,k=1)
@ Direction: forward

e Output: x]
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@ Nodes: (t=2,k), k € {1,2}
@ Direction: forward
@ Output: x2, k € {1,2}
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@ Nodes: (t=3,k), k € {1,2,3,4}
@ Direction: backward
@ Output: (73, p3,03), k € {1,2,3,4}
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@ Nodes: (t=2,k), k € {1,2}
@ Direction: backward
@ Output: (72, p2,02), k € {1,2}
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Feasibility Cuts

If NLDS(t, k) is infeasible, solver returns =}, p, > 0
o (wf)T(hf — Té X)) + (o) Tk > 0
o () TW!+ (pl)TDL <0
The following is a valid feasibility cut for NLDS(t — 1, a(k)):

t—1 t—1
DatioX = Gagr
where

D;;;) = (rf)TT
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Optimality Cuts

Solve NLDS(t, k) forj=1,..., K=", then compute

t
1 _ Pk t\T Tt-1
Ej - Z 7 (k)" Tk
keDt(j) p;
,Dt rt st
1 K (- t\T pt t gt t At
e = Y ST T+ plidl + ) okiel]
keDt(j) FJ i=1 =1

D'(j): period t descendants of a scenario j at period t — 1
t
Note: p’,’—& = p(k, t|j,t—1)
j
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Recombining Scenario Tree

1 e
.

@ When can we recombine nodes?

@ When can we assign the same value function V*+'(x) to
each node k of stage t?
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Nested Decomposition Is Non-Scalable

Assume
@ H time steps, M! discrete outcomes in each stage
@ No infeasibility cuts

M =1 M2=2 M3=4

o Forward pass: M' + M'- M2+ ... =3[ ni_ M
o Backward pass: 3.1, Nt M,
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Was Nested Decomposition any Good?

Alternative to nested decomposition is extended form
@ Extended form will not even load in memory

@ Nested decomposition will load in memory, but will not
terminate (for large problems)

Nested Decomposition lays the foundations for SDDP
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Enumerating Versus Simulating

@ Enumeration: {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2,
3), (2, 4))}
@ Simulation (with 3 samples): {(1, 3), (2, 1), (1, 4)}

16/43



Making Nested Decomposition Scalable

Solution for forward pass
@ In the forward pass, we simulate instead of enumerating

@ This results in a probabilistic upper bound / termination
criterion

Solutions for backward pass

@ In the backward pass, we share cuts among nodes of the
same time period

@ This requires an assumption of serial independence
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Serial Independence

Serial independence: probability of realization ¢! is constant
from all possible (t — 1)-stage scenarios

P =cll?=ct)=prjet,... . M ke, . M

Problem is identical from t = 2 whether we observe w' or w?
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Example of Serial Independence (l)

@ Value in circles: realization of ¢!

@ Value in edges: transition probabilities

Is this tree serially independent?
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Example of Serial Independence (ll)

Is this tree serially independent?
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Example of Serial Independence (1)

Is this tree serially independent?
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Implications for Forward Pass

At each forward pass we solve H — 1 NLDS problems

For K Monte Carlo simulations, we solve 1 + K - (H — 1) linear
programs
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Implications for Backward Pass

Serial independence implies same value function for all nodes
of stage t = cut sharing

. . t H tn
For a given trial sequence x,, we solve > ;" , M’ linear
programs, for K trial sequences we solve Kzf’zz M! linear
programs
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Serial Independence is Helpful, Not Necessary

We can use dual multipliers in stage t + 1 for cuts in stage t
even without serial independence

However, each node in stage t has a different value function
@ More memory

@ More optimality cuts needed because we are
approximating more value functions

With serial independence, we can
@ get rid of the scenario tree

@ work with continuous distribution of ¢!
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SDDP Forward Pass

@ Solve NLDS(1,1). Let x{ be the optimal solution. Initialize

'=xlfori=1,....K
@ Repeatfort=2,... . H,i=1,... K
e Sample a vector h! from the set hi k =1,..., M!

e Solve the NLDS(t, i) with trial decision )“(,.’_1
e Store the optimal solution as X!
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SDDP Backward Pass

@ Repeatfort=H, H-1,...,2
o Repeatfori=1,...,K
@ Repeatfork=1,..., M
Solve NLDS(t, k) with trial decision %'~

e Compute
mt Mt
ETT = pkmii T e = ph(mh ihk + ok iek)
k=1 k=1
@ Add the optimality cut
Et71x+ 0> el

to every NLDS(t —1,k), k=1,..., M
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Central Limit Theorem

Suppose {Xi, Xz, ...} is a sequence of independent identically
distributed random variables with E[Xj] = . and
Var[Xi] = 02 < co. Then

ﬁ((lE_;X) —u) % N(O, 0?).
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Probabilistic Upper Bound

Suppose we draw a sample k of (5}’(), t=1,...,H and solve
NLDS(t,k)fort=1,...,H
@ This gives us a vector x}, t=1,.... H

@ We can compute a cost for this vector zx = >°,_,, ckx}

@ If we repeat this K times, we get a distribution of
independent, identically distributed costs zx, k =1,..., K

e By the Central Limit Theorem, z = % S"K_, z, converges to
a Gaussian with standard deviation estimated by

K
Z Z— Zk
k=1

@ Each (x,ﬂ, t=1,..., H)is feasible but not necessarily
optimal, so 2 is an estimate of an upper bound
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Bounds and Termination Criterion

After solving NLDS(1,1) in a forward pass we can compute a
lower bound z-8 as the objective function value of NLDS(1, 1)
After completing a forward pass, we can compute

H
Zx = ) X
1
t1 )
zZ = kZZk

K
o = ZZK—
k=1

Terminate if z/8 € (z — 20,z + 20), which is the 95.4%
confidence interval of z
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Graphical lllustration of Termination Criterion

Objective
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Size of Monte Carlo Sample

How can we ensure 1% optimality gap with 95.4% confidence?

@ Choose K such that 20 ~ 0.01 - z

@ Mean and variance depend (asymptotically) on the
statistical properties of the process, not K

@ Set

32/43



Full SDDP Algorithm

@ Initialize: Z=00,0 =0

@ Forward pass, store z-8 and z. If zt8 ¢ (Z — 20,z + 20)
terminate, else go to backward pass

@ Backward pass

@ Go to forward pass
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Consider the following problem
@ Produce air conditioners for 3 months
@ 200 units/month at 100 $/unit
@ Overtime costs 300 $/unit
@ Known demand of 100 units for period 1
@ Equally likely demand, 100 or 300 units, for periods 2, 3
@ Storage cost is 50 $/unit

@ All demand must be met
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@ x}: regular production
@ yl: number of stored units
@ wj: overtime production

@ d}: demand

What does the scenario tree look like?
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Extended Form

2
minx" +3w' +0.5y" + ) pr(x¢ + 3w + 0.5y7) +
k=1

4
> pi(xE +3wp)
k=1
st.x' <2

X ew —y =

1 2 > 0 o
Y+ Xg + Wi — Y = dg

X2 <2 k=12
yg(k)+xl§+wl:<3_yl?: p
Xp <2

xtowhyb>0k=1,... K t=1,2,3
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Optimal solution:
@ Stage1: x' =2, y' =1
@ Stage 2, scenario 1: x2 =1, y? =1
@ Stage 2, scenario 2: x2 =2, y2 =0
@ Stage 3, scenario 1: x3 =0
@ Stage 3, scenario 2: X3 = 2
@ Stage 3, scenario 3: x3 = 1

@ Stage 3, scenario 4: x2 =2, [§ =1

What is the cost for each path?
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SDDP Upper Bound Computation

param CostRecord{l..MCCount, 1..IterationCount};

let {m in 1..MCCount, i in 1..IterationCount}
CostRecord[m, i] := sum{j in Decisions, t in 1..H}

c[jl*xTrialRecord[j, t, m, 1i];

let {m in 1..MCCount} CostSamples[m] := CostRecord[m,

IterationCount];

let CostAverage := sum{m in 1..MCCount} CostSamples|[m]
/ MCCount;

let CostStDev := sqgrt (sum{m in 1..MCCount}
(CostSamples[m] - CostAverage)A2 / MCCountA2);
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Thinking About the Data

CostRecord{l..MCCount, 1l..IterationCount}

! ! ! !
! ! ! !
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
! ! ! !
! ! ! !
| | | |
| | | |
| | | |
1 1 1 1

@ What is the distribution of each column?

@ How does (k, i) entry depend on (k + a, i) entry?

@ Which column is more likely to have a lower average?
@ Which data has a Gaussian distribution?
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Distribution of Last Column

z=6.17,58=202

Column 5

35

30

25

20 | =

15 -

10 -

Not a Gaussian distribution
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Moving Average for 5 lterations

Plot: (N, YN, CostSampless)y ‘MGCount = 100, IterCount = 5

10
s N
8
7 .
——- —Ilteration 1
6
! —Iteration 2
5 Iteration 3
4 —lteration 4
3 —lteration 5
2
1
0 T
00 N NOWLWUMOMNST = 00 1N N
S NN <N N ONNOOOO

CostStDev = 0.2007: sample standard deviation of last column
of CostRecord
Note: average cost decreases as iterations increase
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How Many Monte Carlo Samples?

2.2.02

2 _ 2 _
(0.01 -2) (0.01 -6.17) 4287
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