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The Nested L-Shaped Decomposition Subproblem

For each stage t = 1, . . . ,H − 1, scenario k = 1, . . . ,Kt

NLDS(t , k) : min(ct
k )T x t

k + θt
h

s.t. W tx t
k = ht

k − T t−1
k x t−1

a(k), (π
t
k )

Dt
k ,jx

t
k ≥ d t

k ,j , j = 1, . . . , r t
k , (ρ

t
k ) (1)

E t
k ,jx

t
k + θt

k ≥ et
k ,j , j = 1, . . . , st

k , (σ
t
k ) (2)

x t
k ≥ 0

Kt : number of distinct scenarios at stage t

a(k): ancestor of scenario k at stage t − 1

x t−1
a(k): current solution from a(k)

Constraints (1): feasibility cuts

Constraints (2): optimality cuts
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Nested L-Shaped Method

Building block: NLDS(t , k): problem at stage t , scenario k

Repeated application of the L-shaped method

Variants depending on how we traverse the scenario tree

NLDS(t , k)

x t
kπt

k , ρ
t
k , σ

t
k

Cut Trial solution
t − 1,a(k) t + 1, Dt+1(k)

a(k): ancestor of scenario k

Dt+1(k): descendants of scenario k in period t + 1
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Example

Node: (t = 1, k = 1)

Direction: forward

Output: x1
1

6 / 43



Example

Nodes: (t = 2, k), k ∈ {1,2}

Direction: forward

Output: x2
k , k ∈ {1,2}
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Example

Nodes: (t = 3, k), k ∈ {1,2,3,4}

Direction: backward

Output: (π3
k , ρ

3
k , σ

3
k ), k ∈ {1,2,3,4}
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Example

Nodes: (t = 2, k), k ∈ {1,2}

Direction: backward

Output: (π2
k , ρ

2
k , σ

2
k ), k ∈ {1,2}
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Feasibility Cuts

If NLDS(t , k) is infeasible, solver returns πt
k , ρ

t
k ≥ 0

(πt
k )T (ht

k − T t−1
k x t−1

a(k)) + (ρt
k )T d t

k > 0

(πt
k )T W t + (ρt

k )T Dt
k ≤ 0

The following is a valid feasibility cut for NLDS(t − 1,a(k)):

Dt−1
a(k)x ≤ d t−1

a(k)

where

Dt−1
a(k) = (πt

k )T T t−1
k

d t−1
a(k) = (πt

k )T hT
k + (ρt

k )T d t
k
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Optimality Cuts

Solve NLDS(t , k) for j = 1, . . . ,Kt−1, then compute

E t−1
j =

∑
k∈Dt (j)

pt
k

pt−1
j

(πt
k )T T t−1

k

et−1
j =

∑
k∈Dt (j)

pt
k

pt−1
j

[(πt
k )T ht

k +

r t
k∑

i=1

ρt
kid

t
ki +

st
k∑

i=1

σt
kie

t
ki ]

Dt (j): period t descendants of a scenario j at period t − 1
Note: pt

k
pt−1

j
= p(k , t |j , t − 1)
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Recombining Scenario Tree

When can we recombine nodes?

When can we assign the same value function V t+1(x) to
each node k of stage t?
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Nested Decomposition Is Non-Scalable

Assume

H time steps, M t discrete outcomes in each stage

No infeasibility cuts

M1 = 1 M2 = 2 M3 = 4

Forward pass: M1 + M1 ·M2 + . . . =
∑H

t=1 Πt
j=1M j

Backward pass:
∑H−1

t=2 Πt
j=1Mj
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Was Nested Decomposition any Good?

Alternative to nested decomposition is extended form

Extended form will not even load in memory

Nested decomposition will load in memory, but will not
terminate (for large problems)

Nested Decomposition lays the foundations for SDDP
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Enumerating Versus Simulating

4

3

2

1

1

2

Enumeration: {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2,
3), (2, 4))}

Simulation (with 3 samples): {(1, 3), (2, 1), (1, 4)}
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Making Nested Decomposition Scalable

Solution for forward pass

In the forward pass, we simulate instead of enumerating

This results in a probabilistic upper bound / termination
criterion

Solutions for backward pass

In the backward pass, we share cuts among nodes of the
same time period

This requires an assumption of serial independence

17 / 43



Serial Independence

Serial independence: probability of realization ξt
i is constant

from all possible (t − 1)-stage scenarios

ω1

ω2

P(ξ3
k = c3

k |ξ
2
j = c2

1) = pk , j ∈ 1, . . . ,M2, k ∈ 1, . . . ,M3

Problem is identical from t = 2 whether we observe ω1 or ω2
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Example of Serial Independence (I)

Value in circles: realization of ξt
k

Value in edges: transition probabilities
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Is this tree serially independent?
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Example of Serial Independence (II)
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Is this tree serially independent?
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Example of Serial Independence (III)
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Is this tree serially independent?
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Implications for Forward Pass

At each forward pass we solve H − 1 NLDS problems

For K Monte Carlo simulations, we solve 1 + K · (H − 1) linear
programs
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Implications for Backward Pass

Serial independence implies same value function for all nodes
of stage t ⇒ cut sharing

For a given trial sequence x t
k , we solve

∑H
t=2 M t linear

programs, for K trial sequences we solve K
∑H

t=2 M t linear
programs
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Serial Independence is Helpful, Not Necessary

We can use dual multipliers in stage t + 1 for cuts in stage t
even without serial independence
However, each node in stage t has a different value function

More memory

More optimality cuts needed because we are
approximating more value functions

With serial independence, we can

get rid of the scenario tree

work with continuous distribution of ξt
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SDDP Forward Pass

Solve NLDS(1,1). Let x1
1 be the optimal solution. Initialize

x̂1
i = x1

1 for i = 1, . . . ,K

Repeat for t = 2, . . . ,H, i = 1, . . . ,K
Sample a vector ht

i from the set ht
k , k = 1, . . . ,M t

Solve the NLDS(t, i) with trial decision x̂ t−1
i

Store the optimal solution as x̂ t
i
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SDDP Backward Pass

Repeat for t = H,H − 1, . . . ,2
Repeat for i = 1, . . . ,K

Repeat for k = 1, . . . ,M t

Solve NLDS(t , k) with trial decision x̂ t−1
i

Compute

E t−1 =
M t∑

k=1

pt
kπ

t
k,iT

t−1
k , et−1 =

M t∑
k=1

pt
k (π

t
k,ih

t
k + σt

k,ie
t
k )

Add the optimality cut

E t−1x + θ ≥ et−1

to every NLDS(t − 1, k), k = 1, . . . ,M t−1
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Central Limit Theorem

Suppose {X1,X2, ...} is a sequence of independent identically
distributed random variables with E[Xi ] = µ and
Var [Xi ] = σ2 <∞. Then

√
n
((

1
n

n∑
i=1

Xi

)
− µ

)
d−→ N(0, σ2).
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Probabilistic Upper Bound

Suppose we draw a sample k of (ξt
k ), t = 1, . . . ,H and solve

NLDS(t , k) for t = 1, . . . ,H

This gives us a vector x t
k , t = 1, . . . ,H

We can compute a cost for this vector zk =
∑

t=H ct
kx t

k

If we repeat this K times, we get a distribution of
independent, identically distributed costs zk , k = 1, . . . ,K

By the Central Limit Theorem, z̄ = 1
K
∑K

k=1 zk converges to
a Gaussian with standard deviation estimated by

σ =

√√√√(
1

K 2 )
K∑

k=1

(z̄ − zk )2

Each (x t
k , t = 1, . . . ,H) is feasible but not necessarily

optimal, so ẑK is an estimate of an upper bound
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Bounds and Termination Criterion

After solving NLDS(1,1) in a forward pass we can compute a
lower bound zLB as the objective function value of NLDS(1, 1)
After completing a forward pass, we can compute

zk =
H∑

t=1

ct
k x̂ t

k

z̄ =
1
K

K∑
k=1

zk

σ =

√√√√ 1
K 2

K∑
k=1

(zk − z̄)2

Terminate if zLB ∈ (z̄ − 2σ, z̄ + 2σ), which is the 95.4%
confidence interval of z̄
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Graphical Illustration of Termination Criterion

z̄

zLB

z̄ − 2σ

Objective
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Size of Monte Carlo Sample

How can we ensure 1% optimality gap with 95.4% confidence?

Choose K such that 2σ ' 0.01 · z̄

Mean and variance depend (asymptotically) on the
statistical properties of the process, not K

z̄ =
1
K

K∑
k=1

zk

s =

√√√√ 1
K

K∑
k=1

(zk − z̄)2 ⇒ σ =
1√
K

s

Set
K ' (

2 · s
0.01 · z̄

)2
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Full SDDP Algorithm

Initialize: z̄ =∞, σ = 0

Forward pass, store zLB and z̄. If zLB ∈ (z̄ − 2σ, z̄ + 2σ)

terminate, else go to backward pass

Backward pass

Go to forward pass
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Example

Consider the following problem

Produce air conditioners for 3 months

200 units/month at 100 $/unit

Overtime costs 300 $/unit

Known demand of 100 units for period 1

Equally likely demand, 100 or 300 units, for periods 2, 3

Storage cost is 50 $/unit

All demand must be met
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Notation

x t
k : regular production

y t
k : number of stored units

w t
k : overtime production

d t
k : demand

What does the scenario tree look like?
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Extended Form

min x1 + 3w1 + 0.5y1 +
2∑

k=1

p2
k (x2

k + 3w2
k + 0.5y2

k ) +

4∑
k=1

p3
k (x3

k + 3w3
k )

s.t. x1 ≤ 2

x1 + w1 − y1 = 1

y1 + x2
k + w2

k − y2
k = d2

k

x2
k ≤ 2, k = 1,2

y2
a(k) + x3

k + w3
k − y3

k = d3
k

x3
k ≤ 2

x t
k ,w

t
k , y

t
k ≥ 0, k = 1, . . . ,Kt , t = 1,2,3
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Optimal solution:

Stage 1: x1 = 2, y1 = 1

Stage 2, scenario 1: x2
1 = 1, y2

1 = 1

Stage 2, scenario 2: x2
2 = 2, y2

2 = 0

Stage 3, scenario 1: x3
1 = 0

Stage 3, scenario 2: x3
2 = 2

Stage 3, scenario 3: x3
3 = 1

Stage 3, scenario 4: x3
4 = 2, l34 = 1

What is the cost for each path?
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SDDP Upper Bound Computation

param CostRecord{1..MCCount, 1..IterationCount};

let {m in 1..MCCount, i in 1..IterationCount}

CostRecord[m, i] := sum{j in Decisions, t in 1..H}

c[j]*xTrialRecord[j, t, m, i];

let {m in 1..MCCount} CostSamples[m] := CostRecord[m,

IterationCount];

let CostAverage := sum{m in 1..MCCount} CostSamples[m]

/ MCCount;

let CostStDev := sqrt(sum{m in 1..MCCount}

(CostSamples[m] - CostAverage)∧2 / MCCount∧2);
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Thinking About the Data

CostRecord{1..MCCount, 1..IterationCount}

What is the distribution of each column?

How does (k , i) entry depend on (k + a, i) entry?

Which column is more likely to have a lower average?

Which data has a Gaussian distribution?
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Distribution of Last Column

z̄ = 6.17, s = 2.02

Not a Gaussian distribution
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Moving Average for 5 Iterations

Plot: (N,
∑N

n=1
CostSamplesn

N ), MCCount = 100, IterCount = 5

CostStDev = 0.2007: sample standard deviation of last column
of CostRecord
Note: average cost decreases as iterations increase
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How Many Monte Carlo Samples?

K ' (
2 · s

0.01 · z̄
)2 = (

2 · 2.02
0.01 · 6.17

)2 = 4287
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