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Abstract (125 words max): The global scaleup in demand for animal protein represents among
the most notable dietary trends of our time. Antimicrobial consumption in animals, which
outweighs human consumption, has enabled large-scale production of animal protein, but its
consequences on the development of antimicrobial resistance has received comparatively less
attention than in humans. We analyzed 901 point prevalence surveys of pathogens from developing
countries to map resistance in animals. China and India represented the largest hotspots of
resistance. From 2000 to 2018, the proportion of antimicrobials with resistance higher than 50%
increased from 0.15 to 0.41 in chickens, and from 0.13 to 0.34 in pigs with important consequences
for animal health, and eventually for human health. Global maps of resistance provide a baseline
for targeting urgently needed interventions.

Words (~ 4,500) = 4,774 = 3,273 (main text) + 1,364 (references) + 137 (acknowledgment).
Ref: 37 (max 40)
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Antimicrobials have saved millions of human lives, yet the majority (73%) of antimicrobials are
used in animals raised for food (/). The large and increasing use of antimicrobials in animals is
both an enabler and a consequence of the global scaleup in demand for animal protein. Since 2000,
meat production has plateaued in high-income countries but has grown by 64%, 53% and 66% in
Asia, Africa and South America, respectively (FAOSTAT 2016). The transition to high-protein
diets in low- and middle-income countries (LIMCs) was facilitated by the global expansion of
intensive animal production systems, in which antimicrobials are used routinely to maintain health
and productivity (2). A growing body of evidence has linked this practice with antimicrobial
resistant infections not just in animals but also in some cases, in humans (3—5). Although a majority
of emerging infectious disease events have been associated with drug-resistant pathogens of
zoonotic origins (6), antimicrobial resistance (AMR) in animals has received comparatively less

attention than resistance in humans.

In LMICs, trends in AMR in animals are poorly documented. Colombia’s is currently the only
country that has made publicly available surveillance data on AMR in animals (7). As in high-
income countries, antimicrobials are used in LMICs to treat animals and as surrogates for poor
hygiene on farms. However, in LMICs, AMR levels could be exacerbated by lower biosecurity,
less nutritious feed, and looser regulations on veterinary drugs (§). Conversely, in LMICs, AMR
levels may also be reduced by lower meat consumption and limited access to veterinary drugs in
rural areas. Few works have attempted to disentangle the effect of those factors, and thus far, expert

opinion has prevailed over an evidence-based assessment AMR in LMICs (9).

In 2017, The World Health Organization (WHO) called on its member states to reduce veterinary

antimicrobial use (10, 11). Coordinating the global response to AMR requires epidemiological
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data to assess trends in AMR across regions. In human medicine, the WHO’s Global Antimicrobial
Resistance Surveillance System (GLASS) (/2) has encouraged adoption of a harmonized reporting
framework, but there is no comparable framework for AMR in animals. Scandinavian countries
have been at the forefront of monitoring AMR in animals, and Europe and the United States have
adopted similar systems (/3). However, in LMICs, similar surveillance systems are nascent, at
best, and building a globally harmonized surveillance systems could take a long time. The
challenge posed by AMR requires immediate action, and thus alternatives to systematic

surveillance are needed to guide intervention based on the best evidence currently available.

In LMICs, point prevalence surveys are a largely untapped source of information to map trends in
AMR in animals. Generating resistance maps from these surveys presents several challenges. First,
surveys often differ in protocol, sample size and breakpoints used for antimicrobial susceptibility
testing. Harmonizing those variations is a first step towards improving comparability. Second,
because AMR affects many organisms, indicator organisms should be identified; the foodborne
pathogens listed by the WHO Advisory Group on Integrated Surveillance of Antimicrobial
Resistance (AGISAR) are an ideal starting point (/4). Third, since the problem of AMR affects
many drug-pathogen combinations, it is difficult to communicate with policy makers. Introducing
composite metrics of resistance may help summarize its global trends. Finally, the interpolation of
epidemiological observations from data-rich regions to data-poor regions is inherently uncertain,
and could be improved using factors associated with AMR. The field of species distribution
modelling has proposed approaches to use such associations for predictive mapping, and the

development of ensemble geospatial modelling (/5) has help improve their accuracy.
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In this study, we address these challenges to map AMR in animals in LMICs at 10-km resolution
using point prevalence surveys of common foodborne pathogens. The maps summarize current
knowledge, and give policymakers—or a future international panel (/6)—a baseline to monitor

AMR levels in animals, and target interventions across regions.
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Results

We identified 901 point prevalence surveys reporting AMR rates in animals and food products in
low- and middle-income countries. Our analysis focused on resistance in E. coli, Campylobacter
spp., non-typhoidal Salmonella and S. aureus. The number of published surveys on resistance to
those pathogens in LMICs increased from 3 in 2000 to 121 in 2018, and peaked at 156 per year in
2017. However, the number of surveys conducted during that period was uneven across regions
(Fig. 1A): surveys from Asia (n = 509) exceeded the total for Africa and the Americas (n = 415).
The number of surveys per country was not correlated with gross domestic product (GDP) per

capita (Fig. 1B).

Fig. 1. Number of surveys conducted on AMR in animals. Publications by continent (A).
Publications per capita vs gross domestic product per capita; each country is designated by ISO3

country code (B).

In LMICs, from 2000 to 2018, the proportion of antimicrobial compounds with resistance higher
than 50% (P50) increased from 0.15 to 0.41 in chickens, from 0.13 to 0.34 in pigs, and plateaued
between 0.12 to 0.23 in cattle (Fig. 2). Those trends were inferred from average yearly increase in
P50, (1.5%/year for chickens, and 1.3%/year for pigs), weighted by the number of studies

published each year (Supplementary Material).

Fig. 2. Increase in antimicrobial resistance in low- and middle-income countries. Proportion

of antimicrobial compounds with resistance higher than 50% (P50). Solid lines indicate
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statistically significant (5% level) increases of P50 over time, shades indicate the number of
surveys per year relative to total number of surveys per species.

In LMICs, resistance levels show considerable geographic variations (Fig. 3A, and Fig. S11 for
country level indexes). Regional hotspots (P50 > 0.4) of multidrug resistance were predicted in
south and Northeast India, north-eastern China, northern Pakistan, Iran, Turkey, the south coast of
Brazil, the Nile River delta, the Red River delta in Vietnam and the areas surrounding Mexico City
and Johannesburg. Low P50 values were predicted in the rest of Africa, Mongolia and western
China. Based on maps of animal densities (Fig. S7), we estimate that across LMICs, 9% [95%
confidence interval (CI) (5-12%)] of cattle, 18% [95% CI (11-23%)] of pigs and 21% [95% CI
(11%-28%)] of chickens were raised in hotspots of AMR in 2013. For chickens, the percentage of
birds raised in hotspots of resistance in each country exceeded global average in China (38% [95%
CI (24-46%))), Egypt (38% [95% CI (22-55%)]) and Turkey (72% [95% CI (41-81%)]). We also
identified regions where AMR is starting to emerge by subtracting, P50 from P10, the proportion
of antimicrobial compounds with resistance higher than 10% (Fig. 3C). In Kenya, Morocco,
Uruguay, southern Brazil, central India and southern China, the proportion of drugs with 10%
resistance was 2 to 3 times higher than the proportion of drugs with 50% resistance, indicating that
those regions are emerging AMR hotspots. Established hotspots of AMR, where the difference

between P10 and P50 was low (~ 10%), included north-eastern China, West Bengal and Turkey.

The accuracy of the P50 maps (Fig. 3B) reflects the density of surveys for a region as well as the
ability to associate the geographic distribution of P50 with environmental covariates using
geospatial models (Supplementary Material). All geospatial model had limited accuracies (AUCs

[0.674-0.68)), but all identified the travel time to cities of 50,000 people as the leading factor
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associated with the geographic distribution of P50. Minimum annual temperature, and percentage

of irrigated land were also positively associated with P50, but had smaller influence (Table S5).

Fig. 3. Geographic distribution of antimicrobial resistance in low- and middle-income
countries. (A) P50, the proportion of antimicrobials compounds with resistance higher than 50%.
(B) 95% confidence intervals on P50 (supplementary material). (C) Difference in the proportion
of antimicrobials with 10% resistance and 50% resistance. Red areas indicate new hotspots of

resistance to multiple drugs; blue areas established hotspots. Maps at resistancebank.org.

Uncertainty in the mapped predictions was greatest in the Andes, the Amazon region, West and
Central Africa, the Tibetan plateau, Myanmar and Indonesia. Good geographic coverage of
surveys enabled more accurate predictions in India, the Rift region in Africa, and the south coast
of Brazil. Dense geographical coverage of surveys (>4 PPS / 100,000 km?2) did not systematically
correlate with high P50 values, (Ethiopia, Thailand, Chhattisgarh; India and Rio Grande do Sul;
Brazil).

The highest resistance rates were observed in the most commonly used classes of antimicrobials
in animal production (Fig 4): tetracyclines, sulfonamides and penicillins (/). Among
antimicrobials considered critical to human medicine (/7), the highest resistance rates were for
ciprofloxacin and erythromycin (20-60%) and moderate rates for 3"/4™ generation cephalosporins
(10-40%). Other critically important antimicrobials, such as linezolid and gentamicin, were
associated with lower resistance rates (< 20%). AMR trends in LMICs were in agreement with the
trends reported in Europe and the United States (73, /8) for tetracyclines, sulfonamides, and 3rd/4th

generation cephalosporins, but differences also exist for quinolones and aminoglycosides.
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In E. coli and Salmonella spp., quinolones resistance in LMICs (20-60%) was comparable with
European levels (59.8-64% (13)), but gentamycin resistance was higher in LMICs (5-38%) than
in Europe (2.4-8.9%). The reverse situation was observed when comparing LMICs and the US
where quinolone resistance is low (2.4-4.6%) and gentamycin resistance higher (22.1% and 41.3%
for Salmonella and E. coli, respectively (18)). In LMICs, high resistance in 3" and 4™ generation
cephalosporins in E. coli was high (~40%). Resistance to carbapenems was low in all host species
in LMICs, as previously reported in animals (/9). Asia, and the Americas currently have the

highest rate of colistin resistance (~18-40%).

In Campylobacter spp., in LMICs, the highest resistance rates were found for tetracycline (60%)
and quinolones (60%). Tetracycline resistance was also the highest among all animals in the US
(49.1-100% (18)), but lower for quinolones in chickens (20%). Resistance to erythromycin was
moderate (< 30%) in LMICs, but higher than in high-income countries (0.3%-22% in US and 0-
21.6% in Europe), indicating that erythromycin resistance genes (e.g., erm(B)) could be spreading

more commonly on mobile genetic elements in LMICs.

Finally, for S. aureus, resistance rates across all antimicrobials were higher in Asia than in other
regions. The highest rates were found for penicillin (40-80%), erythromycin (20-60%),
tetracycline (20-60%) and oxacillin (20—60%). For S. aureus, unlike other pathogens, resistance
rates across drugs (except for penicillin) varied greatly by region. Comparisons with high-income

countries are limited, as few European countries reported resistance in S. aureus in 2016, and
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susceptibility testing was typically restricted to MRSA, which have considerable variation in

prevalence (0% in Irish cattle and chickens to 40-87% in Danish pigs (/3)).

Fig. 4. Resistance in foodborne pathogens recommended for susceptibility testing by the
World Health Organization. Resistance rates and number of surveys (n) by region. Transparency
levels reflect sample sizes for each animal-pathogen combination. (Drug acronyms, see Protocol

S1).
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Discussion

In most high-income countries, AMR has been monitored in animals for over 10 years (/3). Here,
we used point prevalence surveys to conduct a global assessment of trends in AMR in animals in
LMICs. A singular challenge in the epidemiology of AMR is to synthesize a problem involving
multiple pathogens and compounds across different regions. We therefore introduced two
summary metrics of resistance —P50 and P10—, that reflect the ability of veterinarians to provide
effective treatment. Based on the evidence assembled, P50 increased in LMICs from 0.15 to 0.41
(+ 173%) in chickens, from 0.13 to 0.34 (+161%) in pigs, and plateau between 0.12 and 0.23 in
cattle. Rapid increases in AMR in chicken and pigs are consistent with the intensification of
livestock operations for these species compared with cattle (20). The main consequence of those
trends is a depletion of the portfolio of treatment solutions available to treat pathogens in animals
raised for food. This loss has economic consequences for farmers because affordable
antimicrobials are becoming ineffective as first-line treatment (27) and this could eventually be

reflected in higher food prices.

The number of surveys supporting this first assessment is limited (n = 901) and heterogeneous
across countries (Fig. S6A). However, it enables us to draw inferences on large-scale trends in
AMR (Fig. 3A). Globally, the percentage of animals raised in hotspots of AMR was limited (<
20%), with the notable exception of chicken production in upper-middle-income countries, such
as Turkey (72%) and Egypt (38%). These countries are also the first- and third-largest per-capita

consumers of antimicrobials in human medicine amongst LMICs (22).

10



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

The largest hotspots of AMR in animals were in Asia, which is home to 56% of the world’s pigs
and 54% of chickens (FAOSTAT 2016). In Asia, targeted interventions such as legislative action,
subsidies to improve farm hygiene could reduce the need for antimicrobials in animal production
(1), thereby preserving important drugs for human medicine, and the treatment of sick animals.
We identified hotspots for the emergence of AMR including central India and Kenya, where
resistance to multiple drugs has appeared but not yet reached 50% (Fig. 3C). In these regions, meat
consumption is still low and animal production is gradually intensifying: there may be a window
of opportunity to contain AMR by imposing strict hygiene standards in newly built farms. This
approach could reduce the risk of spread of resistant pathogens such as mcr-1-carrying E. coli (23)
that have emerged in regions where intensive meat production has been facilitated by enormous

quantities of veterinary antimicrobials (/).

In Africa, resistance maps reveal the absence of major AMR hotspots, with the exception of the
Johannesburg metropolitan area. This suggests —based on the regions surveyed— that Africa
probably bears proportionately less of the current global burden of AMR than high- and upper-
middle-income countries. Policymakers coordinating an international response to AMR might
therefore spare Africa from the most aggressive measures, which may be perceived as unfair and

undermine livestock-based economic development.

In the Americas, where the number of surveys was limited (Fig. 3B), the observed low AMR levels
could reflect either good farming practices (low antimicrobial use) or the absence of surveys
conducted in areas most affected by AMR. Considering that Uruguay, Paraguay, Argentina and

Brazil are net meat exporters (FAOSTAT 2016), it is of particular concern that little

11



232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

epidemiological surveillance of AMR is publicly available for these countries. Many low-income
African countries have more point prevalence surveys per capita than middle-income countries in
South America. Globally, our findings show that the number of surveys per capita was not
correlated with GDP per capita, suggesting that surveillance capacities are not solely driven by

financial resources.

In this study, we stacked prediction from geospatial models to map P50 and P10 in LMICs. The
moderate accuracy of the these models reflect the challenge of associating the spatial distribution
of AMR with environmental and socio-economic factors (24). AMR in animals may be driven by
factors known to influence antimicrobial use in humans—such as cultural norms, presence of drug
manufacturers on national market, or the density of health professionals (25)—that could not be
easily mapped from publicly available sources of information. The leading factor associated with
the spatial distribution of P50 was the travel time to cities (26). Ease of access to providers of
veterinary drugs may drive AMR, and hotspots appear to correspond to peri-urban environments
where large farms supply city dwellers, whose meat consumption typically exceeds national
averages (27). We also found a positive association between P50 and temperature. Evidence for a
link with temperature in animals is less established than in humans (28) but it has been suggested
that high temperatures cause stress in animals, thus increasing the risk of wounds that require
preventive antimicrobial treatment (29). Finally, in Asia, 74% of P50 hotspots corresponded to
areas previously identified for their projected increase in antimicrobial use (Fig. S12). The relative
influence of antimicrobial use on the spatial distribution of P50 was only of 3.8% (Table S5) but
this association should be treated with caution given the scarcity of original data on antimicrobial

use from LMICs (30).
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We identified diverging patterns of resistance across combinations of pathogens and drugs. For S.
aureus, geographic differences in AMR levels could be explained by sub-lineages carrying
different SCCmec cassettes that are specific to certain regions (3/). Of greater concern for public
health is the presence of resistance to 3"/4™ generation cephalosporins—critically important
antimicrobials for human medicine—on all continents. In addition, the high levels of colistin
resistance found in Asia suggest that regional spread may have been driven by plasmid-mediated
resistance (23), as well as the widespread use of this cheap antimicrobial. The recent Chinese ban
on colistin (32), if enforced, may improve the situation. However, globally, progress may be
undermined by the large quantities of colistin still used, including in some high-income countries.
For quinolones, patterns fo resistance differed greatly between regions. For E. coli and
Campylobacter, LMICs had resistance levels comparable with European levels but considerably
higher than in the United States, where quinolones were banned in poultry in 2005. Conversely,
for Salmonella and E. coli, LMICs had substantially higher resistance to gentamycin than Europe,
where this compound is not authorized for use in poultry and cattle (33). These findings suggest

that regional restrictions on the use of specific compounds are associated with lower AMR rates.

As with any modelling study, our analysis has limitations. The uncertainty associated with
interpolation of resistance rates is captured with confidence interval maps (Fig. 3B). However,
there are additional sources of uncertainty. First, insufficient geographic coverage may lead to
inaccurate spatial predictions, and local variations in AMR may not reflect ‘ground truth’. In this
study, we attenuate the risk of overfitting geospatial models to local outliers by using spatial cross-

validation. Future research efforts should increase the geographic coverage of surveys by engaging
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with local partners (e.g., in India for this analysis, supplementary information). Second, temporal
variation in AMR over the period 2000-2018 was not accounted for. As more surveys become
available, spatio-temporal, model-based geostatistics approaches could help overcome this
limitation. However, the limited number of surveys (n = 901) identified in this first assessment did
not allow for the use of those methods. Third, in slaughterhouse surveys, most did do not perform
molecular typing longitudinally throughout the different processing stages that would enable to
assess potential cross-contamination. While it may generally affect AMR rates, it is -in the absence
of international benchmarking- unknown if it could systematically bias our result in any single
country. Fourth, our dataset of surveys may include observational bias at sampling sites although
we attempted to account for this by distributing pseudo-absence according to rural human
population density (Table S4). Finally, whilst our analysis raises renewed concerns about the pace
of increase of AMR in animals it is not an attempt to draw definitive conclusions on the intensity
and directionality of transfer of AMR between animals and humans which should be further

investigated with robust genomics methods (34).

Conclusions

Point prevalence surveys are imperfect surrogates for surveillance networks. However, in the
absence of systematic surveillance, maps have been useful to guide interventions against other
disease of global importance such as malaria (35). In human medicine, point prevalence surveys
of AMR in hospitals have generated snapshots of AMR across regions (36). This initial assessment
helps outline three global priorities for action. First, our maps show regions poorly surveyed where

intensified sampling efforts could be most valuable. Second, our findings clearly indicate that the
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highest levels of AMR in animals are currently found in China and India where immediate actions
could be taken to preserve antimicrobials that are essential in human medicine by restricting their
use in animal production. Third, high-income countries, where antimicrobials have been used on
farms since the 1950s, should support transition to sustainable animal production in LMICs—for

example, through a global fund to subsidize improvement in farm-level biosafety and biosecurity

(37).
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Materials and Methods

Literature Review

Three bibliographic databases were screened for point prevalence surveys of AMR in Escherichia
coli, Campylobacter spp., non-typhoidal Salmonella and Staphylococcus aureus in LMICs (Fig.
S1, Protocol S1). As recommended by the WHO Advisory Group on Integrated Surveillance of
Antimicrobial Resistance for surveillance in their manual for integrated surveillance of
antimicrobial resistance in foodborne bacteria, we search for epidemiological studies in which
antimicrobial susceptibility testing was used to determine the resistance phenotypes of bacteria
sampled from animals on farms, slaughterhouse, and retail markets (but not diseased and sick
animals. The literature review resulted in 32,030 search results. The titles an abstract of these
publications were used for initial screening. We removed duplicates records (between search
engines) and excluded book-chapters, reviews and meta-analysis. We also excluded publication
that did not report antimicrobial resistance rates such as studies on the activity of new compounds
in strains of animal origin, or on farming practices. Following the initial screening, 1,992 PPS were
identified as having potentially relevant information to be extracted and were read in full. We
extracted data from a total of 1,252 point prevalence surveys reporting a total of 25,929 resistance
rates”. In addition, in India, field visits were conducted in five veterinary schools to collect data
from 178 surveys from paper journals, PhD and MSc theses and conference proceedings (Protocol
S1).

All records are publicly available at resistancebank.org. The information extracted from each
survey included type of pathogen, anatomical therapeutic chemical classification codes of the
drugs tested, year of publication, latitude and longitude of sampling sites, sample size and host
animals. A description of each variable extracted from the publications is available in the
RESBANK legend file (Protocol S2). From this initial database, 667 records were excluded
because they lacked sufficient information to assign geographic coordinates, and 412 point
prevalence surveys were excluded because resistance rates were pooled across two or more animal
species and could not be disaggregated. Of the 443 emailed requests for clarification, 162 (36.9%)
were positively answered. The 67 records associated with Enterococcus spp. in resistancebank
were not used for the present analysis because only a very small proportion (3.4%) of surveys from
LMICs reported Enterococcus spp. A further eight records were excluded because their
breakpoints were not within the range of values recommended by antimicrobial susceptibility
testing guidelines. The geospatial analysis was conducted for records of drugs recommended for
antimicrobial susceptibility testing by the WHO AGISAR (/4) consortium. The final data set had
12,933 resistance rates, extracted from 901 surveys distributed across 822 locations, totaling
285,496 samples from across LMICs.
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Harmonization of Antimicrobial Resistance Rates

Various experimental methods can be used for antimicrobial susceptibility testing. The literature
search showed two main families of approaches: diffusion methods (disc diffusion and gradient
diffusion such as E-test) and dilution methods (broth dilution and automated devices such as
VITEK2). Surveys reporting AMR in LMICs predominantly used diffusion methods, which are
less expensive. A notable exception was China (Fig. S2) where the percentage of studies that
reported using dilution methods (45%) was significantly higher (Chi-squared = 1,441) than in other
LMICs (11%). For those countries, we used two-sided Wilcoxon rank-sum test to evaluate
potential differences in mean antimicrobial resistance rates associated with each antimicrobial
susceptibility testing method. We considered all drug-pathogen combinations represented by at
least 10 records for each susceptibility testing method. For nearly all drug-pathogen combinations
(25 of 28), mean AMR levels did not differ based on the method used (Fig. S3). This is consistent
with works (38) showing good agreement between diffusion and dilution methods for foodborne
pathogens. In this analysis, the potential overestimation of resistance rates by ‘method bias’ was
limited to 87 records (0.67% of all records) where dilutions methods were used for cefoxitin,
oxacillin in S. aureus, and nalidixic acid in E. coli. For those 87 records, we modulated the rates
reported in the surveys by the ratio of the mean of rates identified by dilution methods to the mean
of rates identified by diffusion methods for the corresponding drug-pathogen combination.

Breakpoints, used to identify resistant phenotypes, can differ depending on laboratory guidelines
and are revised annually (Fig. S4). Accounting for breakpoint variations over time is thus essential.
In resistancebank, only 6.2% of records reported the breakpoint values, but 96% of records were
associated with referenced guidelines, and 68% of records could be associated with the guidelines’
year. For surveys that did not report the guidelines used, we assumed that the guidelines came
from the Clinical & Laboratory Standards Institute (CLSI), which were the most commonly used
guidelines across all the surveys. For surveys that did not report the guidelines’ year, we assumed
a date of four years before publication (the median lag between publication date of the survey and
year of the guidelines, inferred from the 68% of records that did report the year of the guidelines).

We assembled guidelines published by CLSI, the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) and the French Society of Microbiology (SFM). We then
developed a harmonization procedure for breakpoint variations, based on EUCAST minimum
inhibitory concentration distributions and zone diameter distributions (Fig. S5), as follows.

Step 1. Each record was assigned an ‘observed breakpoint (BPys)’, which was either the
reported breakpoint from the publication or the breakpoint value from the EUCAST, CLSI
or SFM guidelines corresponding to the year of the guidelines.

Step 2. Each record was also assigned a ‘reference breakpoint (BP..r)’, which was the
lowest inhibition concentration (for studies using dilution methods) or the highest
inhibition diameters (for studies using diffusion methods) recorded in the EUCAST
guidelines for each drug-pathogen combination. This reference breakpoint was specific for
each drug-pathogen combination such that studies using different BP,s could be compared.
For the harmonization of resistance rates, the use of a human breakpoints was preferred
over animal breakpoints or epidemiological cutoffs because the overwhelming majority
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the studies reporting AMR in animals used human clinical breakpoints (97% of surveys in
resistancebank).”

Step 3. For each record with BP,s values that differed from the BP,.rvalues, the following
correction was applied to modulate the resistance rates extracted from publications (R,s)
and take into account variations in breakpoints across years and guidelines (CLSI,
EUCAST or SFM).

For dilution-based methods
AUCgp,,

R = Rps -
c obs A UCBPref

For diffusion-based method

AUCgp,, y

R = Ryps * =i
c obs AU CBPobs

Where R, is the resistance rate reported in a point prevalence survey, R%¢ is the modulated
resistance rates for survey using dilution methods, and R%? is the modulated resistance rate for
surveys using diffusion methods. AUCs are the areas under the curve of the minimum inhibitory
concentration distribution (dilution methods) or the inhibition zone diameter distribution (diffusion
methods) obtained from eucast.org (Fig. S5). For dilution methods, the AUC is the integral of the
distribution from the highest inhibition concentration to the reference concentration and observed
concentrations. For diffusion methods, the AUC is the integral from the smallest possible
inhibition radius to values of inhibition diameters corresponding to the observed and reference
breakpoints, respectively. Of the 12,933 records, 1,487 had identical breakpoint (BPops = BPyer)
values and did not require modulation of the resistance rates; 8,139 records were modulated to
account for changes in guidelines; and 3,307 records were not suitable for modulation because
breakpoint values were not provided in the survey or in the guidelines documentation.

After harmonizing resistance rates, we defined a summary metric to compare resistance rates
across pathogens and host species. We define ‘P50’ as the proportion of drugs tested with
resistance higher than 50% across all samples tested in a point prevalence surveys (Fig. S6). P50
was chosen because drugs that have a failure rate exceeding 50% in a given region are unlikely to
be used for first-line treatment. P50 is thus a reflection of the challenge faced by veterinarians in
providing treatment. We assessed the trends in P50 between 2000 and 2018 for each livestock
species. We use linear regression models, weighted by the number of surveys per year, to assess
the statistical significance at the 5% level of the temporal trends between P50 and year of
publication. The average yearly increase in P50 for chicken and pigs were respectively 1.5%, and
1.3% per year.

Geospatial Modelling

We interpolated P50 values from point prevalence surveys to map AMR in LMICs at a resolution
0f 0.0833 decimal degrees, or approximately 10 km at the equator. We used a two-step procedure
inspired by Golding and colleagues (/5). First, multiple ‘child models’ were trained to quantify
the association between the geographic distribution of P50 and environmental covariates (Fig. S7).
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Second, universal kriging was used to stack predictions from child models. The approach enables
us to capture the potential spatial autocorrelation in the geographic distribution of P50 as well as
the associations between P50 and environmental covariates. Stacking predictions from different
statistical methods produces more accurate disease risk maps (39) than predictions from individual
models. The set of environmental covariates was restricted to biologically relevant factors that
may be associated with antimicrobial resistance, such as antimicrobial use, minimum monthly
temperature and animal densities (Table S3). All covariates were log-transformed and resampled
from their original resolution of 0.0833 decimal degrees.

Three classes of child models were used: boosted regression trees (40) (BRT); least absolute
shrinkage and selection operator applied to logistic regression (4/) (LASSO-GLM); and
overlapped grouped LASSO penalties for General Additive Models selection (42) (LASSO-
GAM). For the BRT model, we used a tree complexity of three, a learning rate of 0.0025, and a
step size of 50. These three meta-parameters control the level of interactions between variables,
the weights of each individual tree in the final model and the number of trees added at each cycle,
respectively. For all child models, P50 values were transformed into presence/absence using a
random binarization procedure: all records in the data set were replicated five times, and P50
values in this expanded data set were then compared with a random number between zero and one.
P50 values larger than the random number were classified as presence; lower values were classified
as absences. In addition, pseudo-absence points were distributed across LMICs to provide the child
models with additional covariate values that were not associated with presences (P50 = 0). Pseudo-
absence points were sampled within a radius of 10 to 2,000 km from presence points using
stratified random sampling proportional to the log10 of the population density outside urban areas.
The child models contained equal numbers of true presence versus absences (true absence +
pseudo absences), since balanced data sets have been shown to improve spatial predictions (43).

Child models were fitted using fourfold spatial cross validation to prevent local overfitting and to
ensure that predictions reflected extrapolation capacities outside training regions. Four validation
regions were defined (Fig. S8): Africa, South America, western Asia (longitude <90 degrees), and
eastern Asia (longitude > 90 degrees). In addition, we calculated the spatial sorting bias (SSB)
index (44) to ensure that it was negligible (mean SSB = 0.90). The model fitting procedure was
bootstrapped 10 times to account for variations attributable to the stratified sampling of pseudo-
absence points and the random binarization of P50 values. The predictive ability of each child
model was evaluated by averaging the value of the area under the received-operator curve for all
runs. The influence of each variable in each child was also evaluated across 10 bootstraps: for the
BRT models we used mean relative influences (40), for the LASSO regression we used the fraction
of bootstraps where covariate had a non-null coefficient after regularization, and for the GAM-
LASSO we used the fraction of bootstraps where covariates had a non-null linear or non-linear
coefficient after regularization.

All child models had moderate accuracies (AUCBRT = 0674, AUCLASSO-GLM = 0683, AUCLAsso-
cam = 0.680). For the BRT model, the travel time to cities of 50,000 or more people accounted for
68% of the relative influence (45) and was negatively associated with P50 (Table S5). Other
variables were positively associated with P50 but had smaller influence in the final model:
minimum annual temperature (7%), density of intensively raised chickens (6%) and percentage of
irrigated land (5%). For the LASSO-GLM, the most influential covariates were travel times to
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cities (100% of bootstraps, and negative coefficient), percentage of irrigated land (100% of
bootstraps, and positive coefficient) and density of extensively raised chickens (90% of bootstraps,
positive coefficient). For the LASSO-GAM model, the main coefficients included linear terms
from density of extensively raised chickens (100% of bootstraps), the minimum annual
temperature (80% of bootstraps), as well as a non-linear term for antimicrobial use (90% of
bootstraps).

In the second step of the geospatial procedure, we combined predictions of child models (Fig. S9).
The predictions of each child model were used as covariate for universal kriging of the P50 values
between survey locations. The kriging procedure was weighted by the number of samples reported
at each location, adjusted for regional variations. Concretely, the number of samples at each
location was multiplied by an accuracy factor ranging between 0 and 1 that reflects regional
variations in performing antimicrobial susceptibility testing, as estimated by the WHO External
Quality Assurance System of the Global Foodborne Infections Network (Protocol S3). We fitted a
Matern semi-variogram model with a maximum range of 1,000 km. Duplicated coordinates, those
that corresponded to P50 for different pathogens in the same location, were randomly redistributed
within a radius of 1 km of the survey sites multiplied by the log10 of the number of samples in the
survey to reflect greater spatial range of large surveys. Following the kriging procedure, all
negative values of P50 were reclassified as zeros.

We quantified the spatial uncertainty associated with the maps of P50 in a two-step procedure.
First, we calculated the standard deviation in the predictions in each pixel for each child model.
Second, we calculated a standardized kriging variance after stacking such that variance was equal
to zero at the location of the observations. We produced a 95% confidence interval (CI) on the
final prediction as follows:

95% CI = 1.96 X (Sd(PBRT'PLASSO—GLMJ Prasso—gam) + /Varg )

where Pgpr, Prasso—cim Prasso—cam, are the predicted P50 values resulting from each child
models, and Var is the standardized kriging variance after stacking. The upper bound of the 95%
confidence interval is limited to the maximum value of the pixels where all child models predicted
non-null results.

Finally, we also mapped regions where multidrug-resistance was starting to emerge. We repeated
the geospatial procedure to map P10 (the proportion of drugs tested with resistance higher than
10%) and subtracted P50 from P10 values in each pixel. The resulting ‘map of differences’ shows
regions where multidrug-resistance phenotypes are emerging (10% resistance) but have not yet
reached alarming levels (50% resistance). All geospatial analyses were conducted using the
statistical language R. A map of P50 is available in Google Earth format for detailed visualization
(https://www.dropbox.com/s/bi3ip5Smb3zfozh5/P50.kmz?d1=0).

Metrics of exposure to AMR

We used the global maps of P50 to derive two metrics of exposure of resistance. First, we
calculated the proportion of animals raised in these hotspots of resistance. Two approaches were
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compared to define hotspots. The first approach simply assumes a cutoff value of 0.4 on P50
values, whilst the second used the Getis-Ord method (46). Both approaches led to comparable
results (Fig. S10), but the first was preferred because it has a straightforward biological
interpretation: in a hotspot pixel, 40% of drugs have resistance levels above 50%. The 95%
confidence interval on the minimum and maximum extent of the hotspots of P50 was calculate as
follow

95% CI = 1.96 X (Sd(PBRT'PLASSO—GLM'PLASSO—GAM) + 4/ VaTK,Hs)

where Pgrr, Prasso—cim, Prasso—cam are the predicted P50 values resulting from each child
models, and Varg s is the average kriging variance in the hotspots pixels.

The second metric of exposure to resistance was calculated at the country level for chicken and
pigs (Fig. S11). In each pixel, we multiplied the number of animals raised by the P50 value in the
same location. This product was aggregated in each country then normalized by the total number
of animals in the country. This metric quantifies the level of exposure of the animal population of
a country relative to its stock. The analysis was restricted to countries with at least 10 million birds,
and 250,000 pigs, and 500,00 cattle heads in order to establish a ranking of countries that is not
bias by a density effect due to small islands and microstates.
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Supplementary Text

Protocol S1. Literature Review

We identified point prevalence surveys (PPS), and extracted information on antimicrobial
resistance rates in animals in low- and middle-income countries. The resulting database —
resistancebank — is available in open access
(https://www.dropbox.com/s/qf5nrmqjieds6th/resbank all.csv?dl=0). The literature search was
conducted in three databases (PubMed, Scopus and ISI Web of Science) in English, Spanish,
Portuguese and French by 4 independent researchers (2 per geographic region of interest). All
studies published between 2000 and March 2019 were included (Table S1). PPS were screened
using the generic formula:

(Resistance) AND (Bacterial Species) AND (Animals and Sample types) AND (Geographic
Regions)

Different key words were used to maximize number of hits identified, the full search query used
in PubMed was: (antibiotic resistance OR antimicrobial resistance OR resistance OR susceptibility
OR antibiogram OR antibiotic susceptibility testing OR antibiotic OR antimicrobial OR
antibacterial ) AND (Escherichia OR E. coli OR coliform OR salmonella OR salmonella spp. OR
enterococcus OR enterococcus spp. OR enterococci OR VRE OR E. faecalis OR E. faecium OR
S. aureus OR staphylococcus OR Staphylococcus spp. OR MRSA OR MSSA OR campylobacter
OR campylobacter spp. OR C. jejuni OR C. coli) AND (animal OR food OR food producing OR
farm OR farm animal OR meat OR cow OR cattle OR beef OR bovine OR buffalo OR pig OR
piggeries OR pork OR chicken OR flock OR broiler OR layer OR egg OR poultry OR avian OR
milk OR dairy OR cheese) AND (Country*).

In addition, keywords for resistance, animals, sample types and geographic regions were translated
into Spanish, Portuguese and French. The list of countries included in the search was: Afghanistan,
Angola, Anguilla, United Arab Emirates, Argentina, Armenia, Antigua and Barb., Azerbaijan,
Burundi, Benin, Burkina Faso, Bangladesh, Bahrain, Belize, Bermuda, Bolivia, Brazil, Barbados,
Brunei, Bhutan, Botswana, Central African Rep., Chile, China, Cote d'Ivoire, Cameroon, Dem.
Rep. Congo, Congo, Colombia, Comoros, Cape Verde, Costa Rica, Cuba, Curacao, Djibouti,
Dominica, Dominican Rep., Algeria, Ecuador, Egypt, Eritrea, Ethiopia, Gabon, Georgia, Ghana,
Guinea, Gambia, Guinea-Bissau, Equatorial Guinea, Grenada, Guatemala, Guyana, Hong Kong,
Honduras, Haiti, Indonesia, India, Iran, Iraq, Israel, Jamaica, Jordan, Kazakhstan, Kenya,
Kyrgyzstan, Cambodia, Kuwait, Lao PDR, Lebanon, Liberia, Libya, Sri Lanka, Lesotho, Morocco,
Madagascar, Mexico, Mali, Myanmar, Mongolia, Mozambique, Mauritania, Montserrat, Malawi,
Malaysia, Namibia, Niger, Nigeria, Nicaragua, Nepal, Oman, Pakistan, Panama, Peru, Philippines,
Dem. Rep. Korea, Paraguay, Palestine, Qatar, Rwanda, W. Sahara, Saudi Arabia, Sudan, Senegal,
Singapore, Sierra Leone, El Salvador, Somaliland, Somalia, St. Pierre and Miquelon, Sao Tome
and Principe, Suriname, Swaziland, Syria, Chad, Togo, Thailand, Tajikistan, Turkmenistan,
Timor-Leste, Trinidad and Tobago, Tunisia, Turkey, Taiwan, Tanzania, Uganda, Uruguay,
Uzbekistan, Venezuela, Vietnam, Yemen, South Africa, Zambia, and Zimbabwe.
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In Scopus and ISI Web of Science, the same key words were used in the advanced search
functionality. For Scopus, the search was specified as TS=(key words) where TS stands for search
topic; whereas for ISI Web of Science the search was specified as TITLE-ABS-KEY=(key words),
where TITLE-ABS-KEY stands for title, abstract and key words.

All titles and abstracts were screened for PPS. Full text manuscripts that could not be accessed
were included in resistancebank when the information in the abstract was considered sufficient for
the resistancebank format (see Protocol S2).

Exclusion criteria included: reviews, meta-analysis, PPS dealing with diseased animals (except for
bovine clinical and sub-clinical mastitis), manuscripts characterizing a defined set of strains not
derived from PPS (strain surveys), nation-wide PPS without geographically defined sampling and
PPS written in languages not used in the systematic search.

In India, in addition to publication available online we also included PPS from alternative sources.
We conducted field visits in 5 of the main veterinary school of the country to access ‘grey
literature’ such as paper-publications, PhD/MSc thesis and conference proceedings. Although the
grey literature may in some cases not have been peer-reviewed, it constitutes in many places the
sole source of information on AMR given the absence of systematic surveillance in animals. A
research assistant visited: Maharashtra Animal and Fishery Science University & Madras
Veterinary, Nagpur (104 studies, visited on April 19th 2018); National Library for Veterinary
sciences in Bareilly (14 studies, visited on February 22th 2018); Tamil Nadu Veterinary and
Animal Sciences University & Madras Veterinary college (34 studies, visited on May 10" 2018);
and Kerala Animal and Veterinary Science University (25 studies, visited on May 7" 2018).
Altogether, 1,515 studies from systematic online searches and 178 studies from Indian grey
literature were screened for content, of which 1,148 PPS were included in resistancebank.
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Protocol S2. Legend of resistancebank

Foreword

resistancebank is a database of antimicrobial resistance (AMR) data extracted from point
prevalence surveys (PPS) in food animals and food products. The primary goal of resistancebank
is to support the production of maps of AMR across different geographic regions, animals and
antibiotic classes for further development of applications (e.g., modelling). Currently, data
originates from online scientific journals, reports from governmental agencies. In addition, in
India, the database is complemented by records from paper journals, MSc/PhD thesis obtained
directly from veterinary schools, as well as unpublished data resulting from local surveillance.

Multiple lines in resistancebank can correspond to the same publication: different combinations
of the studied animals, sample types, coordinates and antibiotics studied. When the information
corresponding to a field was not available NA is used. In these cases, a request to the corresponding
author was sent by e-mail and when appropriate a comment was added in the remark field based
on the author’s response.

Fields in the resistancebank database

DOI: Digital Object Identifier.

When not available, the PubMed identification number (PMID) was used.

Author: Author’s last name.

PubDate: Year the article was published.

First published date.

ISO3: Three-letters country codes.

For full list available at: https://en.wikipedia.org/wiki/ISO_3166-1 alpha-3

Ycoord/Xcoord: Latitude/Longitude in decimal degree.

The X/Y-coordinates define the position of the area where the field sampling was performed. We
distinguished four different situations:

1) If the location was provided in decimal degrees this format was used as such,

i) If the location was provided in a degree/minute/second format was converted in
decimal degrees.

iii) If the samples were converted across an administrative unit, and specific coordinates
were not provided for each sampling site the coordinates of the centroid of the
administrative unit was used.
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v) If several locations were mentioned in the manuscript and that resistance rates could
not be disaggregated by location based on the information provided in the manuscript
the center of mass between the locations was designated as the geographic coordinates
of the study.

StartDate/EndDate: Start date of study, specified in the article.

This refers to the sampling dates. Following format was used: day/month/year (e.g., 29/09/1985).
Sampling might span several time periods. When exact days of sampling were not mentioned, the
15™ of each month was assumed. When only sampling year(s) were given, the first and the last
day of the referred period will be used (e.g., 2012-2013, 01/01/2012 for StartDate and 31/12/2013
for EndDate).

Species: Animal species included in the study.

All animal species were pooled in the following categories of animals Cattle (including buffaloes
and yak), Chickens (including duck and geese), Pigs, Sheep (including all small ruminants),
Rabbits, Horses, Camel or a mixture of these.

For studies providing aggregated data for different animal species and/or sample types, an entry
was included in resistancebank with DOI, country and author but no values were entered in the
Rescom% column (see below).

SampleType: Samples recovered from the animals.

All sample types were pooled in four categories: Living Animals (animal swabs), Killed Animals
(cecal samples and lymph nodes), Products (dairy and eggs) and fecal samples. Any PPS with
mixed sample type containing meat was categorized as meat, except mixes including killed
animals which were categorized as killed animals

Method: Methodology used for antibiotic susceptibility testing (AST)

Methods were recorded as either disk diffusion (DD), agar dilution (AD), broth dilution (BD),
Etest or the name of the automatic system (e.g., VITEK). Disk diffusion method was assumed
when PPS reported the potency of disks used for the AST. When more than one methodology was
used, the acronyms of the methods are separated by a . When non-standard medium was used to
perform AST, the name of medium was recorded in the remark section.

For further applications of resistancebank, PPS performing molecular typing or population
structure analysis were also recorded. For simplicity, PCR (Polymerase Chain Reaction) was
added to all studies performing molecular typing (e.g., detection of antibiotic resistance genes,
virulence determinants, mobile genetic elements and MLST) or fingerprinting methods (e.g.,
PFGE). For PPS reporting whole genome sequencing data, a WGS was added.
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There are several AST possibilities but they can be grouped into Diffusion or Dilution methods.
Guidelines for performing these tests are given by different societies and/or organizations (CLSI,
EUCAST, French Society for Microbiology — SFM). Note: antibiotic concentrations are normally
expressed in pg/mL and in pg for the disk content alone.

Pathogens: Bacterial species targeted for the study

Currently resistancebank includes the following organisms: non-typhoidal Salmonella spp.,
Escherichia coli, Enterococcus spp, Staphylococcus aureus, Campylobacter spp..

Strain: Bacterial subtype (not used in this study)

Some studies focus on the epidemiology of restricted strains within a species. If no specification,
NA is introduced.

e For PPS reporting exclusively on strains resistant to a specific antimicrobials, a 3-letter code
(see below) was used to indicate their resistance phenotype (e.g., nalidixic acid-resistant —
NAL-R). For S. aureus and Enterococcus spp., the common designations for certain
resistant types are used instead (e.g., MRSA and MSSA - methicillin resistant and
susceptible S. aureus, respectively; VISA and VRSA — vancomycin intermediate and
resistant S. aureus; and VRE — vancomycin resistant enterococci)

e For PPS reporting on single-species, the designation is included in the strain column (e.g.,
a study focusing only on Enterococcus faecium).

e For PPS reporting on Salmonella spp., the serotype was reported in the strain column.

e For PPS reporting on E. coli pathotypes and/or serotypes characterized, they are inputted
into the strain column (e.g., STEC, O157, EXPEC, etc).

e For studies on the characterization of bacteria carrying specific genetic traits such as
antibiotic resistance genes or virulence determinants, these are specified in the strain
column.

Nsamples: Number of samples collected.

The total number of recovered samples per type at the different sampling sites (butchers, markets,
farms or retail/supermarkets).

Note: In many studies the number of samples which were referred to KilledAnimal does not
entirely represent the number of animals sampled as different organs may have been used for
susceptibility testing. When that was the case, an inquiry to the corresponding author was made
for a breakdown of the data collected.

Prev%: Number of samples positive for a pathogen divided by the total number of samples
collected.

In the absence of bacteria, Prev%=0. The value is expressed in percentage and rounded to one
decimal.
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Nisolates: Number of isolates

The total number of isolates used for AST. Normally this is equal to the number of positive
samples (prevalence). Increased numbers in comparison to the samples can be due to recovery of
more than one bacterium per sample, whereas lower numbers can be attributed to the use of a
representative subset or loss of bacterial viability.

Drug: Antibiotic Class.

The following broad antibiotic classes were included in resistancebank: PEN (Penicillins), CEP
(Cephalosporins), MON (Monobactams), CAR (Carbapenems), AMI (Aminoglycosides), QUI
(Quinolones), AMP (Amphenicols), TET (Tetracyclines), SUL (Sulfonamides), MAC
(Macrolides), Glycopeptides (GLY), POL (Polymixins), OTH (Others).

Compound and ATC-Code: Antimicrobial compounds used for susceptibility testing designated
by a 3-letter code and its designation in the Anatomical Therapeutic Chemical (ATC)
Classification.

ATC-Code starting with JO stand for antibiotics for human systemic use while QJO1for veterinary
use. For additional information and ATC-Code searching, please refer to
https://www.whocc.no/atc ddd index/ or https://www.whocc.no/atcvet/atcvet index/.

For antibiotics without attributed ATC codes, a pseudo code was constructed by using the ATC
code of the molecular classification (5 or 6 characters for human and veterinary antibiotics,
respectively) and adding the first character of the compound’s name separated by a - (e.g.,
Sarafloxacin — JOIMA-S; and Mequindox — QJOIMQ-M). Some ATC codes are provided for
mixture of compounds (e.g., JOIRAO1 for penicillins in combination with other antibacterials).
Active ingredients’ name were reported in resistancebank when commercial drugs were used. The
antibiotics found across all studies are the following (3 letter code, ATC-code): Amoxicillin-
Clavulanic Acid (AMC, JO1CRO02); Ticarcillin-Clavulanic acid (TIM, JO1CRO03); Piperacillin-
Tazobactam (PIT, JOICROS5); Ampicillin-Sulbactam (SAM, JO1CRO1); Ampicillin (AMP,
JOICAO1); Amoxicillin (AMX, JO1CAO04); Ticarcillin (TIC, JOICA13); Cloxacillin (CLO,
JOICFO02); Oxacillin (OXA, JOICF04); Penicillin & Streptomycin (PES, JOIRA01); Mecillinam
(MEC, JOICATI1); Piperacillin (PIP, JO1CA12); Flucloxacillin (FLU, JO1CFO05); Carbenicillin
(CAR, JO1CAO03); Methicillin (MET, JO1CF03); Penicillin (PEN, JOICEO1); Temocillin (TEM,
JOICAT17); Dicloxacillin (DIC, QJ51CFO01); Nafcillin (NAF, JO1CF06); Mezocillin (MEZ,
JOICA10); Ceftriaxone (CRO, JOIDDO04); Ceftazidime (CAZ, JO1DDO02); Cefalexin (CLX,
JOIDBO01); Cefotaxime (CTX, JO1DDO1); Cefepime (FEP, JOIDEO1l); Cefoxitin (FOX,
JOIDCO1); Cefalotin (CFL, JO1DBO03); Ceftiofur (CFU, QJOIDD90); Cefuroxime (CXM,
JOIDCO02); Cefpodoxime (CPD, J01DD13); Cefazolin (CFZ, JO1DB04); Cefixime (CFM,
JO1DDO08); Cefamandole (CMD, JO1DCO03); Cefoperazone (CFP, J01DD12); Moxalactam (MOX,
JOIDDO06); Cefpirome (CPO, JOIDE02); Cefotetan (CTT, JO1DCO5); Cefradine (CFR, JO1DB09);
Ceftaroline (CPT, J01DI02); Ceftobiprole (CBP, JO1DIO1); Cefquinome (CFQ, QJOIDE90);
Sulbactam-CFP (SFP, J01DD62); Ceftizoxime (CZM, JO1DDO07); Cephaloridine (CLD,
JOIDBO02); Cefalonium (CLM, QJ51DB90); CTX-Clavulanic acid (CTC, JO1DDS51); CAZ-
Clavulanic Acid (CAC, JO1DD52); Cefmetazole (CEM, JO1DCO09); Cefaclor (CFC, JO1DC04);,
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Cefadroxil (CFR, JOIDBO0S5); Aztreonam (ATM, JOIDFO1); Imipenem (IPM, JO1DHS51);
Ertapenem (ERT, JO1DHO3); Meropenem (MEM, JO1DHO02); Doripenem (DOR, JOIDHO04);
Kanamycin (KAN, J01GB04); Gentamicin (GEN, JO1GBO03 ); Neomycin (NEO, JO1GBO05);
Streptomycin (STR, JO1GAO1); Amikacin (AMK, JO1GB06); Tobramycin (TOB, JOIGBO01);
Apramycin (APR, QA07AA92); Netilmicin (NET, JO1GB07); Spectinomycin (SPT, JO1XX04);
Isepamicin (ISP, JO1GB11); Ciprofloxacin (CIP, JOIMAO2); Nalidixic acid (NAL, JOIMBO02);
Enrofloxacin (ENR, QJO1MA90); Norfloxacin (NOR, JOIMAO06); Ofloxacin (OFX, JOIMAO1);
Oxolinic Acid (OXO, JOIMBOS); Flumequine (FLQ, JOIMBO07); Moxifloxacin (MXF,
JOIMA14); Levofloxacin (LVX, JO1IMA12); Pefloxacin (PEF, JOIMAO03); Olaquindox (OLA,
QJ01IMQO1); Mequindox (MEQ, QJOIMQ-M); Marbofloxacin (MRB, QJ01MA93); Gatifloxacin
(GAT, SOIAEOE); Lomefloxacin (LOM, JO1IMAO7); Danofloxacin (DAN, QJOIMA92);
Carbadox (CRB, QJOIMQ-C); Sarafloxacin (SAR, JOIMA-S); Chloramphenicol (CHL,
JOIBAO1); Florfenicol (FFC, QJO1BA90); Thiamphenicol (TFC, JO1BAO02); Tetracycline (TET,
JOIAAOQ7); Oxytetracycline (OXT, JO1AA06); Doxycycline (DOX, JO1AA02); Minocycline
(MIN, JO1AAO08); Tigecycline (TIG, JO1AA12); Chlortetracycline (CTE, JO1AAO03);
Sulfamethoxazole-Trimethoprim (SXT, JO1EEOl); Sulfamethoxazole (SMZ, JOIECO01);
Sulfafurazole or Sulfisoxazole (SOX, JOIEBOS); Sulfonamides-Trimethoprim (SUT, JO1EE);
Sulfonamides (SSS, JO1E); Trimethoprim-Sulfadiazine (TDZ, QJ01EW10); Trimethoprim (TMP,
JOIEAOL); Sulfamonomethoxine (SMN, QJO1EQI18); Erythromycin (ERY, JO1FAOIl);
Lincomycin (LIN, JO1FF02); Clindamycin (CLI, JOIFFO1); Clarithromycin (CLR, JO1FAQ9);
Tylosin (TYL, QJO1FA90); Azithromycin (AZM, JO1FA10); Spiramycin (SPI, JO1FA02);
Tilmicosin (TIL, QJO1FA91); Roxithromycin (ROX, JO1FA06); Midecamycin (MID, JO1FA03);
Vancomycin (VAN, JO1XAO01); Teicoplanin (TEC, JO1XA02); Avoparcin (AVO, JO1XA-A);
Polymixin B (PMB, J01XB02); Colistin (CST, JO1XBO01); Linezolid (LIZ, JO1XXO0S);
Nitrofurantoin (NIT, JO1XEOI); Rifampicin (RIF, J0O4AB02); Quinupristin-Dalfopristin (Q-D,
JOIFGO02); Bacitracin (BAC, J01XX10); Furazidin (FUR, JO1XEO03); Daptomycin (DAP,
JO1XX09); Mupirocin (MUP, D06AX09); Fosfomycin (FOF, J01XXO01); Fusidic acid (FUS,
JOI1XCO01); Metronidazole (MTD, JO1XDO01); Pristinamycin (PRI, JOIFGO1); Furazolidone
(FRZ, QJO1XE90); Tiamulin (TIA, QJ01XQO01); Novobiocin (NOV, QJO1XX95); Valnemulin
(VAL, QJ01XQ02).

For data analysis, only compounds within the WHO Integrated Surveillance of Antimicrobial
Resistance in Foodborne Bacteria were used (Table S2):

Rescom%: Percentage of isolates resistant to the relevant antimicrobial compound

Intermediate-resistant isolates were considered susceptible. All values are rounded to one decimal
place. Any value over 0% was rounded to 1%.

When inconsistencies were noted between the resistance rates reported in the main text of a
manuscript and the tables, then values reported in the latter were used in resistancebank. Attempts
to resolve uncertainties on the number of samples used for calculating resistance rates, or to
disaggregate resistance rates between species were made by contacting the corresponding author.
Overall 443 emails were sent, and 162 (36.7%) emails were ere answered by April 1% 2019.

Concg: Concentration of antimicrobial used for susceptibility test susceptibility.
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For dilutions methods, this is the concentration expressed in pg/mL. For diffusion methods, this is
the potency of the drug expressed in pg. In the case of antimicrobial mixtures, the sum of both
concentrations was taken.

Guidelines: Category of Guideline document used for performing AST in each PPS

Refers to the document used to compare AST results against clinical breakpoints to classify a
pathogen as phenotypically resistant or susceptible to an antibiotic. Values correspond to the
committee that developed the guidelines, including the EUCAST, and the SFM. Since NCCLS
was renamed to CLSI in 2005, all NCCLS documents will be recorded as CLSI.

When the year of the guidelines used was not reported in the PPS the acronym of the committee
was reported. In the case of CLSI animal-specific documents (M31), if the document identification
was not stated, the term animal was used instead (e.g., CLSI 2004 Animal).

Breakpoint: Breakpoint used for assessing antimicrobial susceptibility testing.

For diffusion methods, the breakpoint is expressed as <= the diameter value in mm of the growth
inhibition zone. For dilution methods, the breakpoint is expressed as >= the value of the
concentration pg/mL of bacterial growth inhibition. When breakpoints were not yet established
for certain antimicrobials, the breakpoint specified by the authors were recorded. These are
typically derived from breakpoints of similar molecules or from the literature. As of the June 2019,
this concerns 11 surveys associated with AGISAR pathogens in resistancebank.

Remark: Comments relative to the publication (first row) or for specific compounds (additional
rows).

E-mail contact: Contact information of authors, and reason for contacting the authors.
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Protocol S3. Regional variations in accuracy of antimicrobial susceptibility testing

We used the 2015 report from the External Quality Assurance System (EQAS) of the World Health
Organization Global Foodborne Infections Network (47) to account for regional differences in the
accuracy of antimicrobial susceptibility testing. The EQAS reports aim to estimate performance
for antimicrobial susceptibility testing as the percentage of phenotypically resistant isolates
correctly identified across 10 sub-regions.

In this study, those estimates were used to calculate an adjusted sample size for of each survey by
multiplying the sample size reported by the accuracy published in the EQAS report for each year
and region. For example for a surveys on Salmonella spp. conducted in Southeast Asia in 2015
with original sample size of 200, the adjusted sample size was: 180 = round(200 x 0.899). In
comparison, a survey conducted with the same number of samples conducted on the same year on
Campylobacter spp. in Africa where the accuracy of susceptibility testing is lower (0.719) would
have its sample size further reduce: 144 = round (200 x 0.719). The contribution of the African
studies to the global interpolation used to produce the maps of P50 maps would be relatively lower
than the Asian studies. Since E. coli is not part of the panel used within EQAS, the Shigella spp.
values were used as a proxy for the accuracy on E. coli testing given the close relatedness (48) of
this genus with Escherichia spp..

Accuracies were not reported in the EQAS report before to 2001 for Salmonella spp., and before
2009 for Campylobacter spp. and Shigella spp.. Therefore, the accuracies reported on the first year
were used to adjust sample size for all years before EQAS reporting started. For all years after
2015, the accuracies reported in 2015 were used, and for any year missing accuracy reports, the
last accuracy estimate reported was used. For MRSA, no metrics of accuracy were provided in the
EQAS report from 2015. The average accuracies reported for Shigella spp., Salmonella spp. and
Campylobacter spp. each year were used as proxy for each year.
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Fig. S1. Literature Review. Number of resistance rates (ns), and point-prevalence surveys
(npps) identified, exclusion criteria and records used for mapping antimicrobial resistance.
AGISAR = Advisory Group on Integrated Surveillance of Antimicrobial Resistance.
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antimicrobial dilution (AD) and disc diffusion (DD). Statistically significant differences are
highlighted with red borders on the boxplots (Mann—Whitney U test).
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Fig. S5. Modulation of resistance rates. Illustration of the calculation of Areas Under the Curve
for the correction applied to observed resistance rates reported in PPS for an hypothetical drug-
pathogen combination where reference breakpoints differ from the observed breakpoints by two
dilutions or 13 mm. MIC/inhibition zone distribution were obtained from the EUCAST online
database (grey polygon, http://www.eucast.org/mic_distributions_and_ecoffs/).
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Fig. S7. Environmental and anthropogenic covariates used for training the child models
(log10 scaled). Predicted antimicrobial use in animals (use), travel time to cities of more than
50,000 people (acc), yearly average of minimum monthly temperature (tmp), percentage of pixel
area irrigated (irg), population densities of extensively raised pigs (PgExt), intensively raised pigs
(Pglnt), extensively raised chicken (ChExt), intensively raised chicken (ChlInt), Cattle (Ca), and
percentage are covered in vegetation (veg).
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1134

o

1135 ‘
1136  Fig. S8. Geographic distribution or presence and pseudo-absence. Points in four regions were

1137  used for the K-fold spatial cross-validation procedure of the child models.
1138
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1140
1141 Fig. S9. Global maps of P50 obtained from child models using environmental covariates.

1142 Boosted Regression Trees (top), least absolute shrinkage and selection operator (LASSO) applied
1143 to logistic regression (middle), and Generalized Additive Model (GAM) (bottom).
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Fig. S12. Association between hotspots of antimicrobial resistance (P50 > 0.4, green), and hotspots
of increased antimicrobial use (blue) in Asia. Hotspots of increased antimicrobial use (AMU) are
areas where consumption could surpass 30 kg per 10 km” by 2030, as estimated by Van Boeckel
et al 2015 (49), and updated with the latest global antimicrobial use data (7). Three quarters (74%)
of the P50 hotspots are in hotspots of increased antimicrobial use, albeit the association between
P50 and antimicrobial use was moderate (Kappa = 0.28), and consistent with the moderate
importance of antimicrobial use in used child-models for global geospatial models (Table S5).
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1170

1171

1172
1173

Geographic End ISI Web of . Studies
Rggi(})n Date” PubMed Science Scopus Total Hits Screened

South America 28.03.19 2206 930 1129 4265 260
Central America,

Mexico, Caribbean 28.03.19 694 257 322 1273 53
Africa 28.03.19 2217 1677 2520 6414 457
Indiaand South | g )3 19 | 4763 1147 2164 8074 543
East Asia

West and Central

Asia, Arabian 28.03.19 2297 1359 1409 5065 275
Peninsula

China 28.03.19 5067 873 999 6939 404
Grey Literature - - - - 178

"Data collection end date for the corresponding region.

For search dates were limited from 2000/01/01 to

Table S1. Number of hits across literature databases and geographic regions

2018/12/31.
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1174

1175
1176
1177
1178
1179
1180

Antimcirobial ATC- Salmonella and | Campylobacter | Enterococcus Staphylococcus
Classes Code E. coli spp- Spp- aureus
. . JO1GBO03 Gentamicin Gentamicin Gentamicin Gentamicin
Aminoglycosides JO1GAO1 Streptomycin Streptomycin
Ampbhenicols JOIBAO1 | Chloramphenicol - Chloramphenicol | Chloramphenicol
JOIDHS1 Imipenem
Carbapenems JOIDHO2 Meropenem ) ) )
JO1DCO1 Cefoxitin Cefoxitin
JOIDDO1 Cefotaxime
Cephalosporins | JO1DDO04 Ceftriaxone - -
JO1DDO02 Ceftazidime
JOIDEO1 Cefepime
. JOIXAO1 Vancomycin Vancomycin
Glycopeptides | 153 02 - - Teicoplaynin g
Glycylcyclines | JO1AA12 Tigecycline - Tigecycline -
Lincosamides JO1FFO1 - Clindamycin - Clindamycin
Lipopeptides JO1XX09 - - Daptomycin -
Macrolides JOIFAIO Azithromycin . . .
JOIFAOQ1 Erythromycin Erythromycin Erythromycin
Nitrofurans JOIXEO1 Nitrofurantoin - - -
Oxazolidinones | JO1XX08 Linezolid
JO1CAO1 Ampicillin Ampicillin Ampicillin
Penicillins JOICAO04 Amoxicillin -
JOICA17 Temocillin
Polymyxins JOI1XBO1 Colistin - - -
JOIMAO2 | Ciprofloxacin Ciprofloxacin Ciprofloxacin Ciprofloxacin
Quinolones JOIMBO02 | Nalidixic acid Nalidixic acid
JOIMAO3 Pefloxacin
Rifamycins JO4AB02 - - - Rifampicin
. uinupristin- uinupristin-
Streptogramins | JOIFG02 ) i %alfollj)ristin %alfollj)ristin
Sulfonamides® | JOIEB05" | Sulfisoxazole® Sulfisoxazole
Tetracyclines JOIAAQ7 Tetracycline Tetracycline Tetracycline Tetracycline
Trimethoprim JOIEAO1 Trimethoprim - - Trimethoprim
Sulfonamides+ Sulfonamides-
Trimpethoprim JOTEEOL Trimethoprim i ) )

*Only sulfisoxazole shown, but any combination of sulfonamides can be used to test for this class and were included

in the analysis

Table S2. Antibiotics suggested by the WHO-AGISAR for surveillance in foodborne bacteria
(adapted from (74) )
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1181
1182

1183

1184
1185

Name Acronym | Year Original Source
Resolution

Antimicrobial use 2013 0.083333 Van Boeckel et al 2017 (1)

use in animals decimal http://science.sciencemag.org/content/357/6358/1350.full
degrees

Travel time to acc 2015 30-arcsec Weiss et al 2018(26) https://www.map.ox.ac.uk/accessibility to_cities/.

cities resolution

Yearly average tmp 1970- 2.5 minutes Worldclim (50)

of minimum 2000 http://worldclim.org/version2

monthly

temperature

Percentage irg 2005 0.083333 Global Map of Irrigation Areas (GMIA) (51)

irrigated areas decimal http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm
degrees

Population ChExt 2013 0.083333 Gridded Livestock of the World v3 (52, 53)

density pigs, ChlInt decimal https://livestock.geo-wiki.org/

chickens and PgExt degrees

cattle (extensive Pglnt

vs intensive Ca

systems)

Percentage of veg 2013 0.008333 https://earthenginepartners.appspot.com/science-2013-global-

tree coverage decimal forest/download v1.2.html (54)
degrees

Table S3. Environmental and anthropogenic covariates used for training the child models
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1186
1187
1188
1189
1190

Name Acronym | Year Original Source
Resolution
Urban Areas Urban 2009 ~300m at GlobeCover 2009 (55)
equator http://due.esrin.esa.int/page globcover.php
Human Hpop 2015 30 arc-second | GPW v4
population http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10
density (n/km?)

Table S4. Covariates used for the stratified sampling of pseudo-absence points
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1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

Use* acc tmp irg PgExt PgInt ChExt Chint Ca  veg

Relative Influence (%)

BRT 3.8. 681 74 52 15 20 24 6.4 1.8 13
Frequency of selection

after regularization (%)

LASSO-GLM -30  -100 -70 100 O 10 90 50 0 -50
LASSO-GAM (linear) 0 50 80 60 0 10 100 50 0 10
LASSO-GAM (non-linear) 90 50 10 40 0 0 0 0 0 60

*Predicted antimicrobial use in animals (use), travel time to major cities (acc), yearly average of minimum monthly
temperature (tmp), percentage of pixel area irrigated (irg), population densities of extensively raised pigs (PgExt),
intensively raised pigs (Pglnt), extensively raised chicken (ChExt), intensively raised chicken (Chlnt), Cattle (Ca),
and percentage are covered in vegetation (veg).

Table S5. Relative influence of individual covariates in child models
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Pathogen Continent Species Studies per compound
Ecoli Africa Cattle AMP(n=16),AMX(n=13),CAZ(n=14),CHL(n=35),CIP(n=33),CRO(n=10),CST(n=10),CTX(n=26),FEP(n=3),FOX(n=14),GEN(n=41),IPM(n=11), MEM(n=3),NAL(n=26),NIT(n=7),S0X(n=1),SSS(n=8),SX T(n=34), TET(n=49), TIG(n=2), TMP(n=9)
Ecoli Africa Chicken AMP(n=15),AMX({ 5),CAZ(n=18),CHL(n=31),CIP(n=43),CRO(n=7),CST(n=15),CTX(n=29),FEP(n=3),FOX(n=12),GEN(n=43),IPM(n=14), MEM(n=6),NAL(n=30),NIT(n=5),SSS(n=10),SX T(n=35), TET(n=37),TIG(n=2), TMP(n=10)
Ecoli Africa Pig AMP(n=3),AMX(; ,CAZ(n=3),CHL(n=6),CIP(n=8),CRO(n=1),CST(n=2),CTX(n=6),FOX(n=2),GEN(n=8),IPM(n=1),MEM(1  NAL(n=4),SSS(n=1),SXT(n=4), TET(n=7),TIG(n=2), TMP(n=2)
Ecoli i Cattle AMP(n=70),AMX({ 7),AZM(n=7), 9),CHL(n=68),CIP(n=67),CRO(n=30),CST(n=16),CTX( ),FOX(n=10),GEN(n=83),IPM( ),MEM(n=11),NAL(n=35),NIT(n=13),S0X(n=3),SSS(n=2),SXT(n=41),TET(n=50),TIG(n=2),TMP(n=12)
Ecoli Chicken AMP(n=60),AMX({ 8),AZM(n=7),CAZ(n=29),CHL(n=57),CIP(n=70),CRO(n=25),CST(n=19),CTX(; 1),FOX(n=14),GEN(n=72),IPM{ 6),SXT(n=45),TET(n=46),TIG(n=1),TMP(n=10)
Ecoli Asia Pig AMP(n=36),AMX(n=9),AZM(n=1),CAZ(n=18),CHL(n=31),CIP(n=39),CRO(n=14),CST(n=11),CTX(n=29),FEP(n=6),FOX(n=13),GEN(n=42),IPM(n=13), MEM(n=9),NAL(n=19),NIT(n=6),SOX(n=1),S8S(n=1),SX T(n=30), TET(n=34), TIG(n=5), TMP(n=9)
Ecoli Americas Cattle AMP(n=33),AMX(n=5),CAZ(n=13),CHL(n=20),CIP(n=29),CRO(n=16),CST(n=2),CTX(n=16),FEP(n=10),FOX(n=13),GEN(n=37),IPM(n=11), MEM(n=5),NAL(n=24),NIT(n=8),SOX(n=3),SSS(n=1),SX T(n=35), TET(n=30), TIG(n=1), TMP(n=2)
Ecoli s Chicken AMP(n=18),AZM( ),CST( .CTX(n=16),FEP( 0),GEN(n=27),IPM( ,MEM(n=1),NAL(n=16),NIT(n=6),80X(n=3),SSS(n=1),8XT(n=20),TET(n=25), TMP(n=2)
Ecoli Pig AMP(n=14),AMXj{ ),CHL(n=12),CIP(n=11),CRO(n=4),CST(n=5),CTX(n=8),FEP(n=2),FOX(n=3),GEN(n=16),MEM(n=1),NAL(n=10),NIT(n=4),SOX(n=1),8SS(n=2),SX T(n=14), TET(n=14), TIG(n=1), TMP(n=2)
Salmonella Cattle AMP(n=13),AMX(n=7),AZM(n=1),CAZ(n=9),CHL (n=28),CIP(n=30),CRO(n=15),CST(n=4),CTX(n=12),FEP(n=2),FOX(n=11),GEN(n=34),IPM(n=5), MEM(n=2),NAL(n=27),NIT(n=9),PEF(n=1),SOX(n=5),S X T(n=27), TET(n=30), TIG(n=2), TMP(n=10)
Salmonella Chicken AMP(n=14),AMX(n=16),CAZ(n=14),CHL(n=38),CIP(n=33),CRO(n=11),CST(n=10),CTX(n=24),FEP(n=1),FOX(n=15), GEN(n=40),IPM(n=8), MEM(n=3),NA L (n=34),NIT(n=8),PEF(n=2),SOX(n=4),SX T(n=35), TET(n=38),TIG(n=2), TMP(n=21)
Salmonella Pig AMP(n=4),CAZ(n=4),CHL(n=6),CIP(n=7),CRO(n=2),CST(n=1),CTX(n=6),FEP(n=1),FOX(n=2),GEN(n=8),IPM(n=4), MEM(n=2),NAL(n=9),NIT(n=2),80X(n=1),SXT(n=6), TET(n=7),TIG(n=2), TMP(n=4)
Salmonella Cattle AMP(n=23),AMX(n=8),AZM(n=2),CAZ(n=6),CHL(n=20),CIP(n=21),CRO(n=8),CST(n=3),CTX(n=10),FEP(n=1),FOX(n=4),GEN(n=23),IPM(n=1),NAL(n=15),NIT(n=2),PEF(n=1),SOX(n=1),SX T(n=14), TET(n=18), TIG(n=1), TMP(n=9)
Salmonella Chicken AMP(n=94),AMX(n=26),AZM(n=8),CAZ(n=25),CHL(n=81),CIP(n=95),CRO(n=29),CST(n=21),CTX(n=41),FEP(n=9),FOX(n=11),GEN(n=98),IPM(n=18), MEM(n=6),NAL (n=72),NIT(n=9),PEF(n=2),SOX(n=7),SX T(n=56), TET(n=70), TIG(n=3), TMP(n=26)
Salmonella Pig AMP(n=43),AMX({ ), AZM(n=4),CAZ(n=10),CHL(n=33),CIP(n=40),CRO(n=21),CST(n=4),CTX(n=25),FEP(n=4),FOX(n=8),GEN(n=36),IPM(n=7), MEM(n=3),NAL(n=35),NIT(n=4),PEF(n=1),SOX(n=3),SX T(n=35), TET(n=39), TIG(n=4), TMP(n=6)
Salmonella Cattle AMP(n=12),CAZ( ,CHL(n=14),CIP(n=11),CRO(n=6),CST(n=2),CTX(n=8),FOX(n=2),GEN(n: ,IPM(n=4),NAL(n=11),NIT(n=3),PEF(n=2),SOX(n=1),SXT(n=12),TET(n=12)
Salmonella Chicken ), AZM(n=2),CAZ(n=5),CHL(n=20),CIP(n=21),CRO(n=7),CST(n=8),CTX(n=12),FEP(n=1),FOX(n=3),GEN(n=21),IPM(n=4), MEM(n=2),NAL(n=18),NIT(n=5),PEF(n=1),SOX(n=1),SX T(n=20), TET(n=20),TIG(n=1), TMP(n=2)
Salmonella Pig ),CHL(n=13),CIP(n=13),CRO(n=6),CST(n=2),CTX(n=8),FOX(n=1),GEN(n=14),NAL(n=13),NIT(n=3),PEF(n=1),S0OX(n=1),SXT(n=10), TET(n=13), TMP(n=3)
Campylobacter Chicken 3),GEN(n=11),NAL(n=12),STR(n=6),TET(n=10)
Campylobacter Cattle AMP(n=5),CIP(n=10),DOX(n=2),ERY (n=9),GEN(n=10),NAL(n=10),STR (n=6), TET(n=5)
Campylobacter Chicken AMP(n=14),CIP(n=35),DOX(n=10),ERY (n=34),GEN(n=31),NAL(n=25),STR(n=10), TET(n=30)
Campylobacter Asia Pig AMP(n=3),CIP(n=6),DOX(n=1),ERY (n=4),GEN(n=4),NAL(n=6),STR(n=1), TET(n=4)
Campylobacter Americas Cattle LERY (i LGEN( .NAL(n=3),STR(n=1),TET(n=3)
Campylobacter Americas Chicken ),ERY (n=13),GEN(n=12),NAL(n=8),STR(n=3),TET(n=12)
Campylobacter Americas Pig AMP(n=3),CIP(n=5),ERY (n=3),GEN(n=5),NAL(n=3),STR(n=1), TET(n=4)
Staphylococcus. Africa Cattle 5),CLI(n=21),ERY (n=37),FOX(n=11),GEN(n=31),L1Z(n=2),0X A(n=26),PEF(n=1),PEN(n=35),RIF(n=10),SOX(n=1), TET(n=36), TMP(n=3),VAN(n=25)
Africa Chicken 7),CLI(n=7),ERY (n=10),FOX(n=3),GEN(n=11),LI1Z(n=1),0XA(n=7),PEN(n=8),Q-D(n=1),RIF(n=2), TET(n=10), TMP(n=1),VAN(n=9)
Staphylococcus. Africa Pig ),CIP(n=3),CLI(n=3),ERY (n=3),GEN(n=4),LIZ(n=1),0XA(n=3),PEN(n=2),RIF(n=1), TET(n=3),VAN(n=1)
Staphylococ Cattle CHL(n=44),CIP(n=46),CL1(n=28),ERY (n=40),FOX(n=25),GEN(n=63),L1Z(n=9),0X A (n=37),PEF(n=2),PEN(n=52),Q-D(n=1),RIF(n=8),80X(n=1), TET(n=37), TMP(n=6), VAN(n=31)
Staphylococ Chicken 2),CLI(n=9),ERY (n=10),FOX(n=7),GEN(n= .PEN(n=8),TET(n=12),TMP(n=2),VAN(n=9)
Staphylococ Pig 6),CLI(n=14),ERY ),FOX(n=12),GEN(1 0),PEN(n=10),Q-D(n=3),RIF(n=6),TET(n=17), TMP(n=2),VAN(n=12)
Staphylococcus Americas Cattle 0),CIP(n=18),CLI(n=17),ERY (n=30),FOX(n=11),GEN(n=31),L1Z(n=4),0XA(n=27),PEF(n=3),PEN(n=31),Q-D(n=2),RIF(n=7),TET(n=29),TMP(n=1),VAN(n=15)
Staphylococ Americas Chicken ),CIP(n=3),CLI ] ] ),GEN(n=3),0XA ),PEN(n=3),RIF(n=3),TET(n=2),VAN(n=3)
Staphylococcus Americas Pig CHL(n=2),CIP(n=2),CLI(n=2),ERY (n=3),FOX(n=1),GEN(n=3),LIZ(n=2),0X A (n=2),PEN(n=2),Q-D(n=1),RIF(n=1),TET(n=3), TMP(n=1),VAN(n=3)

Table S6. Number of point prevalence surveys per pathogens, continent, host species and antimicrobial compound (See Protocol S1

for drug acronyms)

55



