1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
|EEE Trans Med Imaging. 2011 March ; 30(3): . doi:10.1109/TMI.2010.2095027.

Diffeomorphic Image Registration of Diffusion MRI Using
Spherical Harmonics

Xiujuan Geng,
Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse,
NIH, Baltimore, MD 21224 USA

Thomas J. Ross,
Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse,
NIH, Baltimore, MD 21224 USA

Hong Gu,
Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse,
NIH, Baltimore, MD 21224 USA

Wanyong Shin,
Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse,
NIH, Baltimore, MD 21224 USA

Wang Zhan,

Department of Radiology, University of California, San Francisco, CA 94121 USA
Yi-Ping Chao,

Department of Electrical Engineering, National Taiwan University, 106 Taiwan
Ching-Po Lin,

Institute of Neuroscience, National Yang-Ming University, 112 Taiwan

Norbert Schuff, and
Department of Radiology, University of California, San Francisco, CA 94121 USA

Yihong Yang
Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse,
NIH, Baltimore, MD 21224 USA

Xiujuan Geng: gengx@nida.nih.gov; Thomas J. Ross: tross@intra.nida.nih.gov; Hong Gu: hgu@intra.nida.nih.gov;
Wanyong Shin: shinwa@nida.nih.gov; Wang Zhan: wang.zhan@ucsf.edu; Yi-Ping Chao: catpin@gmail.com; Ching-Po
Lin: chingpolin@gmail.com; Norbert Schuff: norbert.schuff@ucsf.edu; Yihong Yang: yihongyang@intra.nida.nih.gov

Abstract

Non-rigid registration of diffusion MRI is crucial for group analyses and building white matter
and fiber tract atlases. Most current diffusion MRI registration techniques are limited to the
alignment of diffusion tensor imaging (DTI) data. We propose a novel diffeomorphic registration
method for high angular resolution diffusion images by mapping their orientation distribution
functions (ODFs). ODFs can be reconstructed using g-ball imaging (QBI) techniques and
represented by spherical harmonics (SHs) to resolve intra-voxel fiber crossings. The registration is
based on optimizing a diffeomorphic demons cost function. Unlike scalar images, deforming ODF
maps requires ODF reorientation to maintain its consistency with the local fiber orientations. Our
method simultaneously reorients the ODFs by computing a Wigner rotation matrix at each voxel,
and applies it to the SH coefficients during registration. Rotation of the coefficients avoids the
estimation of principal directions, which has no analytical solution and is time consuming. The
proposed method was validated on both simulated and real data sets with various metrics, which
include the distance between the estimated and simulated transformation fields, the standard
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deviation of the general fractional anisotropy and the directional consistency of the deformed and
reference images. The registration performance using SHs with different maximum orders were
compared using these metrics. Results show that the diffeomorphic registration improved the
affine alignment, and registration using SHs with higher order SHs further improved the
registration accuracy by reducing the shape difference and improving the directional consistency
of the registered and reference ODF maps.

Index Terms

Diffusion MRI; orientation distribution function (ODF); spherical harmonics; ODF reorientation;
registration; diffeomorphisms

[. Introduction

Diffusion-based magnetic resonance imaging techniques have shown promises in the study
of white matter microstructure and anatomical connectivity of the brain. Image registration
is a crucial step for accurate group analyses of diffusion imaging data and for building white
matter and fiber-tract atlases. With the assumption of a Gaussian distribution of the
molecular diffusion, the second-order diffusion tensor imaging (DTI) [7] provides a
relatively simple approach for quantifying diffusion anisotropy and for extracting local fiber
directions. DTI-based registration methods have been developed to facilitate the alignment
of DTI data [2], [45], [22], [41], [10], [28], [42]. However, a major drawback of DTI is that
it may fail to accurately characterize the diffusion in complex white matter, where fiber
tracts with different orientations intersect within an image voxel. Extension of DTI to high-
angular resolution diffusion imaging (HARDI) has been proposed to characterize the
apparent diffusion coefficient (ADC) profiles for the intravoxel fibers [35], [17], [1], [18],
[38], [43], [44]. Methods using higher order tensors [5], [4], [23], [31], [27] and multi-tensor
models [25], [24], [29] to quantify diffusivity profiles have also been introduced to solve
this limitation. Another approach for solving intra-voxel fiber crossings is g-space imaging
(QSI) [39], which measures the diffusion probability distribution function (PDF) by
employing the Fourier transform relationship between the measured diffusion signals and
the diffusion PDF. QSI is a 6-D imaging technique since the k-space encodes spatial
positions and the g-space encodes diffusion displacements. Due to the sampling burden and
large pulse gradient requirements, g-ball imaging (QBI) [34], [33] and hybrid diffusion
imaging [40] techniques have been proposed. QBI samples the diffusion signals on a
spherical shell and applies the Funk-Radon transform to reconstruct the model-free diffusion
orientation distribution function (ODF) based on radial or spherical harmonic (SH) basis
functions [20].

Systems with spherical symmetry are often more conveniently handled in a spherical basis.
This leads to a natural representation of the local diffusion using SHs. SHs form an
orthonormal basis for complex functions on a unit sphere and are widely used in various
applications, such as shape modeling in molecular sciences and real-time lighting in
computer graphics. Many diffusion decomposition and reconstruction techniques also use
SHs [18], [20].

Several studies have been done to register HARDI data sets to take into account fiber
crossing information during the registration. Barmpoultis et al. [6] proposed an affine
registration method to map diffusivity profiles using 4th-order tensor models. Another work
presented by Chiang et al. [11] performed the registration using spherical harmonics (SHs)
by minimizing the Kullback-Leibler Divergence of the diffusivity profiles. The reorientation
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was done by the “Preservation of Principal Directions (PPD)” method [2], and the principal
directions were determined by the principal component analysis (PCA).

In this work, we propose a diffeomorphic registration method for HARDI data by mapping
their ODFs represented using SHs. The potential advantage of ODF-based registration
techniques is to align structures in locations where other image modalities are unable to
characterize, for example, fiber crossings. This technique is not restricted to ODF
registration; it can also be applied to align the apparent diffusion profiles represented by
spherical harmonics.

The proposed registration method is based on optimizing an energy function including the
ODF shape similarity cost defined with a L2-norm and regularization constraints. The large
deformation diffeomorphic framework was used to estimate smooth transformations
between images with large shape differences. During the optimization, a rotation matrix is
extracted at each voxel from the local Jacobian and converted to a general spherical
harmonic rotation matrix to reorient the ODFs. The reorientation is directly applied to the
coefficients without detecting principal directions ODFs which may have multiple directions
and involve significant computation. Experimental results show that ODF reorientation
makes the registered ODF shapes consistent with the local structures. Various metrics were
defined and used to evaluate the proposed method on simulated and real diffusion data. The
metrics include the distance between the estimated and the simulated transformation fields,
the standard deviation of the general fractional anisotropy and the directional consistency of
the deformed and reference images. The second order tensors and SHs contain the same
amount of information. Therefore, the comparison of registrations using the second order
and higher order SHs can be considered as the comparison of registrations using DTI and
higher order models. Compared to second order SHs, registration using SHs with higher
orders provides better performance in terms of smaller ODF shape difference and more
consistent principal directions of the registered images.

Il. Method

A. Diffusion ODFs Represented as Spherical Harmonics

The diffusion ODF characterizes the relative likelihood of water diffusion along any given
angular direction u with u(g, ¢) = [sin dcos ¢ sin dsin ¢ cos §] where fand ¢ are the polar
and azimuthal angles. The ODF, F(u), is defined as the radial projection of the diffusion
probability density function (PDF) P(r): F(u)= [ P(ru)dr, where r = ru is the relative
spin displacement. P(r) is related to the measured MR diffusion signal by the Fourier
relationship, P(r) = # (E(q)) [33]. E(q) represents an underlying diffusion-attenuated signal
at a finite set of points on a sphere and q is the wavevector defined as q = (27)~1yog, which
describes diffusion encoding in a pulsed-gradient spin-echo experiment. Our registration
method is applied to the reconstructed ODF maps from the QBI technique proposed by Hess
et al. [20]. The ODF is approximated by a great circle integration on the sphere, i.e.,

Fw= § B(a)dq
alu . As a single-valued spherical function, the function F(u): & — R*, can
be represented as a linear combination of a set of spherical harmonic basis Y, (u) with order
L l
1 _ my,m
| and phase factor m: F(“)_;";_,Cl K (u), where C]" denotes the harmonic series
coefficient, and L is the maximum harmonic order. Since F is real, it is sufficient to utilize a
real basis function set 4", expanded as linear combinations of the complex harmonics:
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)/lo(u) , ifm=0,
y'(w)=< H"()+(=1)"Y (W), ifm>0, @)
((-1)"Y™(w)-Y; ™(w) , ifm<0.

S

F is also assumed to be antipodal symmetric, such that the order | only takes even numbers
and the function can be expressed as

L l
Fu= Y Y dyw), @

1=0, evenm=-—1

where ¢! represents the real harmonic series coefficient. In general, ODFs form an open

subset of the space of L2 spherical functions with the L2 norm | F'|= v/ <F’, > [46]. In this
work, we define the ODF shape difference with the L2 norm. Given that the ODFs are
represented with a complete set of orthonormal basis functions, they thus form a vector
space analogue to unit basis vectors. The invariant shape norm and the distance between two
functions can be defined as

L

l
IFl=V<EF>= | Y S |d,|* and ()

[=0,evenm=—I

L !
2
D, E)=|F-Fl= | > > lld,~chnll" @

1=0,evenm=-—1

The invariance of the basis functions simplifies the calculation of shape differences which
can be performed using the corresponding coefficients as described in the above equation.

B. Rotation of Real Spherical Harmonics

A 3D rotation can be decomposed to three Euler angles using the zyz convention with three
subsequent rotations around the z, y and z axes by angles ay, ap and ag, respectively: R =
Rz(as)Ry (a2)Rz(a). For complex spherical harmonics, a rotation operator expressed in
terms of the Euler angle parametrization can be represented with a Wigner matrix with the
matrix elements given by [16]

Dfn/m(al,ag,ag):e*im O‘ldlm,m(ag)e’imo‘f‘, where
, 1, 172
dl (012):[ (ler )!(lfm )'

m'm (I+m)I(l—m)!

min(l—m/,l-l—m) ' —m [ 1+m l—m (5)
x oy DT ( ko) mm -k

k=max(0,m,—m’)

X (cosar /2) 2™ =2 (sinan /2) 2™ M),

_ _ o Y (W)= A, Y (0)
One can redefine the linear combination in Eq.(1) as !
rotation matrix for real spherical harmonics is given by [30]

, then the
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R!=A'D'AT, ()

where T is the complex conjugate transpose. The coefficients of real spherical harmonics can
be rotated in the same way as vectors with Wigner matrices. The coefficients A for the

rotated function R(F(w)=>_ > .4 (11) can be represented as a linear transformation
of the original coefficients:

1
A (ay, a9, a3)= Z Rinm/ (al,ag,ag)cin,. )

m =—1

The Wigner matrix R is represented as a sparse block matrix:
( 1 0 o - '|
O R' 0O ---
R=|109 0 R ... | ®

where R! corresponds to the Ith order. Note that rotation by y-axis mixes the spherical
harmonic coefficients within an order, but not across order. To compute Ry, set a; and az to
be zero, and compute Eq.(5) and (6). The detailed implementation can be found in [30]. The
z-axis rotation only changes the phase, which can be calculated as follows, without
constructing Rz:

A = sin(—ma)+d, cos(ma). (9)

C. Reorientation of Diffusion ODFs

Image registration searches for transformations to map structures in the source to
corresponding ones in the reference. By assumption, the water diffusion orientation
distributions reflect the underlying fiber structures; therefore, ODF reorientation along the
transformation is required. The Jacobian of the spatial transformations is the first order
linear approximation to the differentiable functions at a given spatial location. Therefore, an
obvious approach is to apply the Jacobian to the ODF at each location to reorient it. Using
this strategy, the shape and size of the ODFs are subject to change. To keep the shape
invariant, we apply the rotation matrix extracted from the Jacobian to reorient the ODFs,
which is similar to the “finite strain” tensor reorientation technique proposed by Alexander
et al. [2]. A convenience of formulating ODFs with spherical harmonics is that the shape
rotation can be achieved by applying a rotation matrix directly to the coefficients (see Sec.ll-
B) without changing the basis functions and reconstructing the ODFs after reorientation
during each registration step.

D. Diffeomorphic Registration Framework

Our previous work [19] applied a small deformation elastic model to register diffusion MRI
data sets. This type of registration can be generalized as a minimization problem of the
following energy function:

E((I)):Esm(llv I, (D)+EReg (u),

|EEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 12.
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where @ is the transformation field to be estimated that maps image I{ to Iy, andu=® — | is
the displacement field. A widely used similarity energy Egn, is the squared distance between
intensities of the two images if they are scalars. The regularization energy Ereq can be
defined as Egeg(u) = || £ ul|2 where ¢ is a differential operator, e.g., the Laplacian operator.
A limitation is that it prevents the target image from being fully deformed into the shape of
the template image when a large deformation is needed to deform images.

Registrations with a large deformation model aim to solve this problem. “Viscous fluid”
registration [13] estimates the transformations as the target image incrementally “flows” to
the template image by minimizing

E(Ut):ESim (Ilv I, (I)t)+ERc_q (Ut)v

forany t € [0, 1], V! is the velocity field at time t and ®'= [{v(®(7), 7)dr. A recent large
deformation diffeomorphic metric mapping (LDDMM) algorithm [8] searches the optimal
transformation via solving the variational problem:

E(Ut):Esm (Ilv I, (I))+El?cg(vt)’

where &= év(@(t), t)dt. These large deformation registration methods ensure that the
estimated transformations are diffeomorphic, which are smooth invertible transformations
with a smooth inverse, but require solving large sets of partial differential equations. A fast
version of the diffeomorphic registration algorithm DARTEL [3] uses a multigrid approach
and assumes a constant-velocity flow field along time. Another efficient method is called
diffeomorphic demons [36], [37], which is an extension to the demons algorithms [32] and
provides an efficient non-parametric diffeomorphic registration. Yeo [42] applied this
framework to register DT images with exact finite-strain differential.

A similar framework as diffeomorphic demons was performed in this work to estimate the
large deformation transformation in diffeomorphisms. The overall optimization scheme is to
separate the energy function into two parts by introducing another variable T, and estimate ®
and T alternatively at each iteration. The advantage is that optimization of a quadratic
regularization form can be performed efficiently using a convolution kernel [9]. The energy
function is defined as:

E:Esm (Fl? F, (I)t)+D(cI)t7 Tt)2+ER6g (Tt7 Ut) (10)

The second term is to constrain the separated T close to ®. The last two terms are the
regularization terms to ensure smooth velocity and transformation fields. We define £(:) to
be an isotropic differentiable operator V(). Then the optimization of Eq.(10), except the
similarity term, can be done by convolving a Gaussian kernel K on v and T alternatively [9].
To minimize the first two terms, let ¢t = Tto (I + V), and assume Tt is given, then the
similarity term can be linearly approximated using a first-order Taylor expansion:

Ein (v")=0||(Fy 0 T'—Fy)+VFy o Tt - v'+O(||v!||2)||”
~ o||(Fy o T'—Fy)+VF o Tt - %,

|EEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 12.
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E(v')=0||Fy o T—Fy+VF; o T" - ot||*+p]|vt|?

2
:H \/E(FloTt_F2) 4 |: \/EVFl oT" :| UtH (11)
0 NG

The update of vt can be calculated by setting the above equation to zero and solving for Vi:

. —(VF oY (F o T'—Fy)
IVEy o Tt|*+21

(12)

E. Implementation of Diffeomorphic Registration

We define the similarity cost using the shape difference metric in Eq.(4), and apply the ODF
reorientation by the rotation matrix R. Then the similarity cost function can be rewritten as:

Esi7,L—J'QIID( (F1(2'(2))), Fy(2))| *da

=/q Z Z H/\ m(®'(2))—ch,, 13)“ dz,

1=0,evenm=—1

(13)

where \!_is the rotated coefficient defined in Eq.(7). The transformation fields are defined
in Eulerian space, therefore the reorientation matrix operating on the deforming ODF should
be extracted from the inverse Jacobian of the transformation J-1(®), or from J(®) and taking
the transpose afterwards:

R=((J(®) - J(@)T) Fs(@) . 0

To apply the rotation to the spherical harmonic coefficients, R is decomposed into three
Euler angles using the zyz convention. Let c; denote cos(a), $; denote sin(«y), and define
Cp, S, C3 and sz accordingly. Then R(a apas) is expressed as:

C1C2C3—8183 —C2C3S81—C183 (353
c381+C1C283  €1C3—C251S3  S253 (15)
—C1S2 5152 C2

Therefore, the three Euler angles are obtained as:

a;=—arctan(R3z, R3;),
ag=—arccos(Rs3), and  (16)
az=arctan(Ra3, R13),

with the constraints of a; € [-7 71, o, € [—z z) and az € [-7 7). R;j represents the element
of R in the ith row and jth column, and (R, Rk|) represents the angle vector coordinate in the
plane. Note that arctan(a, b) is almost equivalent to arctan(a/b) except that we also take into
account the quadrant in which the point (a,b) is located.

The optimization of Eq.(10) is summarized in the Algorithm below. The details about
choosing parameters are described in Sec.Il1-D.

|EEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 12.
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Algorithm 1

Step 1 Initialize ®° and T° to be identity fields.

Step 2 . _ l n . . .
Compute the reoriented SH coefficients )\1m(q) ) by extracting R according to Eq.(14), decomposing

it into three angles using Eq.(16), and applying them to the coefficients using Egs.(5), (6) and (9).

Step3  Let ®"=To (I + V7). Estimate the velocity field v™*! by minimizing Eq.(11), and the updated v*! is
computed according to Eq.(12). After the computation of v"*1, normalize it so thatHU&Jgi ||=1

Step 4  Regularize v by taking the Gaussian kernel of it: v**1 = 1 K * y*1

Step5  Let T™ = JK*To(I+v™1), and ™1 = T+l

Step 6  repeat steps 2-5 until convergence, Egm < & 0F N> Ny

Technically, A() in Eq.(13) is itself a function of the deformation field, therefore the update
of vt in Eq.(12) does not fit exactly. In this work, however, we followed the demons
implementation and ignored the exact differential of the ODF reorientation. This
approximation was made since taking care of reorientation in ODF is much more
complicated than in DTI [42].

lll. Experiments and Results

A. Data Acquisition and Preprocessing

Human brain QBI data from five healthy subjects were acquired on a 3T TrioTim Siemens
MRI scanner. Each subject was scanned twice with a short out-of-scanner break between the
two sessions. Isotropic axial diffusion-weighted images (DWIs) were obtained using a single
shot diffusion spin-echo echo-planar imaging (EPI) sequence with TR/TE = 8,000/114 ms,
FOV= 195 mm, and matrix size = 78x78, yielding a 2.5mm image resolution. Using an
electrostatic repulsion model, 162 diffusion encoding directions with a b value of 3000 s/
mm? and one reference image with b = 0 were acquired. Sixty slices with slice thickness of
2.5mm were obtained to cover the whole brain. The total scan time was approximately 26
minutes.

The non-brain regions were masked out using AFNI [15] based on the baseline DWIs at b =
0, instead of a DWI at b = 3000 due to its relatively low SNR. ODF maps were then
reconstructed as described in [20]. All 10 b0 maps (five subjects, each subject contains two
sessions) were first shifted to align the volume centers, and then averaged. Each b0 map was
affine aligned to the average b0 map using the Hellinger metric, the square root of Jensen-
Shannon divergence. The affine matrices were then applied to the corresponding SH
coefficients. The rotation was done by extracting the rotation matrix from the matrix and
applying on the coefficients similar as Step 2 in Alg.1. Linear interpolation of the SH
coefficients was used throughout the preprocessing and registration steps.

B. Diffusion ODF Represented by SH Coefficients

ODFs represented by SHs with maximum order L require (L+1)x(L+2)/2 number of
coefficients. Registration using coefficients reduces the computation cost compared to using
the sample points on diffusion MRI images. We use the SH coefficients of non-normalized
ODF maps as input. Fig. 1 shows an example diffusion data set. The ODF was computed

Flw= § B(a)dq
using alu . The norm of the non-normalized SH coefficients is proportional
to the summation of the diffusion weighted signal E(q). The contrast was significantly

|EEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 12.
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reduced after ODF normalization. The non-normalized SH norms have consistent
histograms across subjects (Fig. 2(a)) given the same set of acquisition parameters, so that
the simple intensity difference metric can be used as the similarity cost for registration.
Therefore, we chose the non-normalized ones to define the energy function. The majority of
the energy of a SH shape can be represented by its lower order coefficients. The bottom row
of Fig. 1 shows ODF coefficients at orders of of 0, 2, 4, 6 and 8 where all orders except
order 0 share the same color scale. Fig. 2(b) plots the histogram of different levels of
coefficients over an ODF map.

C. Synthetic Experiments of Reorientation

Diffusion tensors with three zero-mean Gaussians under a low intravoxel water exchange
model were simulated with a SNR of 100 using “Camino” [14]. The largest eigenvalues of
the three tensors were set to be 3x1079é/s, 2x10~°mé/sand 1.5 x10~°né/s along the x, y
and z axes, respectively. The other two eigenvalues had a value of 0.6 x10~°nm?/s along the y
and z axes, the x and z axes, and the x and y axes. 162 encoding directions were used for the
QBI acquisition with b = 3000 /m?. Fig. 3(a) shows the reconstructed ODF projected on
the xy and the xz planes. The 3D visualization was implemented using Python. 30° rotations
along the zand y axes were applied separately on the spherical harmonic coefficients
according to Egs.(5), (6), and (9). Fig. 3(b) plots the coefficients of the original and rotated
ODFs.

Fig. 4 demonstrates a spatial rotation of 25° of a real diffusion data set with and without
ODF reorientation. A rotation transformation without ODF reorientation resulted in an
inconsistency between the principal directions of the ODFs and the underlying fiber
directions. With ODF reorientation of the coefficients, the principal directions were rotated
to follow the transformed fiber structures.

To test the orientational consistency between two ODF shapes, a directional consistency
(DC) metric was used. Given two spherical shapes, search for an angle a so that ||R(a)(F1) -
F,||? is minimized, and define | cos(a)| to be the measure of the DC between the two shapes.
In this work, we applied an exhaustive search to compute the DC. First decompose the
arbitrary rotation R(a)(F) = Rz(a3)Ry (a2)Rz(aq)(F), set the coarse searching step to be 10,
and search the angles, a1, ap, az € [, 7], that minimized the shape difference. Then use
them as the initialization, set the fine searching step to be 1°, and search the rotation angles
in the domain of a; € [ _10°, o4l 110°), i =1, 2, 3. We get (see Appendix for the
derivation):

DC=|cos(a)]
=0.5(4—((R(2,1)—R(1,2))*+(R(1,3)—R(3,1))*+(R(3,2)—R(2,3))%))>.

[N

To test the accuracy of the metric, we computed the DC for each voxel between the
reoriented and non-reoriented ODF maps. The DC map is shown in Fig. 4. The average DC
value was 0.9096, corresponding to 24.55°, which is close to the real rotation angle 25°.

D. Validation with Simulated Transformation

We synthesized images with known transformations and applied the proposed method to
select proper weighting parameters, validate the reorientation, and test the performance
using SHs with different maximum orders.

A set of deformation fields were simulated by generating sine functions: f = (asin(57zy), b
sin(57x), 0), where x, y € [0, 1]. We set a = 2, 3, 4 to simulate three fields with various

|EEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 12.
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amplitudes. Then a real diffusion image was randomly selected and deformed using the
three fields to generate synthesized reference images.

1) Parameter Evaluation—Similar to Yeo et al.’s approach [42], we set the similarity

weight parameter Uzmz, and kept the update field V! to be less than 1 voxel at each
iteration by changing p. To select proper weight parameters for the regularization terms, we
set At =0, and varied A, from 0.2 to 2. A proper 1, was chosen so that the overall

registration error including the similarity error and regularization cost is small. The
similarity error is defined by ¢ [ [|F1 o T (z)—F) (az)sz:c, and the regularization cost is

defined by %fQHV(Tt—x)HQ, where Vq, is the total volume of the integrated region. Then
At was varied from 0.2 to 2, and a proper At was chosen according to the same rule. Fig. 5
plots the similarity error and regularization cost during the registration for different
parameter settings. A multi-resolution scheme was used during the registration. The images
were down-sampled toL w1y, and% x 1 x iat the coarse levels to register larger
structures, and then were registered at the full resolution to map finer shapes. We chose A, =
1.0 and At = 0.5 to keep the similarity error and regularization cost relatively low. The same
set of parameters were used to register the real images throughout the paper. Fig. 6(b) shows
the estimated transformation fields under A+ =0, 4,=0.5; 4+ =0.5, 1, = 1.0; and Ay = 1.0,
Ay = 1.0. The field generated by At = 0 is over deformed in some regions, whereas At = 1.0
produced an overly smooth field.

2) Effect of SH Coefficients with Different Maximum Orders—To study the effect
of registrations with different SH orders, the diffusion images were reconstructed with L = 2,
4, 6, 8. The proposed method is general to any order of SHs. Since the second order tensor
model can be represented using SHs with L = 2, registration based on tensor models and SHs
with L = 2 contain the same amount of information. Fig. 6 shows a registration example
using the simulated sine transformation with a = 3. Fig. 6(d) and (e) show the simulated and
registered ODF shapes using SHs with L = 2, 4, 6, 8 in the box region. The second order
model does not contain fiber crossing information, while the higher orders can describe
orientation distributions with multiple peaks. The ODF shapes after the same registration but
without ODF reorientation were shown in Fig. 6(f). The directions do not match those in the
reference image, whereas the directions of the ODFs with ODF reorientation are consistent
to the reference.

Three metrics were used to measure the performance. One is the normalized distance
between the estimated deformation field and the “ground truth” deformation field from the
simulation. The second one is the normalized standard deviation of the generalized
fractional anisotropy (GFA). The third one is the directional consistency. Similar to the FA
used in DTI studies, GFA is a shape index of the ODF and defined as [33]:

GFA:\J nZ?ZI(F@i)—FavZV’
(n—]_) ?:1F(ui)

where n is the number of reconstructed samples (246 in this paper) of the ODF and

sziz; F(u;). The normalized standard deviation of the GFA was computed between
the average and the deformed ODF maps following the equation:
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VEN SN GRA(F (0(2))) - GFA(F (2))

_ ()
(N—1) - GFA(F (z))

nSTD,,,, (x)=

)

where F(z)=4 J,\il-Fi(.’L‘), Fy is the reference, and the other N-1 ODF maps are registered
to Fy. The averagelf_ield distance, nSTD of GFA and DC over a mask by thresholding the
reference GFA map at 0.1 are shown in Table I. Using higher order SHs improved the
registration performance in terms of reducing the field distance and standard deviation of the
GFA, and increasing the DC. However the improvement percentage is low, likely because
that the higher order coefficients account for a small portion of the overall energy. The field
distance is about half of the simulated distance. The difference map between the reference
and the registered ODF norm using L = 4 is shown in Fig. 6(c), which is very close to zero.
The average error was 0.0083 over the mask with the GFA > 0.1.

E. Registration of Real Diffusion Images

After preprocessing, all diffusion images were affine aligned to their average making them
ready for the diffeomorphic registration. Each ODF map was reconstructed by four sets of
SHs with L = 2, 4, 6, 8. One image was selected as the reference, and nine other images
were registered to it using the proposed registration method. The registration was repeated
four times. Each time corresponded to the SH coefficients with a different L. Since each
subject was scanned twice, the intra-subject registration was done to provide a upper limit of
the registration performance. Fig. 7 shows the ODF maps using the norm of the SH
coefficients with L=4 after affine alignment and diffeomorphic registration, and the absolute
difference between the reference and the registered ODF maps. The intrasubject registration
has close to zero difference between the ODF norms. However there are still errors in the
ventricles, and in cortical regions. The inter-subject diffeomorphic registration was a
significant improvement over affine alignment, and provided a relatively small ODF shape
difference.

Two metrics were computed for evaluation: the normalized standard deviation of the GFA
defined in Eq.(17); and the DC between the reference and each deformed ODF maps. A
mask with the reference GFA > 0.1 was used for computing the GFA, and its intersection
with more than two principal directions was used for the average DC. Principle directions
were computed at each voxel in the reference image using “Camino” [14]. Fig. 8 plots the
histograms of the metrics using SHs with different maximum orders. Registrations with
higher orders reduced the standard error of the GFA, and therefore reduced the shape
difference between the registered and reference ODF maps. The deformed ODF directions,
over regions with multiple principal directions, were more consistent with the reference
ODF shapes using registration with higher order SHs compared to the second order SHs.
There was little difference in the DC when using SHs with L > 2.

To test the method and order effects, we did two-factor repeated measures ANOVA on the
two metrics separately. The two factors were method (affine and diffeomorphic) and order
(L=2, 4, 6, 8). The analysis was first applied to the average difference GFA values between
the deformed and reference ODFs normalized by the reference GFA. There were main
effects of method with F(1,4)=488.442; p < 0.001 and order with F(3,12)=3389.895; p <
0.001, and an interaction between method and order with F(3,12)=209.285; p < 0.001. Post-
hoc analyses showed that there were significant differences between any two different
orders and the higher orders produced smaller GFA difference. The same ANOVA was then
performed on the average DC between the deformed and reference ODF maps. There were
main effects of method with F(1,4)=13.578; p < 0.021, and order with F(3,12)=237.122; p <
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0.001, and an interaction between these two with F(3,12) = 4.345; p < 0.027. Post-hoc
analyses showed that there were significant differences only between order 2 and any other
higher orders. Fig. 9 plots the mean and standard errors of the metrics with different
methods and orders. In general, the diffeomorphic registration methods significantly reduced
the ODF shape difference and improved directional consistency compared to the affine
methods. The shape difference can be further reduced by increasing the maximum orders.
Registrations with L = 2 improved the directional consistency compared with L = 2, but no
more improvements were found by further increasing the order.

The registration computation time was about 6 minutes with L=2, 10 minutes with L=4, 22
minutes with L=6 and 50 minutes with L=8. All real data registrations data were
implemented following a 3-level multi-resolution registration scheme: 1x1x iresolution
with 50 iterations, 1 « 1 x 1 resolution with 50 iterations, and full resolution with 20
iteration. The image dimension is 78 x78 x48 and all registrations were run on a 2.4 GHz
AMD Opteron Linux system.

V. Discussion

The registration performance improvement using SHs with higher orders compared to the
second order can be explained in that the higher order coefficients provide more information
in fiber crossing regions, and this additional information helps the registration to better align
the ODF shapes and therefore better align the local structures to the corresponding ones in
the reference. Complex structures such as crossing fibers occur not only in white matter, but
also in gray matter. Therefore, compared to tensor based methods, registrations using higher
order models have the potential to better align white and gray matter regions.

Unlike scalar based registrations, vector-based registrations require reorientation of the
vectors when deforming the images. Chiang et al. [11] proposed a reorientation method that
first detected the principal direction of the diffusivity functions by shape-based PCA, and
then applied PPD to reorient the diffusivity function. A major difference of our approach is
that, instead of computing the diffusion attenuation signal at each reoriented direction, we
apply the rotation matrices directly to the coefficients to get the reoriented ODF. As QBI
techniques normally acquire several hundred sampling directions, performing operations on
much fewer coefficients reduces the computation cost significantly. The calculation of the
rotation matrix Ry is relatively computationally intensive compared to Rz. A fast spherical
harmonic rotation approximation using a truncated Taylor expansion of Ry [26] can be used
to speed up the calculation, however the accuracy is compromised.

Although there were significant improvement of the shape similarity and directional
consistency when increasing the SH order, the percentage improvement is small. This may
be due to the relatively insensitive shape metric to the higher orders. In this work, we define
the ODF shape difference with the L2 norm. The same weight factors were given to the 0-
order and other order coefficients. Metrics more sensitive to rotation and higher order
coefficients would potentially magnify the improvement. An alternative metric, the
Kullback- Leibler Divergence introduced by Chiang et al. [11], [12], can also be applied to
define the shape similarity.

Due to the relatively low SNR (around 10) in QBI data, in many white and gray matter
regions the ODF peaks may not truly reflect the underlying structures. The peaks in those
regions between source and reference have large differences to begin with and are hard to
match even with ODF reorientation. This may explain the results that, when increasing the
SH order from four to higher ones, the improvement of the directional consistency was not
significant.
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The calculation of the differential of the ODF reorientation is ignored in this work as we
mentioned in Sec. II-E. Taking it into account may improve the registration performance
[42]. We only considered to reorient ODFs using rotation matrices during the registration
procedure. The transformation of ODFs may be further improved by accounting for shearing
effect [21]. Another limitation of the proposed ODF-based registration is that it fully
depends on the quality of the reconstructed ODF maps. Metrics derived from other models
(such as fractional anisotropy from DTI) may help to validate the registration performance
and analyze how much the reconstructed ODF would affect the registration results.

V. Conclusions

We presented a diffeomorphic diffusion MRI registration algorithm based on the
reconstructed ODFs represented by spherical harmonics. The ODF reorientation was
performed during the registration procedure. The reorientation matrices were obtained by
extracting the rotation part from the local Jacobian and directly applied to the spherical
harmonic coefficients. Computation of the principal directions and reconstruction of the
ODFs during each registration iteration are avoided. The similarity cost was computed based
on a shape difference metric defined using the L2 norm of the SH coefficients. The
diffeomorphic deformation framework makes the registration suitable to map images with
large shape differences. ODF reorientation was tested using synthetic and real g-ball data
with known rotation angles and simulated transformation fields. The registration method
was evaluated using the field distance metric, the normalized standard deviation of the GFA
and the average directional consistency. Registrations using SHs with different maximum
orders were compared using both simulated and real data. Results show that higher order
SHs reduced the ODF shape difference and improved directional consistency compared to
lower order SHs.
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u?+(v?+w?)cosa  uv(l—cosa)—wsina  uw(l—cosa)+vsina
R=| wv(l—cosa)+wsina  v2+(u?4+w?)cosa  vw(l—cosa)—usina
uw(l—cosa)—vsina  vw(l—cosa)+tusina  w?+(u+v?)cosa

We get

R(2,1)—R(1,2)=2wsina,
R(1,3)—R(3,1)=2vsina,
R(3,2)—R(2,3)=2usina,

(R(2,1)—R(1,2))?
+(R(1,3)—R(3,1))?
+(R(3,2)—R(2,3))*

=4sin?a(u?+v?+w?)=4sin’a

1
|cosa|=0.5(4—4sin’a)?

=0.5(4—((R(2,1)— R(1,2))*+(R(1,3)— R(3,1))*+(R(3,2)— R(2,3))%))
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Fig. 1.

An example of reconstructed ODF data set represented by SH coefficients. Top row from
left to right: BO image at b=0; the L2 norm of the ODF map; the L2 norm of the normalized
ODF map; the enlarged ODF shapes within the box region. Bottom row from left to right
includes the SH coefficientsat| =0,m=0; 1 =2,m=0;1 =4m=0;1 =6,m=0; and | =8,m
=0.
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Plots of ODF Coefficients
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Fig. 3.

Ilustration of the ODF reorientation with simulated mixed 3-tensor data sets. (a) the original
ODF projected on the xy plane on the top and the xz plane at the bottom. (b) the ODF rotated

30° along the z-axis. (c) the ODF rotated 30° along the y-axis. (d) The plots of

corresponding ODF coefficients stored in a 1D array [, ¢2 5, ¢%; - - - , ¢3, ¢;}. The color
encoding follows the conventional scheme: red for the direction of left-right, green for
anterior-posterior and blue for superior-inferior.
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Illustration of ODF reorientation using real diffusion data with a 25° rotation along the z-

axis. (a) the original ODF map represented using SH coefficient at | = m = 0. (b) the rotation

ODF map. (c) the directional consistency map between the reoriented and non-reoriented

ODF maps with a color scale from 0 to 1, and masked by thresholding the zero order

coefficients at 0.1. (d) the enlarged original ODFs, (e) the ODFs with reorientation, and (f)

without reorientation on the rotated ODF map, and (g) ODFs with and without reorientation

overlaid on each other. The circled region shows visible directional inconsistency between

with and without ODF reorientation.
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Fig. 5.

Plots of similarity error and regularization costs under different regularization parameter
settings. A multi-resolution scheme was used during the registration. The number of
iterations were set to 50 for two lower resolutions and 100 for the full resolution. The
discontinuity in the plots is due to the multi-resolution approach.
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ODF Registration of the simulated ODF maps. From left to right: (a) a real ODF map, the
simulated transformation field and the deformed ODF using the simulated transformation
serving as the reference; (b) estimated transformations using A+ =0, 4,=0.5, A1=0.5, A, =
1.0and At =1.0, A, = 1.0; (c) deformed, the difference between the deformed and reference
and the reference ODF maps; (d) the reference ODF shapes in the box region with L = 2, 4,
6, 8; (e) ODF shapes after registration in the same region with L = 2, 4, 6, 8; (f) ODF shapes

after registration without ODF reorientation.
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Fig. 7.

ODF registration results after diffeomorphic registration using SHs with L = 4. The top row
from left to right: the affine aligned ODF maps represented using the norm of the SH
coefficients for the reference, and four other subjects’ data. The second row from left to
right: the reference ODF map, and the four deformed ODF maps (with the same order as the
top row) to the reference. The third row from left to right: the absolute difference of the L2
norm of the SH coefficients between the reference and the data from the same subject in a
different session, the difference between the reference and the four deformed ODF maps.
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(b) Average DC of ODFs after registration
over regions with more than two principle directions

(a) Normalized stdev of GFA after registration
over the mask with average GFA > 0.1

Fig. 8.
Histograms of the normalized standard deviation of GFA and average DC after
diffeomorphic registrations using SHs with L = 2, 4, 6, 8.
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Plots of the average GFA and DC in affine and diffeomorphic registration with different

maximum orders of SHs.
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TABLE |

Registration Performance in the simulation experiment evaluated using the average field distance, normalized
standard deviation of GFA and directional consistency.

metric L=2 L=4 L=6 L=8
field dist | 0.4997 | 0.4965 | 0.4962 | 0.4959

nstd GFA | 0.1353 | 0.1312 | 0.1284 | 0.1269

DC 0.8667 | 0.8747 | 0.8765 | 0.8784
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