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Abstract— Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait 

is a complex process which has been restricted to bespoke clinical facilities until recently. The use of inexpensive wearable technologies is 

an attractive alternative and offers the potential to assess gait in any environment. In this paper we present the development of a low cost 

analysis gait system built using entirely open source components. The system is used to capture spatio-temporal gait characteristics derived 

from an existing conceptual model, sensitive to ageing and neurodegenerative pathology (e.g. Parkinson’s disease). We demonstrate the 

system is suitable for use in a clinical unit and will lead to pragmatic use in a free-living (home) environment. The system consists of a 

wearable (tri-axial accelerometer and gyroscope) with a Raspberry Pi module for data storage and analysis. This forms ongoing work to 

develop gait as a low cost diagnostic in modern healthcare. 
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I. Introduction 

Human locomotion or gait is a useful measure of overall health [1], cognitive decline [2], falls status [3] and longevity [4]. 
Therefore, measuring characteristics of gait is important as a robust method to determine many facets of health [5]. 
Traditionally, spatio-temporal characteristics of gait have only been quantifiable in bespoke clinical/research facilities with 
large and expensive equipment, e.g. instrumented walkways or 3D motion analysis. However, with the advent of wearable 
technology for pervasive health monitoring the influx of inertial measurement units incorporating accelerometers and 
gyroscopes has seen their use flourish due to the reduced cost, unrestricted use, continuous monitoring (i.e. not limited to set 
distance or location) and translation to various physical capability tasks other than gait [6-8]. The utility of such a discrete and 
multifunctional tool affords accurate and objective monitoring to extend beyond the clinic/laboratory and into the wearers 
home or in the general community for older adult and/or pathological (e.g. Parkinson’s disease) research [9]. While validated 
commercial wearable gait systems exist, they remain expensive, use patented or proprietary software and closed source 
implementations of unpublished work. There is a need for an open source gait system and processing pipeline to facilitate 
pragmatic and transparent use. 

In this pilot work, commercially available technology is used to show the feasibility of assembling a low-cost, clinically 
relevant gait analysis system with previously validated methodologies. The system comprises entirely open source components 
and is part of our ongoing work to implement gait as a low-cost diagnostic in modern healthcare. 

II. Related work 

A. A conceptual model of gait 
Previous work has outlined a clinically defined conceptual model of gait, sensitivity to ageing and pathology [1, 2, 10]. The 

model presents 16 spatio-temporal (micro) gait characteristics [1, 10], 14 quantifiable by a single tri-axial accelerometer 
wearable worn on the lower back (fifth lumbar vertebrae, L5) [9]. Additionally, free-living behavioural (macro) gait 
characteristics can be quantified from the same wearable by examining the broader trends of the same signal [10]. Therefore, 
outcomes relating to total time spent walking, number of steps, accumulation of time walking and adherence to health 
guidelines may also be quantified [11]. 
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B. Micro gait algorithms 
Two algorithms [12, 13] have been previously validated to quantify spatio-temporal gait characteristics with a wearable on 

L5 [9, 14]. In short, identification of the initial (IC) and final contacts (FC) events within the gait cycle are required to estimate 
temporal characteristics (e.g. step time) as well as determine the spatial characteristic (e.g. step length) within the inverted 
pendulum model of the gait cycle [13]. However, the spatial characteristic is dependent on a known variable, i.e. leg length or 
height of wearable from the ground. A combination of step time and step length estimates step velocity [9]. Once the spatio-
temporal characteristics are known, variability (step fluctuations) and asymmetry can be examined from left and right steps, (1) 
and (2). 

VariabilityLeft & Right = √
varianceleft+varianceright

2
     (1) 

AsymmetryLeft & Right =  |averageleft − averageright|  (2) 

The algorithms have been implemented and validated using MATLAB
®
. However, wide-scale development and extension of 

MATLAB
® 

based algorithms is limited due to licensing restrictions and cost. For this pilot development work an open source 
scripting language is adopted to calculate micro gait outcomes from the wearable data.  

C. Macro gait algorithms 
Utilising the same accelerometer signals but over prolonged periods (7 days) one can examine the general trends of the 

signal to identify walking periods (bouts) to examine total time walking, length of each bout or distributions [10]. Bouts have 
been examined and shown to have log normal distributions resulting in outcomes such as the power law scaling component (α) 
or the Gini index (G) relating to statistical dispersion [15]. Identification of bouts can be estimated by examining (i) the mean 
and standard deviations [16] (ii) orientation and (iii) identification of IC/FC events [12] within a possible bout of walking. 
Algorithms [11, 16] and outcomes have been generated and validated using MATLAB

®
 and thus have deploy-ability issues 

previously outlined. (Quantification of macro gait outcomes with the proposed system will be presented in future work). 

III. System design 

To ensure complete system utility across a range of testing environments and usability in various habitual scenarios a 
modular design was adopted, Fig. 1. 

 

This pilot work is conducted in a supervised gait assessment condition (clinic). Here we capture data from two wearables 
and present three comparisons between the proposed system, streamed data and a validated reference: 

Equipment – proposed system 
Wearable: In the current design a single wearable with a tri-axial accelerometer (50Hz, ±8g, 14 bit) and gyroscope (50Hz, 

2000°/s, 16 bit) was used (WAX9, Axivity, York, UK: 23.0×32.5×7.6mm). The wearable is of an open source design [17] and 
was worn on L5 with the use of double sided tape and an additional bandage (Hypafix, BSN Medical Limited, UK). The 
wearable was configured and charged through a USB interface and data transmitted to a receiving docking unit. 

Docking unit: This (8.7 × 6.0 × 2.7cm) consisted of a Raspberry Pi 2 (Model B, 1GB RAM with 8GB micro SD card). Data 

were received by a Bluetooth adapter (Asus USB-BT 400 3Mbps v4.1) and processed post walking by a Python
™

 script 

translated from a MATLAB
®
 based algorithm as previously described [9]. The purpose of the docking unit is to provide 

unsupervised and continuous gait monitoring. Though gait data could be relayed to a researcher’s smart phone, if protocols 

required longitudinal assessment (e.g. hours, days) the unit can collect, store or transmit data accordingly (please see 

Discussion, Testing scenario C). 

 
Fig. 1, Left: The wearable connects via (i) Bluetooth or (ii) USB 

(docked) to the Pi-based docking unit during a gait assessment. 
During docking the data is stored internally on the Pi’s memory card 

slot (e.g. 8GB). Gait characteristics can be displayed via a browser on 

any platform. Right: The docking unit in transparent casing.  



  

The Python
™

 analysis made use of several open source libraries that offer similar functionality to their MATLAB
®
 

counterparts, namely: matplotlib; SciPy; NumPy; and pandas. Python
™

 was primarily chosen due to its platform portability and 
its native inclusion on POSIX based operating systems (supported on modern phones, tablets and web servers). Upon 
completion of walking the raw data was processed on board the Pi and results (14 spatio-temporal gait characteristics) were 
uploaded to an online server (configured using open source NGINX platform) via the Wi-Fi Nano USB adapter (802.11n) and 
integrated network in the clinical facility. In principle, at this early development stage, the results are available to review via 
any modern based web browser. In our experiment an iPhone 6 (iOS v9.0) was used as an example of a handheld platform to 
graphically represent and interpret the gait data post walking, Fig. 1.  

For transparency, the raw accelerometer data from the wireless wearable (WAX9) was simultaneously streamed and 
gathered at a computer (Windows

®
 operating system, Bluetooth Belkin USB Adapter v4.0, MATLAB

®
 Instrument Control 

Toolbox) and analysed with the original (same) MATLAB
®
 based algorithms [9] as those translated into Python

™
. 

Equipment – validated reference 
The computer equipped with MATLAB

®
 algorithms, was also used to program a reference (validated) wearable and 

download its data for post processing using the same gait analysis algorithms deployed on the streamed data [9]. The 
participant wore the reference wearable (AX3, Axivity, York UK, single tri-axial accelerometer, 100Hz, ±8g, 14 bit) as close 
as possible to L5 (wearables were placed adjacent to each other). This more labour intensive method (~5mins) has been 
previously validated [9] and used here for comparison to the proposed system. This wearable was attached with the methods 
previously described. 

Condition 1: supervised gait assessment 
Typically, a supervised gait assessment involves a trained clinician or researcher monitoring the participant during a number 

of scripted walking trials, ranging from short intermittent walks (where data is later pooled) and/or a continuous 2 minute walk 
[18]. The system described herein facilitates gait assessment in any generic clinic or free-living environment. The latter 
performed in habitual surroundings are thought to be more ecologically valid, reduces burden on outpatient departments and 
any logistical or financial costs incurred by the participant. (Alternate conditions are presented in the Discussion for future 
implementation). 
Testing scenario A: clinic 

A single participant was used to test the proposed system (M, 32 years, 1.8m). Two types of gait assessment are usually 
performed, (i) four repeated intermittent walks and (ii) a 2 minute continuous walk [18]. For the purposes of this pilot study, 
intermittent walks only were used. The participant walked 12m in a straight line. The participant was told to initiate walking 
with their right foot during each of the four walking trials. This was repeated 4 times. Left/right step detection was estimated 
by the proposed system (and streamed data) by the polarity of the filtered (4

th
 order, Butterworth, 2Hz) vertical angular 

velocity during the detection of an IC [12]. Upon completion of each walk the participant remained still before turning and 
commencing the next walk. Steps and gait characteristics for the proposed system were computed on the docking unit 
(Pi/Python

™
) and compared to the computer (MATLAB

®
) and reference as a cross comparison.  

IV. Results 

All left and right steps were accurately detected by the proposed system in comparison to the MATLAB
®
 algorithms. Gait 

characteristics from the pooled intermittent walks are presented in Table I. The proposed Python
™

 based system resulted in 
values similar to those generated through streamed and logged data analysed by validated MATLAB

®
 algorithms. The proposed 

system gathered, computed and presented characteristics (similar to that in Fig. 2) in ~10s compared to the manual 
downloading and analysis procedures (~5mins). 

TABLE I.  POOLED INTERMITTENT WALKS FROM THE CLINIC 

Characteristic Proposed Streamed Reference 

Mean gait characteristics 

Step time (s) 0.585 0.592 0.583 

Stance time (s) 0.743 0.774 0.745 

Swing time (s) 0.428 0.415 0.413 

Step length (m) 0.712 0.701 0.667 

Step velocity (m/s) 1.219 1.113 1.145 

Variability (var.) gait characteristics 

Step time var. (s) 0.039 0.039 0.031 

Stance time var. (s) 0.045 0.058 0.029 

Swing time var. (s) 0.024 0.028 0.023 

Step length var. (m) 0.035 0.048 0.058 

Step velocity var. (m/s) 0.077 0.076 0.070 

Asymmetry (asy.) gait characteristics 

Step time asy. (s) 0.018 0.018 0.014 

Stance time asy. (s) 0.028 0.028 0.011 

Swing time asy. (s) 0.026 0.026 0.028 

Step length asy. (m) 0.017 0.040 0.062 



  

V. Discussion 

The purpose of this pilot study was to develop and test the feasibility of a portable gait analysis system suitable at low cost. 

It was important to select components and technologies with no license restriction such that extension, cost and availability do 

not restrict wide scale system deployment. The proposed system offers a cost-effective alternative to most commercial 

wearable systems while presenting validated gait characteristics from a clinical conceptual model of gait. 

The systems performance capability was compared using an accepted validated analysis approach implemented on a 

research grade software tool-chain. The test demonstrated that despite the low-cost components, the precision of the tool does 

not seem to greatly alter. However, a stringent statistical analysis needs to be performed on a larger cohort and within 

pathology to determine the intra person variability and clinical acceptance. Usability of the tool (automated) was significantly 

easier and quicker than the traditional manual approach and thus holds promise for design of a more deployable prototype, 

i.e. no scripting or algorithm knowledge required. 

In performing the translation of current MATLAB
®
 based scripts it was necessary to re-implement functionality stemming 

from the Signal Processing Toolbox, more specifically the Gaussian continuous wavelet transform (CWT). The methodology 

is used to detect the IC/FC events within the gait cycle, but had never been previously implemented for Python
™

. Both 

languages feature a standard floating point representation (double precision). However, implementation differences on 

recursive functions lead to accumulated error. To demonstrate this, consider the following code implemented in MATLAB
®
: 

 

>> A = 0.8 - 0.7; 

>> B = 0.1; 

>> A == B 

ans = 0 

>> A - B 

ans = 8.32667268468867e-17 
 

In this single, subtractive maths operation, a small error is accumulated. During recursive operations (such as those in the 

CWT) it is the subtle implementation differences that when combined with rounding errors are thought to have contributed to 

the precision disagreements observed in Table I as well as the difference in sampling frequencies between wearables. 

However, determining if these differences are clinically significant warrants further investigation. Moreover this raises 

technical considerations when contrasting values between systems and algorithm software. 

The next step: future work 

A number of computational components will be completed to enhance the usability of the system. These include (i) the 

transfer of results to a handheld device via Bluetooth to account for lack of any Wi-Fi connectivity and (ii) implementation of 

macro gait characteristics, to examine behaviour. The latter is only possible during prolonged (7 day) monitoring and equates 

to additional testing scenarios and conditions: 

Testing scenario B: clinic/laboratory 

 To robustly test the utility of the system on older adults it will be deployed during a range of gait tasks including 2min 

continuous walking. This includes use on older adult and neurological cohorts (e.g. Incidence of Cognitive Impairment in 

Cohorts with Longitudinal Evaluation GAIT project [19]). The pragmatic clinical deployment of the system will be tested in 

comparison to current methods. 

Testing scenario C: free-living (home and community) 

The small size and light weight of the system enables home assessment and the use of intermittent walks in any living 

environment, Fig. 2. Similar to clinical testing, data can be captured by the docking unit (Python
™

) and will be relayed via 

Wi-Fi or Bluetooth connectivity. If the researcher deems more in depth patient assessment is necessary, then the wearable can 

remain worn and the docking unit left in situ within the home (Condition II). This may be to investigate the habitual micro 

characteristics of the patient, eliminating any observer effect [20] and/or to learn the habitual macro characteristics (e.g. total 

time walked) during 7 days, understanding any interventional impact of increased physical activity recommendations. 



  

 

Condition II: unsupervised (longitudinal) gait assessment 
During this condition the researcher leaves the docking unit in the participant’s home after the initial tests have finished 

while the participant continues to wear the wearable during waking hours. The dock can be connected to the electrical mains 
but remain operationally independent for a period of 8 hours due to an internal battery (12000mAh rechargeable lithium-
polymer). 

The wearable is equipped to stream data when in close proximity (up to 20m direct line of sight). However, when out of 
range or transmission is obstructed (for example due to internal room boundaries) data is stored on its internal memory. Once 
within range transmission is automatically restored and data is streamed to the dock.  

During nocturnal hours the participant would removes the wearable and place it within its slot on the dock, Fig. 1. This 
facilitates re-charging. Battery life when sampling gyroscope and streaming over Bluetooth is ~12 hours. In our anticipated use 
case, the data is downloaded upon docking, processed and assessed for possible bouts of gait. This is achieved by the processes 
listed previously, estimating micro and macro levels of gait. This will provide the clinician or researcher with spatio-temporal 
clinical characteristics of gait in habitual settings and the behavioural patterns of ones ambulatory activity. 

 

VI. Conclusion 

This pilot work demonstrates the feasibility of low-cost open source components to instrument gait, but full (clinical) 
validity is yet to be determined. Results are encouraging to develop the system into an economical and pragmatic gait analysis 
tool to deliver a conceptual model of gait incorporating clinical relevant (micro) characteristics. Further developments will 
involve a robust clinical evaluation and implementation of behavioural outcomes (macro) for a complete gait analysis system 
during remote (free-living) monitoring. 
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