

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

352

Analysis of function-call graphs of open-source software systems using
complex network analysis

Karmaşık ağ analizi kullanılarak açık-kaynak yazılım sistemlerinin
fonksiyon-çağırma graflarının analizi

Volkan TUNALI1* , Mehmet Ali Aksoy TÜYSÜZ2

1,2Department of Software Engineering, Faculty of Engineering and Natural Sciences, Maltepe University, İstanbul, Turkey.
volkan.tunali@gmail.com, mehmetaliaksoy@gmail.com

Received/Geliş Tarihi: 03.08.2018
Accepted/Kabul Tarihi: 10.05.2019

Revision/Düzeltme Tarihi: 04.03.2019 doi: 10.5505/pajes.2019.63239
Research Article/Araştırma Makalesi

Abstract Öz

Software systems are usually designed in a modular and hierarchical
fashion, where functional responsibility of a system is decomposed into
multiple functional software elements optimally such as subsystems,
modules, packages, classes, methods, and functions. These elements are
coupled with each other with some kind of dependency relationships to
some degree, and their interactions naturally form a graph or network
structure. In this study, we generated the static function-call graphs of
several open-source software systems, where functions were the most
basic type of interacting elements calling each other. Then, we analyzed
the call graphs both visually and topologically using the techniques of
complex network analysis. We found the call graphs to reveal scale-free
and small-world network properties similar to the findings of the
previous studies. In addition, we identified the most central and
important functions in each call-graph using several centrality
measures. We also performed community analysis and found that the
call graphs exhibited a tendency to form communities. Finally, we
showed that analysis of static function-call graphs of software systems
through complex network analysis has the potential to reveal useful
information about them.

 Yazılım sistemleri genellikle sistemin işlevsel sorumluluğunun optimal
bir şekilde altsistemler, modüller, paketler, sınıflar, metodlar, ve
fonksiyonlar gibi çok sayıda işlevsel yazılım elemanına ayrıştırıldığı,
modüler ve hiyerarşik bir biçimde tasarlanırlar. Bu elemanlar
birbirleriyle çeşitli ilişki türleri ile bağlıdırlar ve bunların etkileşimleri
doğal olarak bir graf veya ağ yapısı oluşturur. Bu çalışmada, etkileşim
halindeki en temel eleman türü olarak birbirini çağıran fonksiyonları
dikkate alarak, çeşitli açık-kaynak yazılım sistemlerinin statik
fonksiyon-çağırma graflarını oluşturduk. Ardından, karmaşık ağ
analizi teknikleri kullanarak, çağırma graflarını hem görsel hem de
topolojik olarak analiz ettik. Daha önceki çalışmaların bulgularına
benzer olarak, grafların ölçekten-bağımsız ve küçük-dünya ağı
özellikleri sergilediklerini gördük. Ek olarak, çeşitli merkezîlik ölçütleri
kullanarak, her bir çağırma grafındaki en merkezi ve önemli
fonksiyonları tespit ettik. Ayrıca, topluluk analizi gerçekleştirdik ve
çağırma graflarının topluluk oluşturma eğilimi gösterdiğini bulduk.
Son olarak, yazılım sistemlerinin statik fonksiyon-çağırma graflarının
karmaşık ağ analizi yoluyla analizinin, sistemlerle ilgili yararlı bilgiler
sağlama potansiyeli olduğunu gösterdik.

Keywords: Fuction-call graph, Open-source software, Complex
network analysis, Network centrality, Network science.

 Anahtar kelimeler: Fonksiyon-çağırma grafı, Açık-kaynak yazılım,
Karmaşık ağ analizi, Ağ merkezîliği, Ağ bilimi.

1 Introduction

Computer software development is a complicated process with
several distinct activities like requirements analysis and
development, architectural and detailed design, coding and
debugging, testing, and maintenance. Real-world problems
become larger and more complex than ever with intricate and
a large number of interacting entities. This complexity
manifests itself in the development of software solutions that
address these real-world problems, and it makes the whole
development process essentially difficult. Therefore, concept of
complexity in software development cannot be overlooked.
McConnell emphasizes this as “Managing complexity is the most
important technical topic in software development. In my view,
it’s so important, that Software’s Primary Technical Imperative
has to be managing complexity.” [1]. The main goal of software
architecture and design techniques is to deal with inherent
complexity by dividing a complex problem into simpler and
more managable pieces. Thus, software systems are usually
designed in such a modular and hierarchical fashion that
functional responsibility of a system is decomposed into

*Corresponding author/Yazışılan Yazar

multiple functional software elements optimally such as
subsystems, modules, packages, classes, methods, and
functions. Obviously, these elements are not independent of
each other. Instead, they are coupled with each other with some
kind of dependency relationships to some degree, and their
interactions naturally form a graph or network structure.

A widely used type of software graphs is the function-call graph,
where nodes represent the functions in a software system, and
edges represent the action of function call between the
functions. Self-loops in the graph indicate recursive function
calls. Call graphs can be both static and dynamic. Static call
graphs are generated by analyzing the source code structure.
Dynamic call graphs, on the other hand, are captured during the
execution of the software system. Call graphs are utilized for
several purposes, such as program understanding, compiler
optimization, etc.

Complex networks have been actively studied for about two
decades by researchers from the emerging field of network
science [2]. Software function-call graphs are no exception to
this. In this research, we focused on four different open-source
systems, all written in C programming language, namely

mailto:volkan.tunali@gmail.com
mailto:mehmetaliaksoy@gmail.com
https://orcid.org/0000-0002-2735-7996
https://orcid.org/0000-0002-4538-5034

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020
V. Tunalı, M.A.A. Tüysüz

353

GNOME Library, GNU Emacs, Git, and Linux OS Kernel. We
generated four static function-call graphs from the source code
files of these systems. Then, we used complex network analysis
tools and techniques to explore and analyze the call graphs. We
compared the topological properties of the networks with each
other and with the findings of the previous studies. Besides, we
revealed the most important functions in each system through
centrality analysis.

The paper proceeds as follows. Section 2 discusses related work
on the complex network analysis of software call graphs.
Section 3 gives the details of the material and the method used
for the analysis. Section 4 presents and discusses the findings.
Section 5 then concludes the paper while also recommending
directions for future work.

2 Related work

There are several notable studies in the literature that analyzed
software networks of different domains and sizes.

In [3], software collaboration graphs of several open-source
software systems written in C and C++ programming languages
were analyzed, and they were found to reveal scale-free and
small-world properties observed in many other systems. In
addition, several topological measures of these networks were
examined with respect to software engineering practices.

In a comparative study, the transcriptional regulatory network
of E. Coli bacterium and the call graph of Linux operating
system written in C programming language were analyzed [4].
Topological analysis results of the study showed that both
networks had a fundemantally hierarchical layout while their
organizations led to the robustness of the biological system and
the cost effectiveness via reusability of the software system.

In another study, function-call graph of the open-source
Celestia application written in C++ programming language was
examined and it was shown that the graph exhibited scale-free
and small-world properties [5].

In [6], function-call graphs of ten open-source Java programs
were analyzed. The study showed that the call graphs exhibited
scale-free and small-world properties. In addition, the study
found that functions with high out-degree provided high-level
business functions, and those with high in-degree provided
low-level supportive functions.

In a study by Qu et al., by using four community detection
algorithms in the analysis of 10 open-source Java programs, it
was shown that static call graphs usually present significant
community structures [7]. Moreover, two class cohesion
metrics were proposed in that study.

In a more recent study, topological properties of the call graph
of the Hibernate software, written in Java programming
language, were analyzed [8]. Similar to the previous studies, the
analysis revealed that the network showed scale-free and
small-world properties.

3 Materials and method

Our research methodology consists of three distinct phases:
data gathering, network modeling and construction, and
complex network analysis. Details of each phase are given
under their respective sub-sections in this section.

3.1 Data gathering

Data for this study were collected as source code files written
in C programming language from the github repositories of the

projects GNOME Library 3.29.3 [9], GNU Emacs 27.0.50 [10], Git
2.19 [11], and Linux kernel 4.18.0-rc6 [12]. There were several
common features of these projects that influenced our decision
to choose them for this research. First, all of them were written
purely in C programming language. Second, they were all open-
source software, which promotes collaboration and sharing by
allowing other people to make modifications to source code and
incorporate those changes into their own projects. Third, these
projects had been contributed to by people all around the world
usually without under control of a central body, preserving
their internal code quality.

3.2 Network modeling and construction

A function-call graph is a directed graph, where nodes
represent the functions in a software system, and edges
represent the action of function call between the functions.
Self-loops in the graph indicate recursive function calls. Call
graphs can be both static and dynamic. Static call graphs are
generated by analyzing the source code structure. Dynamic call
graphs, on the other hand, are captured during the execution of
the software system. In this research, our focus was on static
call graphs.

We used pycflow2dot 0.2 [13] to generate function-call graphs
of the projects. pycflow2dot is a Python script that essentially
uses GNU cflow [14] to generate call graphs. GNU cflow
analyzes a collection of C source files and prints the control flow
within the program. pycflow2dot generates graphs in Graphviz
dot format [15], which is a common graph format supported by
many network analysis tools.

3.3 Complex network analysis

Complex Network Analysis is a set of techniques that essentially
studies the relationship between the structure and the function
of large and complex networks where nodes represent any kind
of entities, and edges represent any kind of relationships
between the entities [16]. It is based on theories and methods
from several disciplines including mathematics, physics,
computer science, statistics, and sociology. A network analysis
study usually consists of the following steps after a network
representation of the complex phenomenon of interest is
obtained. First, the complex network is visualized and patterns
are searched for visually. Then, the structural analysis is
performed to understand the general characteristics of the
network as a whole. For example, structural measures like
degree distribution of nodes, clustering coefficient, average
path length, and diameter give us important information about
the network. Third phase is the centrality analysis, where
structurally the most central and important nodes are
identified using appropriate centrality measures like degree,
closeness, betweenness, and PageRank centrality. A final
analysis called community analysis is performed to reveal the
transitive relationships between nodes to detect dense groups
of nodes called clusters in the network [17].

In this study, we used Cytoscape 3.6.1 [18] and Gephi 0.9.1 [19]
to visualize and analyze the function-call graphs. Cytoscape is a
general-purpose, open-source software environment
specifically developed for the large scale integration of
molecular interaction network data. However, it can be used to
analyze any type of network owing to its extensive analysis
capabilities and plugin-based extensibility. Gephi is a well-
known, open-source free network visualization tool with
capabilities to calculate centrality, clustering, network
diameter, and other metrics.

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020
V. Tunalı, M.A.A. Tüysüz

354

4 Findings and discussion

Using the above mentioned network analysis tools and
techniques, we analyzed the function-call graphs in four
distinct phases. First, we visualized the graphs to see their
general structure and layout. Then, we performed structural
network analysis. Next, we calculated the centralities of the
nodes. Finally, we observed the community structures
embedded in the graphs.

4.1 Visual analysis

A complex network analysis usually begins with the
visualization of the network using an appropriate layout
algorithm that enables one to see the organization of the nodes
and their relationships with each other as clearly as possible.
For this reason, we visualized the call graphs using Yifan Hu

layout algorithm available in Gephi [20]. Yifan Hu is a fast and
effective force-directed layout algorithm that usually provides
a clear view of the network. The visualizations of the call graphs
are shown in Figure 1. The nodes were colored depending on
the modularity class (community) they belonged to. Details of
the community analysis is given in Section 4.4. In addition, the
nodes were resized in proportion to their in-degrees.

4.2 Topological analysis

4.2.1 General topological measures

We obtained the general topological measures of the call graphs
using Cytoscape, such as density, clustering coefficient,
diameter, centralization, and characteristic path length. All
these measures are presented in Table 1.

Gnome Emacs

Git Linux kernel

Figure 1. Visualizations of the call graphs.

Table 1. Topological measures of the call graphs.

Measure Gnome Emacs Git Linux

Nodes 297 793 2,374 7,736
Edges 552 1,640 7,256 19,959

Clustering coefficient 0.076 0.082 0.070 0.054
Characteristic path length 3.907 3.593 3.984 4.855

Density 0.013 0.005 0.003 0.001
Connected components 1 1 7 167

Diameter 8 9 9 13
Radius 5 5 5 7

Avg. num. of neighbors 3.717 4.124 6.094 5.155
Centralization 0.181 0.404 0.070 0.033

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020
V. Tunalı, M.A.A. Tüysüz

355

4.2.2 Scale-free analysis

We obtained the degree distribution charts shown in Figure 2
and fit the distributions with Power Law distribution using
Cytoscape. Table 2 shows the scaling factors for Power Law
distributons of the graphs.

Gnome

Emacs

Git

Linux kernel

Figure 2. Degree distribution charts of the call graphs.

Table 2. Scaling factors for Power Law distributions.

Gnome Emacs Git Linux

1.528 1.325 1.657 1.834

Visual inspection of the degree distribution charts and the
values of scaling factors suggest that the graphs exhibited
Power Law degree distribution, which is the distribution
usually observed in most real-world networks regardless of the
type and size of the network [17]. This distribution indicates
that most of the nodes have a relatively low degree (number of
neighbors) while a few nodes have a very high degree. High
number of neighbors (or degree) can be attributed to the
popularity/utility of the node (the corresponding function). We
showed that the function-call graphs of different size had the
scale-free property [21].

4.2.3 Small-world analysis

In addition to being scale-free, most real-world networks are
known to be small-world, meaning that they show a higher
clustering than random networks and they have a very short
average path length regardless of their size [22].

In order to check the existence of small-world characteristics in
the call graphs, we synthetically generated 10 different Erdös-
Rényi [23] random graphs for each call graph with the same
number of nodes and edges as each one using the network
randomizer plugin in Cytoscape. Then, we compared the mean
values of the structural analysis results of these corresponding
random graphs to the results of the call graphs. Tables 3 and 4
show the comparisons.

Table 3. Clustering coefficient comparison.

Graph Gnome Emacs Git Linux

Original 0.076 0.082 0.070 0.054

Random 0.022 0.006 0.002 0.001

Table 4. Characteristic path length comparison.

Graph Gnome Emacs Git Linux

Original 3.907 3.593 3.984 4.855

Random 4.477 4.785 4.505 5.634

For all the call graphs, corresponding random graphs had much
lower clustering coefficient values as expected. Moreover,
characteristic path lengths of the corresponding random
graphs were very close considering the size of the graphs. These
findings were in concordance with the general expectation as it
is a well-known fact that random networks do not exhibit the
high clustering of real-world networks but short characteristic
path length is a common behavior of both real-world and
random networks. As a result, we showed that the function-call
graphs presented small-world characteristics. Additionally, the
degree distributions of the random graphs were far from Power
Law; they were Poisson actually as expected as a result of
random edge addition between nodes. When compared to the
random graphs in terms of these three characteristic
properties, we finally inferred that the software function-call
graphs under study were far from randomness. This is not
surprising because software developers do not decompose a
software system into modules randomly and do not distribute
function calls all over the code at random. Instead, they decide
to divide a unit into subunits with a kind of optimization and
reusability approach.

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020
V. Tunalı, M.A.A. Tüysüz

356

4.3 Centrality analysis

In this phase of the analysis, we calculated in-degree, out-
degree, betweenness, and PageRank centralities of the nodes in
the call graphs using Gephi. These are the most commonly used
centrality measures that usually give useful insights about the
relative importance of nodes in directed networks. The higher
the centrality value, the more central a node is.

In-degree of a node (function) in call graphs is the number of
other functions that directly call this function, also known as
fan-in. Out-degree of a function is the number of other functions
that this function directly calls, also known as fan-out. If a
function has a high betweenness centrality value, it can be
ragarded that this function acts as a middle layer between
higher and lower abstraction layers in the call hierarchy.
Functions with relatively high PageRank centrality values are
the functions that are called by many other functions that are
themselves are also called by high number of functions. This

centrality value with a kind of recursive definition can be highly
useful for identifying the important functions. Tables 5-8
present top 10 functions in the call graphs ranked by their in-
degree, out-degree, betweenness, and PageRank centralities.

4.4 Community analysis

In this final phase of the complex network analysis, we used
Gephi to identify the dense groups of nodes called communities
(or clusters) in the call graphs. In Gephi, community analysis
was performed with the Modularity operation, which is based
on a technique called Modularity Optimization [24]. We used
this operation with its only parameter resolution set to its
default value of 1.0. Identified communities can be seen with
distinct colors of nodes in the graph visualizations in Figure 1.
Clusters of functions may be interpreted as an indication of
modular and hierarchical organization of the units of the
software systems of interest.

Table 5. Top 10 functions of Gnome by their centralities.

Rank In-Degree Out-Degree Betweenness PageRank

1 g_return_val_if_fail main collect_locales g_return_val_if_fail
2 g_free setup_seccomp add_locale g_assert
3 g_strdup script_exec_new parse_rules g_free
4 g_hash_table_lookup add_locale collect_locales_from_directory g_strdup
5 g_str_equal parse_rules ensure_rules_are_parsed g_object_new
6 g_warning gnome_desktop_thumbnail_fac

tory_generate_thumbnail
gnome_desktop_thumbnail_scr

ipt_exec g_message
7 g_assert gnome_get_language_from_loc

ale collect_locales_from_localebin g_hash_table_lookup
8 g_hash_table_insert gnome_get_country_from_local

e gnome_parse_locale g_return_if_fail
9 Strlen expand_thumbnailing_cmd expand_thumbnailing_cmd strcmp

10 g_print
gnome_parse_locale

gnome_desktop_thumbnail_fac
tory_generate_thumbnail g_str_equal

Table 6. Top 10 functions of emacs by their centralities.

Rank In-Degree Out-Degree Betweenness PageRank

1 Strlen main xmalloc fprintf
2 DEFSYM openp lisp_to_value xmalloc
3 Strcpy initialize_environment initialize_environment exit
4 Defsubr socket_connection value_to_lisp strcmp
5 MODULE_FUNCTION_BEGIN scan_lisp_file globals strcpy
6 Xmalloc decode_env_path pop_getline putc
7 value_to_lisp init_cmdargs fatal strlen
8 Fprintf member dir_warning defsubr
9 Staticpro doprnt doprnt MODULE_FUNCTION_BEGIN

10 make_number popmail declaration value_to_lisp

Table 7: Top 10 functions of git by their centralities.

Rank In-Degree Out-Degree Betweenness PageRank

1 die cmd_main get_oid_with_context_1 free
2 free cmd_commit get_oid_with_context die
3 strbuf_release cmd_clone get_oid strcmp
4 strcmp pick_commits get_oid_1 strbuf_release
5 error cmd_tag start_command error
6 oid_to_hex prepare_to_commit run_command strlen
7 fprintf do_pick_commit get_short_oid oid_to_hex
8 strlen start_command unpack_trees BUG
9 strbuf_addstr cmd_receive_pack diff_cache strbuf_reset

10 strbuf_reset cmd_fsck run_diff_index fprintf

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020
V. Tunalı, M.A.A. Tüysüz

357

Table 8. Top 10 functions of linux kernel by their centralities.

Rank In-Degree Out-Degree Betweenness PageRank

1 unlikely SYSCALL_DEFINE2 console_unlock kfree
2 mutex_unlock copy_process printk_deferred might_sleep
3 mutex_lock SYSCALL_DEFINE3 panic mutex_unlock
4 kfree SYSCALL_DEFINE5 vprintk_deferred mutex_lock
5 u64 do_exit vprintk_emit unlikely
6 WARN_ON_ONCE SYSCALL_DEFINE1 clockevents_program_event u64
7 WARN_ON load_module clockevents_increase_min_delta WARN_ON
8 this_cpu_ptr SYSCALL_DEFINE4 clockevents_program_min_delta WARN_ON_ONCE
9 BUG_ON load_image_lzo update_process_times this_cpu_ptr

10 per_cpu_ptr COMPAT_SYSCALL_DEFINE4 tick_periodic BUG_ON

5 Conclusion and future directions

In this research, we analyzed the function-call graphs of four
open-source software projects by using complex network
analysis techniques, namely GNOME Library, GNU Emacs, Git,
and Linux OS Kernel. We first downloaded the source code files
of these software from their github repositories. Then, we
generated their static call graphs in Graphviz dot graph format
using pycflow2dot tool. Once the call graphs were available in
this format, we used Cytoscape and Gephi to explore and
analyze them both visually and topologically.

When we investigated the degree distributions of the graphs
both visually and analitically, we observed Power Law
distribution in all of them regardless of their sizes, meaning all
the graphs were scale-free in compliance with the results of
previous studies.

We also examined the existence of small-world property in the
call graphs by comparing some topological features of the
graphs with those of the corresponding random graphs that we
algorithmically generated. Consequently, we showed that the
software call graphs are small-world networks.

In a further analysis, we identified the most central
(or important) functions in the call graphs by calculating in-
degree, out-degree, betweenness, and PageRank centralities of
the nodes. Although we did not have a comparison ground for
assessing the relevance of these identified software units to the
actual design decisions, they could still have critical importance
for maintainability and reusability of the software systems.

For the analysis of communities embedded in the call graphs,
we used the Modularity analysis method and observed that the
call graphs exhibited a tendency to form communities that
could indicate the modular and hierarchical design of the
respective software systems. We showed that analysis of static
function-call graphs of software systems through complex
network analysis has the potential to reveal useful information
about them. As a future direction, comparison of several
software metrics collected via traditional software engineering
approaches with the measures obtained via complex network
analysis could reveal significant correlations.

6 References

[1] McConnell S. Code Complete: A Practical Handbook of
Software Construction. 2nd ed. USA, Microsoft Press, 2004.

[2] Barabási AL, Pósfai M. Network Science. Cambridge,
Cambridge University Press, 2016.

[3] Myers CR. "Software systems as complex networks:
Structure, function, and evolvability of software
collaboration graphs". Physical Review E, 68(4), 046116,
1-15, 2003.

[4] Yan K-K, Fang G, Bhardwaj N, Alexander RP, Gerstein M.
"Comparing genomes to computer operating systems in
terms of the topology and evolution of their regulatory
control networks". Proceedings of the National Academy of
Sciences, 107(20), 9186-9191, 2010.

[5] Guo Y, Zhao Z-x, Wang W. "Complexity analysis of software
based on function-call graph". The 19th International
Conference on Industrial Engineering and Engineering
Management, Changsha, China, 27-29 October 2012.

[6] Zhao D, Miao L, Zhang D. "Reusable function discovery by
call-graph analysis". Journal of Software Engineering and
Applications, 8, 184-191, 2015.

[7] Yu Qu, Guan X, Zheng Q, Liu T, Wang L, Hou Y, Yang Z.
"Exploring community structure of software Call Graph
and its applications in class cohesion measurement".
The Journal of Systems and Software, 108, 193-210, 2015.

[8] Falci DHM, Gomes OA, Parreiras FS. "Complex networks
analysis for software architecture: an hibernate call graph
study". ArXiv, abs/1706.09859, 2017.

[9] GNOME Library. "GitHub-GNOME/Gnome-Desktop:
Library with common API for Various GNOME modules".
https://github.com/GNOME/gnome-desktop/
(01.07.2018).

[10] Gnu Emacs. “GitHub-Emacs-Mirror/Emacs: Mirror of GNU
Emacs". https://github.com/emacs-mirror/emacs/
(01.07.2018).

[11] Git. "GitHub-git/git: Git Source Code Mirror".
https://github.com/git/git (01.07.2018).

[12] Linux kernel. "GitHub-torvalds/linux: Linux Kernel Source
Tree". https://github.com/torvalds/linux/ (01.07.2018).

[13] pycflow2dot. "pycflow2dot· PyPI".
https://pypi.org/project/pycflow2dot/0.2/
(01.07.2018).

[14] GNU cflow. "GNU cflow".
https://www.gnu.org/software/cflow/ (01.07.2018).

[15] Graphviz. "Graphviz-Graph Visualization Software".
http://www.graphviz.org/ (01.07.2018).

[16] Zweig KA. Network Analysis Literacy: A Practical Approach
to the Analysis of Networks. Austria, Springer-Verlag,
2016.

[17] Tunalı V. Sosyal Ağ Analizine Giriş. Ankara, Türkiye,
Nobel Akademik Yayıncılık, 2016.

[18] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage
D, Amin N, Schwikowski B, Ideker T. "Cytoscape: A
software environment for ıntegrated models of
biomolecular ınteraction networks". Genome Research,
13(11), 2498-2504, 2003.

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020
V. Tunalı, M.A.A. Tüysüz

358

[19] Bastian M, Heymann S, Jacomy M. "Gephi: An open source
software for exploring and manipulating networks".
International AAAI Conference on Weblogs and Social
Media, San Jose, California, USA, 17-20 May 2009.

[20] Hu Y. "Efficient, high-quality force-directed graph
drawing". Mathematica Journal, 10(1), 37-71, 2005.

[21] Barabási AL, Albert R. "Emergence of Scaling in Random
Networks". Science, 286(5439), 509-512, 1999.

[22] Watts DJ, Strogatz SH. "Collective dynamics of small-world
networks". Nature, 393(6684), 440-442, 1998.

[23] Erdös P, Rényi A. "On Random Graphs". Publicationes
Mathematicae Debrecen, 6, 290-297, 1959.

[24] Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. "Fast
unfolding of communities in large networks". Journal of
Statistical Mechanics: Theory and Experiment, 2008(10),
P10008, 1-12, 2008.

