
 
 

Pamukkale Univ Muh Bilim Derg, 26(2), 352-358, 2020 

 

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 

 Pamukkale University Journal of Engineering Sciences 

 

352 
 

Analysis of function-call graphs of open-source software systems using 
complex network analysis 

Karmaşık ağ analizi kullanılarak açık-kaynak yazılım sistemlerinin 
fonksiyon-çağırma graflarının analizi 

Volkan TUNALI1* , Mehmet Ali Aksoy TÜYSÜZ2  

1,2Department of Software Engineering, Faculty of Engineering and Natural Sciences, Maltepe University, İstanbul, Turkey. 
volkan.tunali@gmail.com, mehmetaliaksoy@gmail.com 

Received/Geliş Tarihi: 03.08.2018 
Accepted/Kabul Tarihi: 10.05.2019 

Revision/Düzeltme Tarihi: 04.03.2019 doi: 10.5505/pajes.2019.63239 
Research Article/Araştırma Makalesi 

 
Abstract  Öz 

Software systems are usually designed in a modular and hierarchical 
fashion, where functional responsibility of a system is decomposed into 
multiple functional software elements optimally such as subsystems, 
modules, packages, classes, methods, and functions. These elements are 
coupled with each other with some kind of dependency relationships to 
some degree, and their interactions naturally form a graph or network 
structure. In this study, we generated the static function-call graphs of 
several open-source software systems, where functions were the most 
basic type of interacting elements calling each other. Then, we analyzed 
the call graphs both visually and topologically using the techniques of 
complex network analysis. We found the call graphs to reveal scale-free 
and small-world network properties similar to the findings of the 
previous studies. In addition, we identified the most central and 
important functions in each call-graph using several centrality 
measures. We also performed community analysis and found that the 
call graphs exhibited a tendency to form communities. Finally, we 
showed that analysis of static function-call graphs of software systems 
through complex network analysis has the potential to reveal useful 
information about them. 

 Yazılım sistemleri genellikle sistemin işlevsel sorumluluğunun optimal 
bir şekilde altsistemler, modüller, paketler, sınıflar, metodlar, ve 
fonksiyonlar gibi çok sayıda işlevsel yazılım elemanına ayrıştırıldığı, 
modüler ve hiyerarşik bir biçimde tasarlanırlar. Bu elemanlar 
birbirleriyle çeşitli ilişki türleri ile bağlıdırlar ve bunların etkileşimleri 
doğal olarak bir graf veya ağ yapısı oluşturur. Bu çalışmada, etkileşim 
halindeki en temel eleman türü olarak birbirini çağıran fonksiyonları 
dikkate alarak, çeşitli açık-kaynak yazılım sistemlerinin statik 
fonksiyon-çağırma graflarını oluşturduk. Ardından, karmaşık ağ 
analizi teknikleri kullanarak, çağırma graflarını hem görsel hem de 
topolojik olarak analiz ettik. Daha önceki çalışmaların bulgularına 
benzer olarak, grafların ölçekten-bağımsız ve küçük-dünya ağı 
özellikleri sergilediklerini gördük. Ek olarak, çeşitli merkezîlik ölçütleri 
kullanarak, her bir çağırma grafındaki en merkezi ve önemli 
fonksiyonları tespit ettik. Ayrıca, topluluk analizi gerçekleştirdik ve 
çağırma graflarının topluluk oluşturma eğilimi gösterdiğini bulduk. 
Son olarak, yazılım sistemlerinin statik fonksiyon-çağırma graflarının 
karmaşık ağ analizi yoluyla analizinin, sistemlerle ilgili yararlı bilgiler 
sağlama potansiyeli olduğunu gösterdik. 

Keywords: Fuction-call graph, Open-source software, Complex 
network analysis, Network centrality, Network science. 

 Anahtar kelimeler: Fonksiyon-çağırma grafı, Açık-kaynak yazılım, 
Karmaşık ağ analizi, Ağ merkezîliği, Ağ bilimi. 

1 Introduction 

Computer software development is a complicated process with 
several distinct activities like requirements analysis and 
development, architectural and detailed design, coding and 
debugging, testing, and maintenance. Real-world problems 
become larger and more complex than ever with intricate and 
a large number of interacting entities. This complexity 
manifests itself in the development of software solutions that 
address these real-world problems, and it makes the whole 
development process essentially difficult. Therefore, concept of 
complexity in software development cannot be overlooked. 
McConnell emphasizes this as “Managing complexity is the most 
important technical topic in software development. In my view, 
it’s so important, that Software’s Primary Technical Imperative 
has to be managing complexity.” [1]. The main goal of software 
architecture and design techniques is to deal with inherent 
complexity by dividing a complex problem into simpler and 
more managable pieces. Thus, software systems are usually 
designed in such a modular and hierarchical fashion that 
functional responsibility of a system is decomposed into 
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multiple functional software elements optimally such as 
subsystems, modules, packages, classes, methods, and 
functions. Obviously, these elements are not independent of 
each other. Instead, they are coupled with each other with some 
kind of dependency relationships to some degree, and their 
interactions naturally form a graph or network structure. 

A widely used type of software graphs is the function-call graph, 
where nodes represent the functions in a software system, and 
edges represent the action of function call between the 
functions. Self-loops in the graph indicate recursive function 
calls. Call graphs can be both static and dynamic. Static call 
graphs are generated by analyzing the source code structure. 
Dynamic call graphs, on the other hand, are captured during the 
execution of the software system. Call graphs are utilized for 
several purposes, such as program understanding, compiler 
optimization, etc.  

Complex networks have been actively studied for about two 
decades by researchers from the emerging field of network 
science [2]. Software function-call graphs are no exception to 
this. In this research, we focused on four different open-source 
systems, all written in C programming language, namely 
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GNOME Library, GNU Emacs, Git, and Linux OS Kernel. We 
generated four static function-call graphs from the source code 
files of these systems. Then, we used complex network analysis 
tools and techniques to explore and analyze the call graphs. We 
compared the topological properties of the networks with each 
other and with the findings of the previous studies. Besides, we 
revealed the most important functions in each system through 
centrality analysis. 

The paper proceeds as follows. Section 2 discusses related work 
on the complex network analysis of software call graphs. 
Section 3 gives the details of the material and the method used 
for the analysis. Section 4 presents and discusses the findings. 
Section 5 then concludes the paper while also recommending 
directions for future work. 

2 Related work 

There are several notable studies in the literature that analyzed 
software networks of different domains and sizes. 

In [3], software collaboration graphs of several open-source 
software systems written in C and C++ programming languages 
were analyzed, and they were found to reveal scale-free and 
small-world properties observed in many other systems. In 
addition, several topological measures of these networks were 
examined with respect to software engineering practices. 

In a comparative study, the transcriptional regulatory network 
of E. Coli bacterium and the call graph of Linux operating 
system written in C programming language were analyzed [4]. 
Topological analysis results of the study showed that both 
networks had a fundemantally hierarchical layout while their 
organizations led to the robustness of the biological system and 
the cost effectiveness via reusability of the software system. 

In another study, function-call graph of the open-source 
Celestia application written in C++ programming language was 
examined and it was shown that the graph exhibited scale-free 
and small-world properties [5]. 

In [6], function-call graphs of ten open-source Java programs 
were analyzed. The study showed that the call graphs exhibited 
scale-free and small-world properties. In addition, the study 
found that functions with high out-degree provided high-level 
business functions, and those with high in-degree provided 
low-level supportive functions. 

In a study by Qu et al., by using four community detection 
algorithms in the analysis of 10 open-source Java programs, it 
was shown that static call graphs usually present significant 
community structures [7]. Moreover, two class cohesion 
metrics were proposed in that study. 

In a more recent study, topological properties of the call graph 
of the Hibernate software, written in Java programming 
language, were analyzed [8]. Similar to the previous studies, the 
analysis revealed that the network showed scale-free and 
small-world properties. 

3 Materials and method 

Our research methodology consists of three distinct phases: 
data gathering, network modeling and construction, and 
complex network analysis. Details of each phase are given 
under their respective sub-sections in this section.  

3.1 Data gathering  

Data for this study were collected as source code files written 
in C programming language from the github repositories of the 

projects GNOME Library 3.29.3 [9], GNU Emacs 27.0.50 [10], Git 
2.19 [11], and Linux kernel 4.18.0-rc6 [12]. There were several 
common features of these projects that influenced our decision 
to choose them for this research. First, all of them were written 
purely in C programming language. Second, they were all open-
source software, which promotes collaboration and sharing by 
allowing other people to make modifications to source code and 
incorporate those changes into their own projects. Third, these 
projects had been contributed to by people all around the world 
usually without under control of a central body, preserving 
their internal code quality. 

3.2 Network modeling and construction  

A function-call graph is a directed graph, where nodes 
represent the functions in a software system, and edges 
represent the action of function call between the functions.  
Self-loops in the graph indicate recursive function calls. Call 
graphs can be both static and dynamic. Static call graphs are 
generated by analyzing the source code structure. Dynamic call 
graphs, on the other hand, are captured during the execution of 
the software system. In this research, our focus was on static 
call graphs. 

We used pycflow2dot 0.2 [13] to generate function-call graphs 
of the projects. pycflow2dot is a Python script that essentially 
uses GNU cflow [14] to generate call graphs. GNU cflow 
analyzes a collection of C source files and prints the control flow 
within the program. pycflow2dot generates graphs in Graphviz 
dot format [15], which is a common graph format supported by 
many network analysis tools. 

3.3 Complex network analysis 

Complex Network Analysis is a set of techniques that essentially 
studies the relationship between the structure and the function 
of large and complex networks where nodes represent any kind 
of entities, and edges represent any kind of relationships 
between the entities [16]. It is based on theories and methods 
from several disciplines including mathematics, physics, 
computer science, statistics, and sociology. A network analysis 
study usually consists of the following steps after a network 
representation of the complex phenomenon of interest is 
obtained. First, the complex network is visualized and patterns 
are searched for visually. Then, the structural analysis is 
performed to understand the general characteristics of the 
network as a whole. For example, structural measures like 
degree distribution of nodes, clustering coefficient, average 
path length, and diameter give us important information about 
the network. Third phase is the centrality analysis, where 
structurally the most central and important nodes are 
identified using appropriate centrality measures like degree, 
closeness, betweenness, and PageRank centrality. A final 
analysis called community analysis is performed to reveal the 
transitive relationships between nodes to detect dense groups 
of nodes called clusters in the network [17]. 

In this study, we used Cytoscape 3.6.1 [18] and Gephi 0.9.1 [19] 
to visualize and analyze the function-call graphs. Cytoscape is a 
general-purpose, open-source software environment 
specifically developed for the large scale integration of 
molecular interaction network data. However, it can be used to 
analyze any type of network owing to its extensive analysis 
capabilities and plugin-based extensibility. Gephi is a well-
known, open-source free network visualization tool with 
capabilities to calculate centrality, clustering, network 
diameter, and other metrics. 
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4 Findings and discussion 

Using the above mentioned network analysis tools and 
techniques, we analyzed the function-call graphs in four 
distinct phases. First, we visualized the graphs to see their 
general structure and layout. Then, we performed structural 
network analysis. Next, we calculated the centralities of the 
nodes. Finally, we observed the community structures 
embedded in the graphs. 

4.1 Visual analysis 

A complex network analysis usually begins with the 
visualization of the network using an appropriate layout 
algorithm that enables one to see the organization of the nodes 
and their relationships with each other as clearly as possible. 
For this reason, we visualized the call graphs using Yifan Hu 

layout algorithm available in Gephi [20]. Yifan Hu is a fast and 
effective force-directed layout algorithm that usually provides 
a clear view of the network. The visualizations of the call graphs 
are shown in Figure 1. The nodes were colored depending on 
the modularity class (community) they belonged to. Details of 
the community analysis is given in Section 4.4. In addition, the 
nodes were resized in proportion to their in-degrees. 

4.2 Topological analysis 

4.2.1 General topological measures 

We obtained the general topological measures of the call graphs 
using Cytoscape, such as density, clustering coefficient, 
diameter, centralization, and characteristic path length. All 
these measures are presented in Table 1. 

 

 

 

 

Gnome  Emacs 

 

 

 

Git  Linux kernel 

Figure 1. Visualizations of the call graphs. 

Table 1. Topological measures of the call graphs. 

Measure Gnome Emacs Git Linux 

Nodes 297 793 2,374 7,736 
Edges 552 1,640 7,256 19,959 

Clustering coefficient 0.076 0.082 0.070 0.054 
Characteristic path length 3.907 3.593 3.984 4.855 

Density 0.013 0.005 0.003 0.001 
Connected components 1 1 7 167 

Diameter 8 9 9 13 
Radius 5 5 5 7 

Avg. num. of neighbors 3.717 4.124 6.094 5.155 
Centralization 0.181 0.404 0.070 0.033 
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4.2.2 Scale-free analysis 

We obtained the degree distribution charts shown in Figure 2 
and fit the distributions with Power Law distribution using 
Cytoscape. Table 2 shows the scaling factors for Power Law 
distributons of the graphs. 

 

Gnome 

 

Emacs 

 

Git 

 

Linux kernel 

Figure 2. Degree distribution charts of the call graphs. 

Table 2. Scaling factors for Power Law distributions. 

Gnome Emacs Git Linux 

1.528 1.325 1.657 1.834 

Visual inspection of the degree distribution charts and the 
values of scaling factors suggest that the graphs exhibited 
Power Law degree distribution, which is the distribution 
usually observed in most real-world networks regardless of the 
type and size of the network [17]. This distribution indicates 
that most of the nodes have a relatively low degree (number of 
neighbors) while a few nodes have a very high degree. High 
number of neighbors (or degree) can be attributed to the 
popularity/utility of the node (the corresponding function). We 
showed that the function-call graphs of different size had the 
scale-free property [21]. 

4.2.3 Small-world analysis 

In addition to being scale-free, most real-world networks are 
known to be small-world, meaning that they show a higher 
clustering than random networks and they have a very short 
average path length regardless of their size [22]. 

In order to check the existence of small-world characteristics in 
the call graphs, we synthetically generated 10 different Erdös-
Rényi [23] random graphs for each call graph with the same 
number of nodes and edges as each one using the network 
randomizer plugin in Cytoscape. Then, we compared the mean 
values of the structural analysis results of these corresponding 
random graphs to the results of the call graphs. Tables 3 and 4 
show the comparisons. 

Table 3. Clustering coefficient comparison. 

Graph Gnome Emacs Git Linux 

Original 0.076 0.082 0.070 0.054 

Random 0.022 0.006 0.002 0.001 

Table 4. Characteristic path length comparison. 

Graph Gnome Emacs Git Linux 

Original 3.907 3.593 3.984 4.855 

Random 4.477 4.785 4.505 5.634 

For all the call graphs, corresponding random graphs had much 
lower clustering coefficient values as expected. Moreover, 
characteristic path lengths of the corresponding random 
graphs were very close considering the size of the graphs. These 
findings were in concordance with the general expectation as it 
is a well-known fact that random networks do not exhibit the 
high clustering of real-world networks but short characteristic 
path length is a common behavior of both real-world and 
random networks. As a result, we showed that the function-call 
graphs presented small-world characteristics. Additionally, the 
degree distributions of the random graphs were far from Power 
Law; they were Poisson actually as expected as a result of 
random edge addition between nodes. When compared to the 
random graphs in terms of these three characteristic 
properties, we finally inferred that the software function-call 
graphs under study were far from randomness. This is not 
surprising because software developers do not decompose a 
software system into modules randomly and do not distribute 
function calls all over the code at random. Instead, they decide 
to divide a unit into subunits with a kind of optimization and 
reusability approach. 
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4.3 Centrality analysis 

In this phase of the analysis, we calculated in-degree, out-
degree, betweenness, and PageRank centralities of the nodes in 
the call graphs using Gephi. These are the most commonly used 
centrality measures that usually give useful insights about the 
relative importance of nodes in directed networks. The higher 
the centrality value, the more central a node is. 

In-degree of a node (function) in call graphs is the number of 
other functions that directly call this function, also known as 
fan-in. Out-degree of a function is the number of other functions 
that this function directly calls, also known as fan-out. If a 
function has a high betweenness centrality value, it can be 
ragarded that this function acts as a middle layer between 
higher and lower abstraction layers in the call hierarchy. 
Functions with relatively high PageRank centrality values are 
the functions that are called by many other functions that are 
themselves are also called by high number of functions. This 

centrality value with a kind of recursive definition can be highly 
useful for identifying the important functions. Tables 5-8 
present top 10 functions in the call graphs ranked by their in-
degree, out-degree, betweenness, and PageRank centralities. 

4.4 Community analysis 

In this final phase of the complex network analysis, we used 
Gephi to identify the dense groups of nodes called communities 
(or clusters) in the call graphs. In Gephi, community analysis 
was performed with the Modularity operation, which is based 
on a technique called Modularity Optimization [24]. We used 
this operation with its only parameter resolution set to its 
default value of 1.0. Identified communities can be seen with 
distinct colors of nodes in the graph visualizations in Figure 1. 
Clusters of functions may be interpreted as an indication of 
modular and hierarchical organization of the units of the 
software systems of interest. 

 

 

Table 5. Top 10 functions of Gnome by their centralities. 

Rank In-Degree Out-Degree Betweenness PageRank 

1 g_return_val_if_fail main collect_locales g_return_val_if_fail 
2 g_free setup_seccomp add_locale g_assert 
3 g_strdup script_exec_new parse_rules g_free 
4 g_hash_table_lookup add_locale collect_locales_from_directory g_strdup 
5 g_str_equal parse_rules ensure_rules_are_parsed g_object_new 
6 g_warning gnome_desktop_thumbnail_fac

tory_generate_thumbnail 
gnome_desktop_thumbnail_scr

ipt_exec g_message 
7 g_assert gnome_get_language_from_loc

ale collect_locales_from_localebin g_hash_table_lookup 
8 g_hash_table_insert gnome_get_country_from_local

e gnome_parse_locale g_return_if_fail 
9 Strlen expand_thumbnailing_cmd expand_thumbnailing_cmd strcmp 

10 g_print 
gnome_parse_locale 

gnome_desktop_thumbnail_fac
tory_generate_thumbnail g_str_equal 

Table 6. Top 10 functions of emacs by their centralities. 

Rank In-Degree Out-Degree Betweenness PageRank 

1 Strlen main xmalloc fprintf 
2 DEFSYM openp lisp_to_value xmalloc 
3 Strcpy initialize_environment initialize_environment exit 
4 Defsubr socket_connection value_to_lisp strcmp 
5 MODULE_FUNCTION_BEGIN scan_lisp_file globals strcpy 
6 Xmalloc decode_env_path pop_getline putc 
7 value_to_lisp init_cmdargs fatal strlen 
8 Fprintf member dir_warning defsubr 
9 Staticpro doprnt doprnt MODULE_FUNCTION_BEGIN 

10 make_number popmail declaration value_to_lisp 

Table 7: Top 10 functions of git by their centralities. 

Rank In-Degree Out-Degree Betweenness PageRank 

1 die cmd_main get_oid_with_context_1 free 
2 free cmd_commit get_oid_with_context die 
3 strbuf_release cmd_clone get_oid strcmp 
4 strcmp pick_commits get_oid_1 strbuf_release 
5 error cmd_tag start_command error 
6 oid_to_hex prepare_to_commit run_command strlen 
7 fprintf do_pick_commit get_short_oid oid_to_hex 
8 strlen start_command unpack_trees BUG 
9 strbuf_addstr cmd_receive_pack diff_cache strbuf_reset 

10 strbuf_reset cmd_fsck run_diff_index fprintf 
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Table 8. Top 10 functions of linux kernel by their centralities. 

Rank In-Degree Out-Degree Betweenness PageRank 

1 unlikely SYSCALL_DEFINE2 console_unlock kfree 
2 mutex_unlock copy_process printk_deferred might_sleep 
3 mutex_lock SYSCALL_DEFINE3 panic mutex_unlock 
4 kfree SYSCALL_DEFINE5 vprintk_deferred mutex_lock 
5 u64 do_exit vprintk_emit unlikely 
6 WARN_ON_ONCE SYSCALL_DEFINE1 clockevents_program_event u64 
7 WARN_ON load_module clockevents_increase_min_delta WARN_ON 
8 this_cpu_ptr SYSCALL_DEFINE4 clockevents_program_min_delta WARN_ON_ONCE 
9 BUG_ON load_image_lzo update_process_times this_cpu_ptr 

10 per_cpu_ptr COMPAT_SYSCALL_DEFINE4 tick_periodic BUG_ON 
 

5 Conclusion and future directions 

In this research, we analyzed the function-call graphs of four 
open-source software projects by using complex network 
analysis techniques, namely GNOME Library, GNU Emacs, Git, 
and Linux OS Kernel. We first downloaded the source code files 
of these software from their github repositories. Then, we 
generated their static call graphs in Graphviz dot graph format 
using pycflow2dot tool. Once the call graphs were available in 
this format, we used Cytoscape and Gephi to explore and 
analyze them both visually and topologically. 

When we investigated the degree distributions of the graphs 
both visually and analitically, we observed Power Law 
distribution in all of them regardless of their sizes, meaning all 
the graphs were scale-free in compliance with the results of 
previous studies. 

We also examined the existence of small-world property in the 
call graphs by comparing some topological features of the 
graphs with those of the corresponding random graphs that we 
algorithmically generated. Consequently, we showed that the 
software call graphs are small-world networks. 

In a further analysis, we identified the most central  
(or important) functions in the call graphs by calculating in-
degree, out-degree, betweenness, and PageRank centralities of 
the nodes. Although we did not have a comparison ground for 
assessing the relevance of these identified software units to the 
actual design decisions, they could still have critical importance 
for maintainability and reusability of the software systems. 

For the analysis of communities embedded in the call graphs,  
we used the Modularity analysis method and observed that the 
call graphs exhibited a tendency to form communities that 
could indicate the modular and hierarchical design of the 
respective software systems. We showed that analysis of static 
function-call graphs of software systems through complex 
network analysis has the potential to reveal useful information 
about them. As a future direction, comparison of several 
software metrics collected via traditional software engineering 
approaches with the measures obtained via complex network 
analysis could reveal significant correlations. 
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