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Abbreviations 

MudPIT: Multidimensional Protein Identification Technology 

NSAF: Normalized Spectral Abundance Factor 

PLGEM: Power Law Global Error Model 

FPR: False Positive Rate 

FDR: False Discovery Rate 

SD: Standard Deviation 

CV: Coefficient of Variation 

LP: Log Phase 

SP: Stationary Phase 

GO: Gene Ontology 
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Summary 

If the large collection of microarray-specific statistical tools was applicable to the 

analysis of quantitative shotgun proteomics datasets, it would certainly foster an important 

advancement of proteomics research. Here, we analyze two large multi-dimensional protein 

identification technology (MudPIT) datasets – one containing 8 replicates of the soluble fraction 

of a yeast whole-cell lysate, one containing 9 replicates of a human immuno-precipitate – to test 

whether normalized spectral abundance factor (NSAF) values share substantially similar 

statistical properties with transcript abundance values from Affymetrix GeneChip data. First, we 

show similar dynamic range and distribution properties of these two types of numeric values. 

Next, we observe that the standard deviation (SD) of a protein’s NSAF values is dependent on 

the average NSAF value of the protein itself, following a power law. This relationship can be 

modeled by a power law global error model (PLGEM), initially developed to describe the 

variance-versus-mean dependence that exists in GeneChip data. PLGEM parameters obtained 

from NSAF datasets prove to be surprisingly similar to the typical parameters observed in 

GeneChip datasets. The most important common feature identified by this approach is that, 

although in absolute terms the SD of replicated abundance values increases as a function of 

increasing average abundance, the coefficient of variation – a relative measure of variability – 

becomes progressively smaller under the same conditions. We next show that PLGEM 

parameters are reasonably stable to decreasing numbers of replicates. We finally illustrate one 

possible application of PLGEM in the identification of differentially abundant proteins, which 

might potentially outperform standard statistical tests. In summary, we believe that this body of 

work lays the foundation for the application of microarray-specific tools in the analysis of NSAF 

datasets. 
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Introduction 

In recent years, the biomedical research community has recognized a need to shift its 

focus from the single-component level to the whole-system level, in order to understand complex 

physiological processes as well as elusive pathological conditions (1-3). Massive sequencing 

projects have provided comprehensive lists of the players in these games, and advancements in 

microarray technology (4, 5) and mass spectrometry (6, 7) allow today to measure abundances of 

all known mRNA and numerous protein species in a cell. The next challenge is to reverse 

engineer the ‘rules of the game’ by observing how players behave and how they interact with 

each other (8). 

To this end, the first layer of complexity that can be addressed by such technologies is 

exemplified by the following question: Which transcripts or proteins change their abundance in a 

given cell as a result of a normal biological process, in response to a specific perturbation or as a 

consequence of disease? Although not conclusive, answering this type of question has already 

proven to help pinpoint the major players in several biological systems (9-12). In contrast to 

microarray-based transcriptomics, mass spectrometry-based proteomics (13) has unfortunately 

received less contributions from statistics and bioinformatics in terms of specific algorithms and 

software that are designed to answer the types of questions described above. Therefore, if the 

wealth of microarray-specific statistical tools could be directly applied to analyze proteomics 

data, this would most likely represent an enormous benefit for the rapid advancement of systems 

biology. 

Conceptually, there are significant similarities between MS-based proteomics data and 

microarray-based gene expression data. Primarily, both technologies are believed to measure 

abundances of biological entities in a largely unbiased way (6, 14), which allows the use of a 
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common mathematical representation of the data. Both types of datasets are typically represented 

as a matrix of numeric values, where rows represent different transcripts or proteins in a cell, 

columns represent distinct microarray hybridizations or MS runs and each entry represents the 

measured abundance level. Microarray data analysts have recognized long ago that standard 

statistical tools are not appropriate to analyze these data matrices, because of the ‘many-genes-

few-replicates’ problem (15, 16). More precisely, all standard statistical methods rely on judging 

whether the difference in means between two series of values (here representing abundances of 

biological entities in two experimental conditions of interest) is significantly higher than the 

variation expected by chance. Classically, statistical tests estimate this random variation by 

measuring the variability between the replicated measures within each series of values. But when 

the number of available replicates is 100 or 1000 times smaller than the number of analyzed 

transcripts (or proteins), the chance of occasionally measuring artificially small or artificially 

large standard deviations becomes dominant, potentially leading to an increase in both false 

positive and false negative identifications. To address this issue, several microarray-specific 

tools have been developed (16-20). It would therefore be of particular interest to test whether 

these methods were applicable to the analysis of proteomics data as well. 

One hindrance to the direct transfer of expertise between these two approaches has been 

the wide-spread belief that, due to the different chemistry of nucleic acids and polypeptides and 

the different technologies used to analyze them, transcriptome data and proteome data had to be 

analyzed with distinct sets of tools. Until very recently, for example, LC-MS/MS (also known as 

‘shotgun’) proteomics was not even granted the definition of being a quantitative technique 

unless it was coupled with specific labeling methods that would make it suitable for relative 

quantification of proteins in an equimolar mixture of two samples of interest (21, 22). But 
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sampling statistics, such as spectral counts, obtained by labeled or label-free shotgun proteomics 

have proven to allow quantification of proteins in single samples (23-25). For instance, we have 

recently used normalized spectral abundance factor (NSAF) values obtained by multi-

dimensional protein identification technology (MudPIT) to determine the relative protein 

abundances inside the human Mediator complex (26) or for identifying abundance changes of 

yeast transmembrane proteins upon shift from a minimal to a rich culture medium (27). One 

feature of spectral counting based approaches, like NSAF, is that they provide measures of 

protein abundances between different proteins in datasets and are applicable to any sample type.  

In our view, these represent important steps forward that render shotgun proteomics data 

conceptually more similar to microarray gene expression data. 

Besides conceptual similarities, applicability of microarray-specific statistical methods to 

the analysis of shotgun proteomics data will ultimately depend also on more substantial 

similarities. At the least, numeric values representing transcript or protein abundance levels 

should have similar statistical properties, such as dynamic range or overall shape of the 

distribution of values. Furthermore, it would be important if proteomics datasets and microarray 

datasets obeyed a similar global error model. Several authors, for example, have reported that 

variability of gene expression data is dependent on the average expression level of the gene itself 

and have termed this phenomenon ‘variance-versus-mean dependence’ (28, 29). Taking this 

relationship explicitly into account has shown to partially solve the ‘many-gene-few-replicates’ 

problem and to significantly improve the performance of the identification of differentially 

expressed genes (20, 30, 31). More specifically, we have previously reported that standard 

deviations from replicated Affymetrix GeneChip data could be modeled via a Power Law Global 

Error Model (PLGEM); and use of PLGEM-derived standard deviations allowed the detection of 
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a higher number of truly differentially expressed genes without increasing the false positive rate 

(20). The PLGEM-based method was then implemented into a freely available Bioconductor 

(32) package, called ‘plgem’, as well as in an automated microarray data analysis pipeline, called 

‘AMDA’ (33). These implementations have already been applied – both by us (34), as well as by 

other authors (35) – to successfully analyze real microarray data addressing real biological 

questions. Another study reported the successful application of a quadratic model to explain the 

dependence between noise variances and mean peak intensities in LC-MS proteomics datasets; 

and application of this error model resulted in a false positive rate (FPR) that was closer to the 

expectation value, compared to the FPR obtained by a standard Welch’s t-test (36). To the best 

of our knowledge, there is to date in the scientific literature no equally detailed error modeling 

study of shotgun proteomics data. If it was proven that NSAF data also obeyed a global error 

model, this could improve our ability to distinguish true protein abundance changes from random 

fluctuations. 

The scope of the present work was therefore to compare general statistical properties of 

protein abundance values represented by NSAF values with those of transcript profiling data 

obtained by GeneChip experiments. Using two large MudPIT datasets (one containing 8 

biological replicates of the soluble fraction of a yeast whole-cell lysate, one containing 9 

technical replicates of a human protein complex preparation), we compared global distributions 

of major statistical parameters and tested whether NSAF datasets are characterized by a 

variance-versus-mean dependence similar to that governing GeneChip data. This work shows 

that there are indeed substantial similarities between the quantitative values obtained by these 

two apparently dissimilar technologies, and provides the basis for applying PLGEM-based 
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methods – and possibly other microarray-specific tools – to NSAF datasets for the identification 

of differentially abundant proteins. 

Experimental Procedures 

Protein extraction for the Yeast proteome  

For the control yeast dataset Saccharomyces cerevisiae strain BY4741 (37) was grown to 

middle log phase (OD at 600 nm of 1-1.5) in 2.5 l of rich media, consisting of: 100 ml of 10X 

concentrated BioExpress 1000 containing amino acids either labeled with 14N or 15N (Cambridge 

Isotope Laboratories, Andover, MA); 20 mg/l of uracil; 1.8 g/l of yeast nitrogen base without 

amino acids and ammonium sulfate; and 2% of dextrose. A total of 8 independent cultures were 

grown, four in 14N and four in 15N medium. Cells were collected and washed in cold ultrapure 

water by centrifugation for 20 min at 4,000  g at 4 ºC. Cell pellets were resuspended in lysis 

buffer (310 mM of sodium fluoride, 3.45 mM of sodium orthovanadate, 12 mM of 

ethylenediamine tetraacetic acid, 250 mM of sodium chloride and 100 mM of sodium carbonate) 

and broken using silica glass beads by 10 cycles consisting of 1 min vortexing at 2,500 rpm 

followed by 30s incubation at 4 ºC. Unbroken cells were removed by centrifugation for 20 min at 

4,000  g at 4 ºC. The supernatant was transferred to a 50 ml centrifuge tube and soluble 

proteins were separated from the crude membrane fraction by centrifugation for 1 h at 22,000  

g at 4 ºC. The supernatant containing the soluble protein extract was collected, centrifuged, and 

transferred to a clean 50 ml tube and stored at -80 ºC. Protein concentration was determined by 

bicinchoninic acid (BCA) assay (Pierce, Rockford, IL). The eight independent samples were 

combined into four independent pools, each of which containing 500 μg total 14N- and 15N-

labeled proteins mixed at a 1:1 ratio before TCA precipitation and MudPIT analysis. 
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 For the comparative growth phase proteomic analysis, Saccharomyces cerevisiae strain 

BY4741 was grown in 14N as described before. The logarithmic (LP) and stationary (SP) growth 

phase proteomic analyses were performed on cells collected respectively at an averaged OD at 

600nm of 0.96 +/- 0.06 and 4.5 +/- 0.15 over four replicated experiments. Cells were collected 

and washed as described before and stored at -80 ºC before protein extraction.  For protein 

extraction, cell pellets were resuspended in lysis buffer (310 mM of sodium fluoride, 3.45 mM of 

sodium orthovanadate, 12 mM of ethylenediamine tetraacetic acid, 250 mM of sodium chloride 

and 100 mM of sodium carbonate) and broken using silica glass beads by 12 cycles consisting of 

30s bead beating, using a bead beater model 1107900 (BioSpec Products Inc.), followed by 1 

min incubation at 4 ºC. The beads and cells debris were removed by centrifugation for 30min at 

4,000 g at 4 °C. The supernatant was collected and centrifuged for 1.5 hours at 45,000 g at 4 

°C. The supernatant containing the whole cells extract was collected and stored at – 80 °C. 

Protein concentration was determined by bicinchoninic acid (BCA) assay (Pierce, Rockford, IL). 

For each replicated experiments and growth condition, MudPIT analysis has been performed on 

500μg of protein extract desalted by TCA precipitation.  

Protein extraction for the Mediator complex 

The mammalian Mediator of RNA polymerase II transcription is a multi-protein 

complex, composed of over 30 subunits. Stably transfected HeLa cell lines, each expressing a 

different FLAG-tagged Mediator subunit, i.e. human Med9, Med10, Med19, Med26, Med28, 

Med29 or the mouse orthologs of Med9 or Med19, were constructed. Nuclear proteins from 

these cell lines were extracted and purified by anti-FLAG agarose immunoaffinity 

chromatography (FLAG-IP) as described previously (38). The third elutions of all preparations 

involving a FLAG-tagged Mediator subunit were pooled, TCA precipitated and quantified by 
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BCA assay (Pierce). The pooled mixture was split into identical aliquots of 10 μg each, nine of 

which were independently analyzed in the present study.  

MudPIT analysis 

Protein mixtures were TCA precipitated, urea-denatured, reduced, alkylated and digested 

with endoproteinase Lys-C followed by modified trypsin digestion (both from Roche, 

Indianapolis, IN), as previously described (6). Peptide mixtures from the yeast proteins or the 

Mediator complex were respectively loaded onto split phase or 3-phase 100 µm fused silica 

microcapillary columns both packed with 5-μm C18 reverse phase (Aqua, Phenomenex), strong 

cation exchange particles (Partisphere SCX, Whatman), and reverse phase (39). Loaded 

microcapillary columns were placed in-line with a Quaternary Agilent 1100 series HPLC pump 

and a LTQ linear ion trap ion trap MS equipped with a nano-LC electrospray ionization source 

(ThermoFinnigan). Fully automated 7-step MudPIT runs were carried out on the electrosprayed 

peptides for the Mediator samples as described previously (40), while a 12-step MudPIT run was 

performed for the yeast proteome analyses as previously described (27). Each full MS scan (from 

400 to 1600 m/z range) was followed by five MS/MS events using data-dependent acquisition, 

where the five most intense ions from a given MS scan were subjected to CID. 

MS/MS data processing 

Proteins were identified by database searching using SEQUEST software (41). The list of 

parameters used for the yeast and human datasets searches are available in Supplementary Tables 

1A-D and 2A, respectively. Briefly, no enzyme specificity was imposed during searches, setting 

a mass tolerance of 3 amu for precursor ions and of 0 amu for fragment ions. In all searches, 

cysteine residues were considered to be fully carboxamidomethylated (+57 Da statically added). 

No variable modifications were searched. For the yeast proteome, tandem mass spectra were 
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searched against a database containing 14176 protein sequences combining 6911 S. cerevisiae 

proteins (from the National Center of Biotechnology Information 2006-03-03 release), 177 

common contaminants, such as keratin and immunoglobulins, and their corresponding 7088 

randomized amino acid sequences. Each MS/MS dataset was searched four times following these 

criteria: 1) 14N aminoacids; 2) 14N aminoacids and +16 Da statically added to methionine 

(referred as methionine oxidation); 3) 15N aminoacids for which the appropriate number of 

nitrogen atoms where statically added to their masses; 4) 15N aminoacids and methionine 

oxidation (Supplementary Table 1A-D). The sqt files generated from the four independent 

searches were merged in the final dataset as described before (27). For the yeast log phase versus 

stationary phase comparative analyses, no 15N was used so each dataset was searched using 14N 

specific parameters found in Supplemental Table 1A-B.  Each MS/MS dataset was searched two 

times following these criteria: 1) 14N aminoacids and 2) 14N aminoacids and +16 Da statically 

added to methionine. The sqt files generated from the two independent searches were merged in 

the final dataset as described before (27).  For the Mediator samples, MS/MS spectra were 

searched against a database of 60234 amino acid sequences, consisting of 29890 human proteins 

(non-redundant entries from NCBI 2006-11-07 release), 160 usual contaminants (such as human 

keratins, IgGs and proteolytic enzymes), 67 epitope-tagged proteins (including mouse orthologs 

of Med9 and Med19) and 30117 randomized amino acid sequences derived from each non-

redundant protein entry. Peptide/spectrum matches, including precursor ion m/z values and 

charge states, for the yeast control, human, and yeast log phase versus stationary phase datasets 

are respectively provided as Supplementary Tables 1E, 2B, and 3A and can be viewed under 

http://research.stowers-institute.org/washburnlab/Pavelka-MCP-2007/. The lists of detected 

peptides and proteins were sorted and selected using DTASelect (42) with the following criteria 
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set: spectra/peptide matches were only retained if they had a DeltCn of at least 0.1, minimum 

XCorr of 1.5 for singly-, 2.5 for doubly-, and 3.0 for triply-charged spectra, and maximum Sp 

rank of 10. In addition, peptides had to be fully-tryptic and at least 7 amino acids long. Peptide 

hits from multiple runs were compared (Supplementary Tables 1F, 2C, and 3B) using 

CONTRAST (42) and contrast-report (43). Proteins that were subsets of others were removed 

using the parsimony option in DTASelect (42). The False Discovery Rate (FDR) was calculated 

as the number of spectra matching randomized peptides multiplied by 2 and divided by the total 

number of spectra, as described before (44), and ranged between 0 and 0.465% for all MudPIT 

runs (Supplementary Tables 1F, 2C, and 3B). 

Protein abundances were estimated using Normalized Spectral Abundance Factor 

(NSAF) values, calculated from the spectral counts of each identified protein (27). Briefly, to 

account for the fact that larger proteins tend to contribute more peptide/spectra, spectral counts 

were divided by protein length to provide a Spectral Abundance Factor (SAF). SAF values were 

then normalized against the sum of all SAF values in the corresponding run, allowing the 

comparison of protein levels across different runs. No particular thresholds or outlier removal 

steps were applied prior to NSAF calculation. The NSAF values of each detected protein from 

the yeast, Mediator, and yeast log phase versus stationary phase MudPIT datasets are provided as 

Supplementary Tables 1F, 2C, and 3B, respectively. For subsequent statistical analysis, all 

datasets were further processed to retain only proteins that were identified at least in three 

replicated experiments. Finally, contaminant proteins were removed. 

GeneChip datasets 

The Mouse GeneChip dataset used in the present study is a subset of a previously 

published dataset (45). This subset contains 11 replicates of the transcriptome of untreated mouse 
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dendritic cells, measured by MG-U74Av2 GeneChip arrays (Affymetrix, Santa Clara, CA) 

following standard procedures. All experimental details can be found in the original publication 

(45). All remaining microarray datasets were downloaded on 2007-02-22 from the Gene 

Expression Omnibus database (46), using the following search criteria: i) The microarray 

platform had to be an Affymetrix GeneChip; ii) Absolute signal intensities had to be obtained by 

standard image processing, background correction and summarization methods, as implemented 

either in the MicroArray Suite 5.0 or in the GeneChip Operating System software application 

(both from Affymetrix); iii) Datasets had to contain at least one experimental condition with a 

minimum of three replicates. The combination of these selection criteria yielded 26 distinct 

studies across 7 distinct platforms and 5 species (Homo sapiens: HG-U133Plus2.0 and HG-

U133A; Mus musculus: MOE-430A and MG-U74Av2; Rattus norvegicus: RG-U34A; 

Arabidopsis thaliana: ATH1; Saccharomyces cerevisiae: YG-S98), with a total of 336 samples 

grouped in 101 sets of replicates. Each set of replicates represented either a unique experimental 

condition or a unique combination of experimental factors (in case that more than one 

experimental factor was annotated in the database for a particular dataset) and contained between 

three and five – either biological or technical – replicates. All accession numbers of the 

downloaded data can be found in Supplementary Table 4. 

Statistical analysis 

NSAF datasets and GeneChip datasets were imported into the R environment for 

statistical computing (47) and parsed into individual ‘exprSet’ objects, to allow recognition by 

specific Bioconductor packages (32). Missing values were replaced with zeros and data were 

normalized by dividing each value by the mean value of the corresponding column. The 

Bioconductor package ‘plgem’ (20) was used to fit a PLGEM to the individual datasets, evaluate 
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the goodness-of-fit of the model to the data and detect differentially abundant transcripts or 

proteins. Relevant algorithmic details of the PLGEM method will be explained in the following 

section. All R scripts written to dynamically generate all the figures and tables in the present 

work are available from the authors upon request. 

Results 

Global statistical properties of NSAF datasets 

In the present study, MudPIT was used to generate large-scale shotgun proteomics data 

and NSAF values were generated to obtain quantitative information from these datasets.  We 

then compared the statistical properties of two previously unpublished NSAF datasets 

(Supplementary Tables 1 and 2) with those found in previously published GeneChip datasets.  

Before demonstrating the existence of significant similarities between these two types of 

numerical data, we first would like to acknowledge the presence of some important differences. 

One obvious difference among the datasets analyzed in the present work is related to the size of 

the corresponding data matrices (Table 1). By definition, a microarray experiment will provide 

abundance values for every transcript probed by the chip regardless of the actual presence of the 

corresponding transcripts in the analyzed sample. Instead, due to the sampling nature of shotgun 

proteomics approaches (23), MudPIT will detect only those proteins which are present in the 

sample with a concentration that is higher than the sensitivity threshold of the technology. In 

accordance to this view, the number of proteins present in the Yeast and in the Mediator NSAF 

dataset, were respectively ~15 and ~42 times smaller than the number of transcripts present in 

the Mouse GeneChip dataset (Table 1). For the same reason, an abundance value equal to zero 

(hereafter referred to as a ‘zero value’) was extremely unlikely in the Mouse GeneChip dataset 

(representing only ~0.02% of the total values), whereas it accounted for ~29% and ~35% of all 
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values present in the Yeast and the Mediator NSAF datasets, respectively (Table 1). 

Interestingly, the percentage of transcripts associated with an ‘Absent call’ in the GeneChip 

dataset (~50%) was similar to the percentage of zero values in the two NSAF datasets, 

suggesting a possible semantic equivalence between these two types of information. Most 

probably as a third consequence of the phenomenon described above, the dynamic range of 

measured abundance values in the Yeast and the Mediator NSAF datasets ranged ~3.6-3.8 orders 

of magnitude, while the ones in the Mouse GeneChip dataset reached almost 4.7 orders of 

magnitude (Table 1). Nonetheless, these data confirm that despite important differences in the 

overall size and in the presence of zero values, microarray datasets and proteomics datasets are 

both able to measure abundances of biological entities over several orders of magnitude. 

Such a wide dynamic range of values is unlikely to be produced by a Normal distribution. 

Instead, spot intensities from microarray data (48, 49) and NSAF values from shotgun 

proteomics datasets (27) have both been proposed to be approximately log-normally distributed. 

In a previous study, we have shown that the distribution of log-transformed NSAF values from a 

MudPIT dataset was not significantly different from a Normal distribution (27). In that study, in 

order to allow the log-transformation step, we analyzed only those proteins that were identified 

in a significant proportion of all performed MS runs and replaced the remaining zero values by a 

fraction of a spectral count before calculating the corresponding NSAF. Following the same 

approach, we observed a similar distribution of values also in the two NSAF datasets analyzed in 

the present work (data not shown). These results certainly support the hypothesis that the NSAF 

values of the most highly abundant proteins in a MudPIT dataset are log-normally distributed. 

Here, in order to provide a more general description of the distribution of values that would 

encompass also more lowly abundant proteins, and given the high percentage of zero values in 
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the two NSAF datasets of the present study, we judged not to be appropriate to replace the zero 

values with a fractional value, to avoid introduction of a significant distortion in the data. 

Instead, we decided to focus our attention on the distribution of average (untransformed) NSAF 

values calculated for every protein in the dataset using all available replicates, which by 

definition have to be non-zero and will be referred hereafter as ‘rowMean values’. Interestingly, 

the overall distribution of rowMean values was more complex than a simple log-Normal 

distribution (Figure 1). In fact, it could be explained more realistically as a combination of 

multiple log-Normal distributions. In the case of the Mouse GeneChip dataset, the distribution of 

rowMean values could be clearly explained by two dominant log-Normal distributions, one 

representing transcripts flagged as ‘Absent’ across all 11 replicates, the other one representing 

transcripts without a single ‘Absent call’. Only a minor proportion of transcripts had an 

intermediate number of ‘Absent calls’ (Figure 1A). Also the distribution of rowMean values in 

the NSAF datasets showed two dominant log-Normal components, one representing proteins 

with exactly three non-zero values, the other one representing proteins without zero values 

(Figure 1B-C). But in this case, the contribution of proteins with an intermediate number of zero 

values was more important, as compared to the contribution of transcripts with an intermediate 

number of ‘Absent calls’ in the GeneChip dataset. These results support a strategy of including 

in an NSAF data analysis also proteins identified only in a minor fraction of all performed MS 

runs, because these might simply represent more lowly abundant proteins that only occasionally 

pass the sensitivity threshold of the technology. Statistical methods capable of dealing with these 

rarely identified proteins will surely enhance our ability to fully interpret a shotgun proteomics 

dataset. 
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We next sought to provide a description of the distribution of the standard deviations 

measured for each transcript or protein across all available replicates, referred hereafter as 

rowSD values. The distribution of rowSD values was surprisingly similar to the distribution of 

rowMean values in the corresponding dataset (Figure 1D-F). This suggested the intriguing 

hypothesis that, as has been demonstrated in microarray datasets, also in proteomics datasets 

there is a relationship between the reproducibility of a protein’s abundance values and the 

protein’s average abundance level. 

To identify the possible underlying relationship between data variability and average 

abundance levels, we drew two types of scatter-plots for each dataset (Figure 2). In the first case, 

we analyzed rowSD values – which can be seen as an absolute measure of data variability – as a 

function of the corresponding rowMean values in a log-log space (Figure 2A-C). These plots 

revealed a striking linear relationship over the whole dynamic range in all three analyzed 

datasets, with highly abundant transcripts or proteins showing a higher SD compared to lowly 

abundant ones. While the SD is considered an absolute measure of data variability, the 

coefficient of variation (CV) can be seen as a relative measure of data variability. The CV is 

defined as: 

mean
SDCV = .  [Equation 1] 

In the second series of scatter-plots, we therefore analyzed the CV of the transcript or the 

protein, measured as the ratio between the corresponding rowSD and rowMean, hereafter 

referred to as rowCV. Also plots of the rowCV values as a function of the corresponding 

rowMean values in a log-log space revealed a striking linear relationship over the whole dynamic 

range in all three analyzed datasets (Figure 2D-F). But conversely to the behavior of the rowSD 
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values, here, highly abundant transcripts or proteins had smaller rowCV values compared to 

lowly abundant ones. 

Goodness-of-fit of PLGEM on NSAF datasets 

The simplest model able to explain a linear relationship in a log-log space is a power law 

relationship in the linear-linear space. In mathematical terms, if 

ε++⋅= crowMeankrowSD )ln()ln( ,  [Equation 2] 

where k, c and ε respectively represent the slope, the intercept and a normally-distributed residual 

error of a linear regression, then 

)exp()exp( ε⋅⋅= crowMeanrowSD k .  [Equation 3] 

And since 

rowMean
rowSDrowCV = ,  [Equation 4] 

then 

)exp()exp()1( ε⋅⋅= − crowMeanrowCV k . [Equation 5] 

According to this model, if k = 1, then the rowSD would be directly proportional to the 

rowMean, while the rowCV would be constant over the whole dynamic range of rowMean 

values. Values of k > 1 would cause both the rowSD and the rowCV to increase as a function of 

the rowMean, while values of k < 0 would lead to a decrease of both the rowSD and the rowCV. 

Hence, there is a critical range 0 < k < 1, in which the absolute variability increases with 

increasing average abundance (because of the positive power coefficient k in Equation 3), while 

the relative variability decreases (because of the negative power coefficient (k−1) in Equation 5). 

An error model with parameter k within this critical range, would therefore fully explain the 

observations made in Figure 2. In addition, such a model would also be consistent with the fact 
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that the dynamic range of rowSD values was significantly smaller than the dynamic range of the 

rowMean values in the same dataset (Table 1). 

We have previously described the above variance-versus-mean dependence to be at the 

basis of GeneChip data and we modeled this relationship via a Power Law Global Error Model 

(PLGEM) (20). Here, we tested whether and how PLGEM would be able to explain the 

variability present in a typical NSAF dataset as well. Using the Bioconductor package ‘plgem’ 

we fitted a PLGEM either to a simulated dataset (forced to obey a PLGEM) or to the GeneChip 

and the two NSAF datasets under investigation in the current study (Figure 3). Details about the 

robust PLGEM fitting method implemented in the ‘plgem’ package can be found in the original 

publication (20). Briefly, the dynamic range of rowMean values is partitioned into equally sized 

bins and a modeling point is determined in each partition, so that it captures the local median 

variation (20). Then, a linear regression is performed through the set of modeling points in the 

log-log space, to obtain the slope k and the intercept c of the PLGEM. As quality controls, a 

Pearson’s correlation coefficient was calculated between all available ln(rowSD) values and the 

corresponding ln(rowMean) values and an adjusted r2 value was calculated between the fitted 

PLGEM and the modeling points. In general, PLGEM fitted equally well on all analyzed datasets 

(Figure 3A-D), with correlation coefficients >0.96 and adjusted r2 values >0.99. An additional 

evaluation of the goodness-of-fit of PLGEM was performed through an analysis of the residuals 

of the model. Residuals were calculated as differences between the modeled and the measured 

ln(rowSD). As expected from a good fit, in all analyzed datasets the residuals were relatively 

constant across the whole dynamic range (Figure 3E-H) and were approximately normally 

distributed (Figure 3I-P). 
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Once established that NSAF datasets could be modeled by a PLGEM similarly to 

GeneChip datasets, we next asked whether the model parameters obtained by fitting PLGEM on 

NSAF datasets were similar to the typical parameters observed in GeneChip data. To this end, 

we took advantage of the Gene Expression Omnibus database, a public repository of microarray 

experiments (46). We fitted PLGEM on 101 distinct GeneChip datasets downloaded from this 

database, which represented microarray experiments performed across 5 different species and 7 

different platforms, and drew density distribution plots of the PLGEM slopes, the PLGEM 

intercepts, the correlation coefficients and of the adjusted r2 values found in these datasets 

(Figure 4). The PLGEM slopes found in the 101 analyzed GeneChip datasets were all within the 

range 0.5 < k < 1, which was well within the critical range described above (Figure 4C). 

Importantly, correlation coefficients and adjusted r2 values found both in the Yeast and in the 

Mediator datasets were among the highest values observed for GeneChip datasets, suggesting 

that the fitting of PLGEM was particularly good in the analyzed NSAF datasets (Figure 4A-B). 

Notably, both the Yeast and the Mediator NSAF datasets had PLGEM slopes ~0.8, which was 

very close to the average PLGEM slope generally found in GeneChip datasets (Figure 4C). 

The NSAF datasets analyzed in the present work contained an unusually high number of 

replicates, which was important for a solid investigation of the statistical properties of these 

types of datasets. However, in a realistic experimental setting, it would be unlikely to have 8 or 9 

replicates. Therefore, if PLGEM was to be proposed as a novel tool in NSAF data analysis, we 

deemed important to test its behavior also when a significantly smaller number of replicates were 

available for a given experiment. We therefore simulated the effect of decreasing the number of 

available replicates by randomly removing 1 or more columns from the datasets analyzed above, 

until only 3 replicates were retained (Figure 5). As expected, a smaller number of replicates 
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caused a less obvious linearity between the ln(rowSD) values and the ln(rowMean) values, as 

demonstrated by the progressive decay of the Pearson’s correlation coefficient (Figure 5A), and a 

consequent decrease of the goodness-of-fit of PLGEM, as exemplified by the drop in the 

adjusted r2 of the modeling points (Figure 5B). Nonetheless, even in the datasets with only 3 

replicates, all measured correlation coefficients were >0.85 and the r2 values were >0.96, 

demonstrating a reasonably good fit. In addition, PLGEM slopes and intercepts deviated only 

marginally from the parameters obtained from the full dataset (Figure 5C-D). However, there 

was a large benefit in both accuracy and precision in the determination of all parameters, when 

the number of available replicates was increased from three to four or, though to a lesser extent, 

from four to five. A further increase in the number of replicates mainly affected the precision but 

only marginally affected the accuracy by which PLGEM parameters were estimated (Figure 5C-

D). Taken together, these data stress once more the importance of performing as many replicates 

as possible in these types of experiments. In addition, these results suggest that four or five 

replicates might represent a reasonable compromise between the cost of a MudPIT experiment 

and the accuracy and precision with which the underlying PLGEM parameters can be estimated 

from NSAF values. 

Use of PLGEM to detect differentially abundant proteins 

The main benefit of an error model relies in its ability to more accurately estimate data 

variability, compared to measuring it directly from the data alone (18). As a consequence, using 

model-derived rather than data-derived SD estimates has shown to significantly improve – in 

both GeneChip (20) and LC-MS proteomics data (36) – the performance of statistical methods 

designed to detect significant abundance changes between two experimental conditions of 
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interest. We therefore asked whether PLGEM could improve the identification of differentially 

abundant proteins also in NSAF datasets. 

In order to test the added value provided by the use of PLGEM in the analysis of NSAF-

based proteomics datasets, we performed a MudPIT experiment designed to detect proteins that 

show differential abundance in different yeast growth phases. Whole-cell extracts from four 

biological replicates of a yeast cell culture grown in rich medium and harvested either in log-

phase (LP) or in stationary phase (SP) were analyzed by a total of eight independent MudPIT 

runs and quantified using the NSAF approach, to search for proteins up- or down-regulated 

during the growth phase shift (Supplementary Table 3). A total of 783 proteins were consistently 

identified in at least 3 out of 4 replicates in either the LP or the SP samples. Out of these, 108 

were identified only in the SP samples and 164 only in the LP samples. These two subsets 

respectively represent proteins induced or repressed in different growth phases and are consistent 

with prior knowledge on the biology of stationary phase in yeast (data not shown, (50)). 

Although these proteins provide insights into the global changes occurring in response to this 

physiological transition, they represent only a minor fraction of the total identified proteins. In 

addition, their behavior can be modeled as an ON/OFF response and are therefore less 

challenging to detect. The identification of differential abundance among the remaining majority 

of proteins (511/783, i.e. ~65%), which were consistently identified in most of the samples, 

represents instead a much more challenging task. It is in this type of analysis that a model-based 

statistical analysis might prove its benefits. 

A standard procedure in quantitative proteomics data analysis makes use of the "fold 

change" (FC) as a measure of differential abundance of proteins across two groups of replicated 

samples. It is implicitly assumed that the higher the FC, the more the protein abundance level 
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varies between the two experimental conditions of interest. A more rigorous procedure would 

take the within-group variability into account as well, in order to tell whether the signal we are 

interested in (the difference in abundance of the protein) is higher than the noise (the background 

variability caused by a combination of biological and technical variation). In such an analysis it 

becomes important to obtain accurate estimates of the standard deviation of NSAF measurements 

across different replicates of a same experimental condition, in order not to over- or under-

estimate the background noise and thus under- or over-estimate the signal-to-noise (STN) ratio. 

We therefore tested the performance of PLGEM in providing more accurate estimates of 

standard deviation, by incorporating PLGEM-derived standard deviation into the following STN 

statistic: 

.
LPSP

LPSP

rowSDrowSD
rowMeanrowMean

rowSTN
+
−

=   [Equation 6] 

Since they were independently analyzed, two distinct sets of PLGEM parameters were fit to the 

SP NSAF dataset and the LP NSAF dataset (Supplemental Figure 1).  It has to be noted that 

although the above statistic has successfully proven to provide excellent results in the analysis of 

GeneChip data (9, 20, 34, 35, 45), it has not yet been used for the analysis of NSAF-based 

proteomics data.  

We first compared the results obtained by analyzing the above-mentioned 511 yeast 

proteins either with the simple FC method or with the STN statistic incorporating classical data-

derived estimates of standard deviation (Standard-STN). The FC statistic was implemented here 

as the log ratio of the average NSAF value in the SP samples over the average NSAF value in the 

LP samples. The 511 proteins were ranked based on the absolute value of either of the two 

statistics and the top 100 with the most extreme values selected as the most significantly 

changing (Supplementary Table 5). Whereas the FC method was biased towards detection of the 
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most lowly abundant proteins, because these are the ones expected to vary most, the Standard-

STN method selected several proteins with very little fold changes and missed other proteins 

with very high fold changes (Figure 6). Among the proteins with low FC values that were 

nonetheless selected by the Standard-STN method, some were identified with extremely small 

spectral counts like the transcriptional elongation protein Spt6, identified by 0, 1, 2 and 3 spectra 

in the four LP replicates and by 2, 3, 3 and 3 spectra in the SP samples (Figure 6). Proteins with 

very small spectral counts have been ranked among the 100 most differentially abundant ones by 

Standard-STN only because they happened to have reproducibly small NSAF values, but due to 

the variability of such low spectral counts they should likely be regarded as false positives. 

Among the proteins with large changes that were not ranked among the most significant ones 

using the Standard-STN method, many are well known to be down-regulated during a shift from 

LP to SP in yeast and should therefore be regarded as false negatives. An example of such a 

protein is the ribosomal protein Rpl8a, identified by 5, 11, 20 and 76 spectra in the LP samples 

and by 0, 2, 3 and 6 spectra in the SP samples (Figure 6).  The most likely cause, for which these 

proteins were missed by the Standard-STN method, was their relatively high standard deviations. 

We next analyzed the same dataset using STN ratios incorporating PLGEM-based 

estimates of standard deviation (PLGEM-STN). In contrast to the FC and Standard-STN 

methods, the PLGEM-STN statistic was more stringent in calling a significant hit among 

proteins with low average NSAF value and was less stringent for proteins with high abundance 

values (Figure 6). As a consequence, none of the proteins ranked by PLGEM-STN among the 

100 most significantly changing proteins had reproducibly different but very low total spectral 

counts in both conditions, like Spt6p, which was instead selected by the Standard-STN method 

(Figure 6). On the other hand, none of the proteins that showed a large negative FC during the 
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shift from LP to SP, like Rpl8a, were missed by PLGEM-STN, although many of them were 

missed by Standard-STN (Figure 6). These results demonstrate that incorporation of PLGEM 

into an STN-based ranking analysis of a NSAF-processed MudPIT dataset naturally selects for 

proteins with changes in abundance between samples that intuitively makes more sense 

compared to the use of FC or Standard-STN. 

Ranking of proteomics hits based on some significance criterion is a common procedure 

to prioritize the follow-up of candidate proteins potentially involved in the biological 

phenomenon under investigation.  We therefore tested the biological significance of the proteins 

identified with the FC, the Standard-STN or the PLGEM-STN method. To this end, significant 

enrichment of Gene Ontology (GO) annotation terms or Swissprot keywords among the top-

ranking 100 proteins was evaluated. We submitted the three different lists of 100 Refseq IDs 

corresponding to the proteins selected by each method to the FatiGO+ website 

(http://babelomics.bioinfo.cipf.es/fatigoplus/cgi-bin/fatigoplus.cgi) (51), to test whether any 

functional annotation terms were significantly over-represented in the query list in comparison to 

the background list of 411 non-selected proteins. This website provides p-values from a Fisher's 

exact test, adjusted for multiple testing by an FDR-based method. Whereas no statistically 

significant hits were returned for the 100 proteins with the highest FC values or the highest 

Standard-STN values, FatiGO+ detected a significant enrichment of GO Biological Process 

annotation terms 'biosynthetic process' (FDR-adjusted p-value = 2.3x10-3), 'cellular biosynthetic 

process' (FDR-adjusted p-value = 2.1x10-3), 'macromolecule biosynthetic process' (FDR-adjusted 

p-value = 3.7x10-4) and 'translation' (FDR-adjusted p-value = 5.7x10-4) and for the SwissProt 

keyword 'ribosomal protein' (FDR-adjusted p-value = 2.6x10-6) among the 100 proteins with the 

highest PLGEM-STN values. It has to be noted that from a biological perspective the shift from 
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LP to SP is well known in yeast to be accompanied by a progressive slow down of the whole 

biosynthetic machinery and especially of translation (52), and only by using PLGEM in this 

analysis did we capture this information. 

 
Discussion 
 

The major findings of the present study can be summarized in the following way: i) From 

a statistical point of view, NSAF datasets are more similar to GeneChip data than previously 

anticipated; ii) The variability of NSAF values can be accurately modeled by a PLGEM; iii) 

PLGEM-based methods can be used to identify differentially abundant proteins in NSAF 

datasets. The most important implications of these results are discussed below. 

Similarities between NSAF and GeneChip data 

Here, we have provided evidence that NSAF datasets share with GeneChip data 

substantial statistical similarities. Not only the dynamic range and the distribution of values were 

qualitatively very similar between the two technologies, but also – and perhaps more importantly 

– these two types of data have proven to obey the same global error model with surprisingly 

similar parameters (see next section for a more detailed discussion of the latter point). These 

similarities offer the exciting opportunity to take advantage of the multitude of statistical tools 

that have been designed to specifically deal with open issues in microarray data analysis and to 

test whether they perform as well in proteomics data analysis. There is for instance a wealth of 

literature, algorithms and software that has been devoted to solve microarray data analysis 

problems related to missing values (53-55), multiple testing (56, 57), variance-versus-mean 

dependence (20, 29, 30), etc. We foresee that most of these issues will be recapitulated also in 

shotgun proteomics data. Therefore, if these microarray-specific tools were directly applicable to 

the analysis of proteomics data, this would represent a significant shortcut in the advancement of 
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proteomics research. Other authors already successfully applied specific microarray tools in the 

analysis of proteomics data (25), without providing a more general demonstration of the 

underlying assumption that proteomics data are substantially similar to transcriptomics data. The 

substantial similarities shown here between NSAF data and GeneChip data, suggest instead that 

most GeneChip-specific statistical tools should be applicable to the analysis of NSAF datasets as 

well. 

PLGEM as an error model for shotgun proteomics 

The most important similarity between NSAF and GeneChip datasets was that, not only 

both types of datasets obeyed a PLGEM, but the most critical parameter of the model, i.e. the 

power coefficient k, was surprisingly conserved. The fact that this parameter was always inside 

the critical range 0 < k < 1 for more than 100 distinct GeneChip datasets from 5 distinct species 

as well as for four NSAF datasets, three from yeast and one from human samples, indicates that 

this global error model might really be a general model of GeneChip and NSAF data, regardless 

of the specific nature of the analyzed samples. The main consequence of such a model with such 

constraints would be that transcript or protein abundance levels of more highly expressed genes 

would be intrinsically more stable than those of more lowly expressed genes. This observation 

raises the question about the reason of this skew.  A possible explanation for this is that cells 

might have skewed their gene expression control system, by concentrating their efforts in more 

precisely controlling the expression of genes with a potentially higher impact on cellular 

functions, rather than dissipating energy in controlling the expression of genes the products of 

which would be expressed at low levels anyway. What argues against this explanation is that it 

assumes a direct relationship between the expression level of a gene and the biological impact of 
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the encoded protein, which might not always be the case. Investigation of the real reason behind 

this peculiar phenomenon goes well beyond the scope of the present work. 

It has to be noted that there is nothing radically distinct about PLGEM as compared to 

previously proposed error models for these types of measurements. In fact, PLGEM could be 

seen as a generalization of these models. For instance, two-component error models have been 

previously proposed for atomic absorption spectroscopy (58), GC-MS (58), LC-MS (36) or 

microarray data (29). These models assume a constant rowSD for very low abundances and a 

constant rowCV for higher abundances. A constant rowCV model would in fact be able to 

explain an increase of the rowSD as the function of the rowMean, but would not account for the 

progressive decay of rowCV that we have observed in both GeneChip data (20) and NSAF data 

(Figure 2) for increasingly higher values of the rowMean. PLGEM, conversely, by not assuming 

any particular value of the power coefficient k, relies on more relaxed assumptions. Notably, a 

PLGEM with k ≈ 1 would result in an approximately constant rowCV model. Thus, a PLGEM 

with k ≈ 1, would be difficult to distinguish from a ‘constant-CV’ model, especially if the 

analyzed dynamic range was not sufficiently large. The wide dynamic range of abundance levels 

that can be measured with NSAF and the GeneChip technology, instead, allows a clear 

distinction between these two models. The fact that we have observed here the power coefficient 

k to be in the range 0.7-0.8 for most analyzed GeneChip and NSAF datasets (Figure 4), might 

therefore explain why in the past the ‘constant-CV’ assumption has been often taken for granted. 

Identification of differentially abundant proteins 

The unbiased sampling nature of shotgun proteomics approaches theoretically allows to 

detect virtually any protein in a sample regardless of its concentration, provided that the 

experiment is replicated a sufficiently large number of times (23). However, these extremely 
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lowly abundant proteins pose numerous challenges in their statistical analysis, because of the 

presence of several zero values and the intrinsically low reproducibility described above. In order 

to increase the confidence of downstream statistical analyses, it is therefore common practice to 

discard proteins identified only in a minority of the analyzed replicates of a MudPIT experiment 

or transcripts flagged as ‘Absent’ in the majority of replicates in a GeneChip experiment. But in 

a comparative analysis, where significant differences between two experimental conditions are 

sought after, a transcript or a protein that passed the above criteria in one experimental condition 

but was virtually absent in the other condition, would represent a valuable candidate for follow-

up studies. Statistical methods able to deal with these lowly abundant transcripts or proteins and 

to detect a significant difference between a virtual absence and a modest presence will certainly 

expand the coverage by which we can interpret the outcomes of these experiments. 

We have shown here that PLGEM fits equally well over the whole dynamic range of 

average NSAF values, even to proteins identified in a minor fraction of all available replicates, 

i.e. 3/8 in case of the Yeast dataset and 3/9 in case of the Mediator dataset. In addition, we have 

observed that PLGEM fitted equally well also on NSAF datasets where ~50% of the proteins 

were identified in only one or two replicates (data not shown). This suggests that PLGEM has 

the potential to improve our ability to cope with these lowly abundant proteins, because it 

provides a reasonable estimate of the expected standard deviation in spite of the presence of only 

a small number of non-zero NSAF values. 

The performance of a PLGEM-based method for the analysis of GeneChip experiments 

has already been thoroughly investigated and compared to the behavior of other commonly used 

statistical methods (20). In the present work, we have shown that the use of PLGEM-based 

standard deviations to calculate STN ratios in an NSAF dataset improves our ability to determine 
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protein expression changes between yeast sampled at LP and SP (Figure 6 and Supplementary 

Table 3). While determining which proteins were present in one growth condition and absent in 

another is relatively straightforward, determining changes in abundance of proteins found in both 

LP and SP is challenging.  The PLGEM-STN statistic outperformed both FC and Standard-STN 

by being more conservative with proteins of low abundance than proteins with high abundance.  

In conclusion, we envision a broad range of applications of PLGEM in the analysis of NSAF 

data. PLGEM might assist in prioritizing the follow-up analysis of candidate proteins that show 

significant abundance changes between any two samples of interest, i.e. in the comparison of a 

wild-type vs. a knock-out cell line, a diseased vs. a normal tissue, or a treated vs. an untreated 

patient. 
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Figure Legends 

Figure 1. NSAF and GeneChip data have similar distribution properties. 

(A-C) The rowMean value was calculated for each transcript or protein in the indicated 

dataset and subsequently transformed to its base-10 logarithm. The black line in each plot 

represents the density distribution of all log10(rowMean) values in the corresponding dataset. The 

blue lines in each plot represent the density distribution of log10(rowMean) values of transcripts 

or proteins that were detected with a specific number of ‘Absent calls’ (in case of the GeneChip 

dataset) or zero values (in case of the NSAF datasets). The color intensity of the blue lines was 

chosen from a gradual color palette to reflect the actual number of ‘Absent’ or zero values, 

according the color bar depicted at the bottom of the figure. (D-F) The rowSD value for each 

transcript or protein was measured across all available replicates in the indicated dataset and 

subsequently transformed to its base-10 logarithm. The density distributions of the log10(rowSD) 

values were plotted according the same color-coding scheme described for the upper panels. (A) 

and (D) represent mouse GeneChip data, (B) and (E) represent yeast NSAF data, and (C) and (F) 

represent Mediator NSAF data. 

Figure 2. NSAF and GeneChip datasets have a similar variance-versus-mean dependence. 

(A-C) The rowMean and the rowSD of the abundance values for each transcript or 

protein were measured across all available replicates in the indicated dataset and subsequently 

transformed to their corresponding base-10 logarithms. Scatter-plots of log10(rowSD) vs. 

log10(rowMean) were color-coded according to the same scheme described in the legend of 

Figure 1. (D-F) The rowCV of each transcript or protein was measured as the ratio between the 

rowSD and the rowMean in the indicated dataset, and subsequently transformed to its 
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corresponding base-10 logarithm. Scatter-plots of log10(rowCV) vs. log10(rowMean) were color-

coded according to the same scheme described in the legend of Figure 1. Note that a linear 

relationship in a log-log space is mathematically equivalent to a power law relationship in a 

linear-linear space. (A) and (D) represent mouse GeneChip data, (B) and (E) represent yeast 

NSAF data, and (C) and (F) represent Mediator NSAF data. 

Figure 3. PLGEM fits equally well on NSAF and GeneChip datasets. 

(A-D) Contour-plots of ln(rowCV) vs. ln(rowMean) scatter-plots of the indicated datasets 

were drawn, to visualize regions with a higher (orange contours), a medium (green contours) or a 

lower density of points (light blue contours). The modeling points used to fit a PLGEM were 

superimposed on the corresponding contour-plots as black circles. Red lines represent the 

PLGEM fitted to the indicated dataset. (E-H) For each transcript or protein in the indicated 

dataset a residual was calculated as the difference between the measured ln(rowSD) value and 

the ln(rowSD) value predicted by PLGEM. Residuals were then plotted as a function of the rank 

of the rowMean value and visualized as contour-plots, following the same color-code described 

for the upper panels. (I-L) The distribution of the residuals in the indicated dataset was plotted as 

a histogram of counts in equally-sized bins. (M-P) The similarity between the distribution of 

residuals and a standard Normal distribution was visualized as a quantile-quantile (Q-Q) plot. 

(A), (E), (I), and (M) represent a simulated dataset, (B), (F), (J), and (N) represent mouse 

GeneChip data, (C), (G), (K), and (O) represent yeast NSAF data, and (D), (H), (L), and (P) 

represent Mediator NSAF data. The simulated dataset contained 10 columns and 1000 rows. The 

1000 rowMean values of the simulated dataset were randomly drawn from a log-Normal 

distribution with ln(μ) = 0 and ln(σ) = 0.25. The rowSD values of each row were then forced to 

obey a PLGEM with k = 0.75, c = −1 and ε randomly drawn from a Normal distribution with μ = 
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0 and σ = 0.25. The 10 values in each row were finally randomly generated from a Normal 

distribution with μ = rowMean and σ = rowSD. 

Figure 4. NSAF and GeneChip datasets have similar PLGEM parameters. 

PLGEM was fitted on 101 publicly available GeneChip datasets, four relevant fitting 

parameters were recorded and density distributions were plotted for each of these parameters. 

(A) Pearson’s correlation coefficients were calculated between all available ln(rowSD) values 

and the corresponding ln(rowMean) values. (B) Adjusted r2 values were calculated between the 

fitted PLGEM and the modeling points. Also shown are slopes (C) and intercepts (D) of the 

fitted model. Superimposed on the density plots are the actual values of the same four 

parameters, as obtained from the Mouse GeneChip (blue circles), the Yeast NSAF (red squares) 

and the Mediator NSAF datasets (green diamonds). 

Figure 5. PLGEM parameters are reasonably stable to decreasing number of replicates. 

A series of simulations was performed to test the effect of randomly removing one or 

more replicates from the indicated dataset. A total of 100 random deletions were performed for 

each indicated number of retained replicates (x-axis label). Matrix rows associated only with 

zero values after the column removal step were discarded before fitting a PLGEM. For each 

generated dataset a Pearson’s correlation coefficient (A), an adjusted r2 value (B), a PLGEM 

slope (C) and a PLGEM intercept (D) were recorded. Circles and error bars respectively 

represent means and standard deviations of the indicated PLGEM parameters obtained from the 

corresponding 100 simulated datasets. 

 

Figure 6. Identification of differentially abundant proteins in the Yeast Growth Phase NSAF 

dataset.  The 511 proteins consistently identified in both the log-phase (LP) and the stationary 
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phase (SP) samples in at least 3 out of 4 biological replicates of the Yeast Growth Phase NSAF 

dataset (grey dots) were plotted in the space defined by the base-2 logarithm of the ratio of the 

average NSAF value of the protein in the SP samples over the average NSAF value in the LP 

samples (y-axis) and the base-10 logarithm of the average NSAF value of the protein in the LP 

samples (x-axis). Highlighted in the same plot are the 100 proteins with the most extreme fold 

changes (small red circles), with the 100 most extreme STN ratios (medium-sized goldenrod 

circles) or with the 100 most extreme PLGEM-STN ratios (large blue circles). The red dashed 

lines delineate the boundaries separating the 100 proteins with the largest fold changes from the 

other 411 proteins, while the blue dashed lines separate the 100 proteins with the highest 

PLGEM-STN ratios from the remaining 411 proteins.  The data points for Spt6 and Rpl8a are 

highlighted and described in the Results section. 
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Tables 

Table 1. Basic descriptive statistics of the datasets analyzed in the present study. 

Descriptive statistic 

Mouse 

GeneChip 

Yeast    

NSAF 

Mediator 

NSAF 

Number of rows 12488 845 295 

Number of columns 11 8 9 

Total number of data-points 137368 6760 2655 

Zero values (%) 0.02 29.1 34.61 

Absent calls (%) 50.13 NA NA 

Dynamic range of values (OOM) 4.68 3.82 3.6 

Dynamic range of rowMean values (OOM) 4.16 3.69 3.32 

Dynamic range of rowSD values (OOM) 3.72 3.34 3.07 

 

A summary of basic statistical properties is reported for the GeneChip and the NSAF 

datasets analyzed in the present study. In NSAF datasets, zero values were introduced in place of 

missing values. In GeneChip datasets, ‘Absent calls’ are reported by the microarray scanning 

software for those transcripts that are considered as not reliably detected. Dynamic ranges were 

calculated as the base-10 logarithm of the ratio between the 99.95-th percentile and the 0.05-th 

percentile, after removing the zero values. NA = not applicable. OOM = orders of magnitude. 
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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