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Abstract. The small length scales of the dissipative processes of physical
viscosity and heat conduction are typically not resolved in the numerical simu-

lation of high Reynolds number flows in the discrete geometry of computational

grids. Historically, the simulations of flows with shocks and/or turbulence have
relied on solving the Euler equations with dissipative regularization. In this

paper, we begin by reviewing the regularization strategies used in shock wave
calculations in both a Lagrangian and an Eulerian framework. We exhibit the

essential similarities with Large Eddy Simulation models of turbulence, namely

that almost all of these depend on the square of the size of the computational
cell. In our principal result, we justify that dependence by deriving the evo-

lution equations for a finite–sized volume of fluid. Those evolution equations,

termed finite scale Navier–Stokes (FSNS), contain dissipative terms similar to
the artificial viscosity first proposed by von Neumann and Richtmyer. We

describe the properties of FSNS, provide a physical interpretation of the dis-

sipative terms and show the connection to recent concepts in fluid dynamics,
including inviscid dissipation and bi-velocity hydrodynamics.

1. Introduction.
“It is wrong to think that the task of physics is to find out how nature is.
Physics concerns what we can say about nature.” Niels Bohr [48]

“It was a wondrous alternative reality governed solely by the eternal laws of
pure mathematics, unsullied by the crass realities of the world around us.”
Amir Alexander [1]

The Euler equations, expressing the conservation of mass, momentum and energy,
are the predominant model for numerical simulations of high Reynolds number
flows. There are mathematical issues concerning the existence and uniqueness of
solutions of those partial differential equations (PDEs). It is our purpose in this
paper to show that those issues can be bypassed when the equation are posed
in their more fundamental form as integral equations over discrete (e.g., finite)
volumes. Our development is strongly focused on numerical methods, reflecting
the fact that most interesting fluid flow problems can only be solved by computer
simulation and that much experience has been gained in ensuring solutions that are

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Conservation laws, regularized Euler, finite scale.
∗ Corresponding author: L. G. Margolin.

187

http://dx.doi.org/10.3934/jgm.2019010


188 LEN G. MARGOLIN AND ROY S. BATY

stable and convergent. However, our principal result is an augmented set of PDEs
(as opposed to discrete equations) that describe the evolution of finite volumes of
fluids. Thus in our title we emphasize discrete geometry as opposed to discrete
solutions.

The study of nonlinear hyperbolic conservation laws is both sophisticated and
difficult in the sense of rigorous mathematics. In particular, much attention has been
focused on the compressible Euler equations which express the physical principles
of conservation of mass, momentum and energy. There is a practical reason for that
interest, namely that numerical simulations of compressible fluid flows almost always
solve the Euler equations which must, however, be regularized to yield physical
solutions. It is the form and the magnitude of the regularization that is of practical
importance.

From a physical point of view, the conservation laws are formulated in integral
form. Then it is the derivation of partial differential equations (PDEs) from the
integral form that engenders most of the mathematical difficulties. It is ironic that
modern numerical methods for solving compressible fluid flows, and in particular
those high Reynolds number flows that feature shocks and/or turbulence, are based
on finite volume (FV) methods [34] which also solve the conservation laws in integral
form. In other words, the discrete variables in a FV method are the volume–
averaged fields as opposed to the field variables evaluated at a point within the
computational cell.

It is not our purpose in this paper either to contribute or to criticize the math-
ematical approaches for regularizing the Euler equations. Rather we wish to show
how this step may be effectively avoided for the purpose of developing model equa-
tions for numerical simulations of high Reynolds number fluid dynamics. Our strat-
egy can be summarized as answering the following question:

If every point of a volume obeys the Navier–Stokes equations, what equations
do the volume averages of those solutions obey?

The difficulty in executing this strategy is the nonlinearity of the Navier–Stokes
equations, which appears in the advective terms as well as the work term. The
issue is that integration and multiplication do not commute, i.e., the average of the
product is not the product of the averages. However, those commutation relations
have been derived [41, 42]. Using the commutation relations allows us to transform
the integral relations for point quantities into PDEs for the volume–averaged quan-
tities. We term those PDEs finite scale Navier–Stokes (FSNS) equations, which are
presented in section 4, eqs. (14)–(16) and are suitable for FV simulation.

The FSNS can be interpreted as a regularized form of Navier–Stokes in which
both the form and magnitude of the regularization are predicted. The essence is
that the regularization depends on the square of the mesh size. This is completely
consistent with each of the regularizations discussed in section 3, i.e., in the artificial
viscosity used for shock simulations and in the turbulence models used for large eddy
simulation. A fuller discussion of those regularizations, describing their motivations,
their differences and their commonalities can be found in [38].

A penetrating analysis of the FSNS offered in section 5 suggests a physical expla-
nation for the source of the new dissipative terms that connects to several modern
theories of inviscid dissipation and bi–velocity hydrodynamics. That analysis will
lead to some reinterpretation of Lagrangian motion of finite sized fluid parcels.

The plan of the paper is as follows. In section 2, we will discuss the Euler
equations, the Navier–Stokes equations and their theoretical relationship in terms
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of the kinetic theory of gases. In section 3, we will progress to computer simulation,
the issues that arise when all the dynamical degrees of freedom cannot be resolved on
practical computational grids and the numerical strategies that have been developed
to deal with those issues. Section 4 contains our main results, the derivation of
the finite scale Navier–Stokes (FSNS) equations. This section also contains a brief
description of the closure theorem, which is an essential element of the derivation. In
section 5, we wlll offer an analysis of the FSNS and suggest a physical basis for new
dissipative terms that have appeared. In that section, we will also discuss several
other theoretical results and computational models that exhibit inviscid dissipation
and bi-velocity hydrodynamics. We will conclude the paper with a short summary
of our results and some remarks on the opening quotes of Bohr and Alexander.

2. Fluids in motion. The Euler equations [15] and Navier–Stokes equations [53]
were originally derived on the basis of classical mechanics and experiment. Here,
we briefly describe those two sets of evolution equations and their relationship in
the more modern context of the kinetic theory of gases [31].

2.1. Euler and Navier–Stokes equations. We start by writing the Navier–
Stokes equations in conservation form and employing internal energy rather than
temperature. In one spatial dimension, those equations are:

∂ρ

∂t
+
∂ρu

∂x
= 0, (1)

∂ρu

∂t
+
∂ρu2

∂x
= −∂(p+ P)

∂x
, (2)

∂

∂t

[
ρ

(
I +

1

2
u2

)]
+

∂

∂x

[
ρu

(
I +

1

2
u2

)]
= − ∂

∂x

(
(p+ P)u+ q

)
. (3)

Here, ρ,u, and I have their usual meanings of mass density, material velocity and
specific internal energy. The total energy E ≡ I + 1

2u
2. The momentum flux is the

sum of the thermodynamic pressure p plus the viscous stress P:

p = (γ − 1)ρI ; P = −µ
(
∂u

∂x

)
(4)

where γ is the ratio of specific heats and µ is the longitudinal viscosity coefficient.
The heat flux q is given by Fourier’s law written in terms of the internal energy
rather than the temperature,

q = −κ∂I
∂x

, (5)

where κ is the coefficient of heat transport. Note that the only length scale in the
Navier–Stokes equations is contained in the transport coefficients µ and κ; that
length scale is the molecular mean free path `. Both transport coefficients are
dimensionally proportional to ρc` where c is the speed of sound. ` is typically much
smaller than the length scales of practical problems. In contrast, by direct numerical
simulations (DNS) of turbulence or shocks, one implies computer simulations in
which ` is well resolved by the computational mesh.

We also define the specific thermodynamic (equilibrium) entropy

S = S0 + cv ln
(
pρ−γ

)
(6)
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where cv is the specific heat at constant volume. S0 is a reference entropy as
the entropy is only defined within an additive constant. The balance equation for
entropy, in local form and written for open systems, is

∂ρS
∂t

+
∂ρuS
∂x

+ cv
∂

∂x

( q
I

)
= Γ (7)

where the third term on the LHS is the entropy flux [44] and Γ is the dissipation
function [54]. The second law of thermodynamics dictates that the dissipation
function is nonnegative, Γ ≥ 0, which then leads to the form known as the Clausius–
Duhem inequality

∂ρS
∂t

+
∂ρuS
∂x

+ cv
∂

∂x

( q
I

)
≥ 0 . (8)

Here we have assumed that there are no internal sources of energy production. The
thermodynamic entropy of eq. (6) satisfies the Clausius–Duhem inequality in all
Navier–Stokes simulations, i.e., in the evolution of nonequilibrium systems [54].

The Euler equations result1 from setting the transport coefficients to zero, i.e.,
µ = κ = 0. Then, the case of the Euler equations, the heat flux q and the dissi-
pation function Γ both vanish. Thus for the Euler equations, the Clausius–Duhem
inequality becomes an equality:

∂ρS
∂t

+
∂ρuS
∂x

= 0 . (9)

However, we note that this last equation also depends on the smoothness of the
solutions of the Euler equations. In [16], Drivas and Eyink quantify sufficiently
smooth in terms of Besov regularity. Their principal result states that solutions
that are not sufficiently smooth will exhibit anomalous dissipation2 and nonnegative
entropy production.

Those comments strike at the heart of this paper. From the mathematical point
of view [13], the strong solutions of the Euler equations even from well–posed ini-
tial conditions will form discontinuities (shocks) and subsequently will exist only
in the sense of weak solutions (i.e., generalized functions). However, those weak
solutions are not unique and some “entropy” principle must be invoked to identify
the physically relevant solution. It is the convergence of that limiting process (as
the transport coefficients vanish) that leads to the mathematical difficulties alluded
to in the introduction. It is our purpose to show how this limiting process can be
avoided for the purpose of finding entropy stable numerical algorithms for finite
volume schemes.

2.2. Kinetic theory. In kinetic theory, the Euler and the Navier–Stokes equations
represent different orders of approximation in the Chapman–Enskog hierarchy [31]
of perturbation approximations of the Boltzmann equation. The Euler equations
represent the lowest–order approximation in which the velocity probability distri-
bution (PDF) is the equilibrium Maxwell–Boetzmann distribution. The next order
of perturbation, formally in terms of the Knudsen number [31], yields the (com-
pressible) Navier–Stokes equations which have proven to be an accurate model for
studying most fluid flows since their inception [53]. Navier–Stokes has also proved
a useful model for numerical simulation, but with the notable exception of high

1 Historically, the Euler equations preceded Navier–Stokes by nearly 90 years.
2 i.e., in the limit of vanishing viscosity, there still is a residual dissipation even though the

limit equations conserve total energy.
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Reynolds numbers flows in which shocks typically appear. In this paper, we will be
principally concerned with those high Reynolds number flows.

The Knudsen number is defined as a ratio of length scales, Kn = `/L, where ` is
the molecular mean free path and L is a macroscopic length scale characterizing a
problem. Thus Kn is a microscopic analog of the Reynolds number that indicates
when a continuum approximation is appropriate. However even in strong shocks,
one finds Kn ≤ 1/3. Experimentally measured shock widths are always more than
three mean free paths wide, see e.g., Fig. 10 in [51]. On this basis, one might expect
the Navier–Stokes equations to do a good job predicting shock structure and fur-
ther expect that higher–order Chapman–Enskog approximations, e.g., the Burnett
equations, will improve the prediction. In fact, neither expectation is correct; the
Navier–Stokes equations fail to predict either the width or the shape of the shock
profile as measured experimentally and use of the Burnett equations does not im-
prove that lack of agreement. Specifically, the failure of Navier–Stokes equations to
describe measured shock profiles was first predicted theoretically by Becker [3] and
verified experimentally by Schmidt [51] and Alsmeyer [2] among many others. The
critical issue is the additional assumption of local thermodynamic equilibrium upon
which both the Euler and the Navier–Stokes equations are based. The further re-
sults of simulations based on the Burnett equations are discussed in [18]. A careful
study of shock structure, and associated entropy issues can be found in [39].

3. Regularization.

3.1. Why Euler? The Reynolds number estimates the ratio of two length scales,
the large scales of advective processes to the smaller scales of dissipation. Rep-
resentative Reynolds numbers in such diverse fields as weather prediction and as-
trophysics easily reach and exceed 106; thus it is not possible to fully resolve that
range of scales on computers of today. Since achievable resolutions will not resolve
the scales of dissipation, one is effectively solving the Euler equations even when
the Navier–Stokes equations are programmed. Fortunately, in most cases it is only
the larger scales of the flow that are of interest. Then the details of the dissipative
processes can be ignored, although some form of dissipation must be added to the
Euler equations to ensure a stable and convergent numerical solution. This is what
is meant by regularization.

As described in the previous section, the strong solutions of the Euler equations
even from well–posed initial conditions form discontinuities (shocks) and subse-
quently exist only in the sense of weak solutions (i.e., generalized functions). The
issue is that those weak solutions are not unique, and a so-called entropy principle
must be invoked to identify the unique physical solution. One such entropy principle
is based on the method of vanishing viscosity [5] in which an infinitesimal amount
of physical viscosity is added to the Euler equations and the physical solution is
identified as the unique limit of a convergent series of solutions as the viscosity van-
ishes. An extension of the ideas of weak convergence is the subject of compensated
compactness [14].

Unfortunately, as there are no infinitesimals in numerical methods, the ideas
vanishing viscosity cannot be applied directly to numerical algorithms. In the next
subsection, we will summarize two widely used approaches to regularizing the Eu-
ler equations for numerical simulation. We will carefully distinguish between the
model equations and the discretized equations. With artificial viscosity [56], the
model equations are augmented by an explicit dissipation. Artificial viscosity is
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still the main methodology for regularizing shocks in the Lagrangian framework.
In nonoscillatory finite volume (NFV) methods, the Euler equations are the model
equations and dissipation is introduced implicitly through the approximation of the
advective terms. NFV methods are the consensus choice for high Reynolds number
simulations in the Eulerian framework.

3.2. Discrete regularization.
“It is frequently desirable to solve the equations of fluid motion by stepwise
numerical procedures, but the work is usually severely complicated by the
presence of shocks.” von Neumann & Richtmyer [56]
“Just because we cannot prove that compressible flows with prescribed
initial values exist doesn’t mean that we cannot compute them.” Peter
Lax [32]

The earliest applications of computer simulation reflected the interests of com-
putational fluid dynamics (CFD) pioneer John von Neumann. The physical regimes
of weather prediction and of nuclear weapons simulation may appear very far apart,
but both are examples of high Reynolds number flows. The earliest shock calcu-
lations were Lagrangian, meaning that the cells of the computational grid moved
with the local fluid velocity. It was quickly discovered that it is not sufficient to
solve the discretized Navier–Stokes equations in those calculations. The velocity
gradients estimated on grids with cells much larger than the width of the physical
shock do not produce sufficient dissipation of the kinetic energy; then it is observed
that unphysical oscillations of the velocity field build up behind a shock leading
ultimately to numerical instability and possibly calculation failure.

In 1950, von Neumann and Richtmyer described a conceptually simple solution
for dealing with unresolved shocks; in [56] they proposed to add an artificial dissi-
pation, now termed artificial viscosity, to broaden the shock to the width of several
computational cells. Although the artificial viscosity is often introduced as a nu-
merical artifice, see e.g., [9], the artificial viscosity has some physical justification.
It is noted in [56] that the shock speed and jump conditions do not depend on
magnitude of the viscosity. It is only the detailed shape of the shock profile that
varies.

The form of the von Neumann–Richtmyer artificial viscosity in 1D Lagrangian
simulations is [57]

Q ≡ c2ρ
∣∣∣∣dudx

∣∣∣∣2 ∆x2 (10)

where ρ is mass density, u is material velocity, c2 is a dimensionless constant and ∆x
is the size (length) of a computational cell. Q is added to pressure in the (discrete)
momentum and energy equations. The dependence on the square of the velocity
gradient and the square of the cell size is noteworthy and is not justified in [56].
Note that the FSNS momentum equation (15) derived in section 4 predicts both
the form and the magnitude of the artificial viscosity. Artificial viscosity methods
remain the principal Lagrangian methodology for flows with shocks.

Lagrangian codes3 are not conducive to simulations of turbulent flows due to
large distortions of the Lagrangian grid; simulations of turbulent flows are mainly
performed in the Eulerian framework where the computational grid remains fixed in
space and fluid can move from cell to cell. Similar to the experience with shock cal-
culations, the earliest weather simulations exhibited unphysical oscillations. Joseph

3Numerical programs are often referred to as codes in the CFD community.
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Smagorinsky developed a three–dimensional version of the von Neumann–Richtmyer
artificial viscosity to control those oscillations, giving rise to the first large eddy sim-
ulation (LES) subgrid scale model [50]. The development of subgrid scale models
continues to be an area of active research, but the fundamental dependence on the
square of the velocity gradient persists [49].

The earliest applications of Eulerian codes to shock flows also used artificial
viscosity, but were considered inferior to the Lagrangian codes due to excessive
smearing of the shock profiles. That situation changed dramatically with the inno-
vation of nonoscillatory finite volume (NFV), beginning with FCT [6] in 1973 and
rapidly followed by high-order Godunov, [55] , TVD [26] and MPDATA [52]. Today
there is a virtual alphabet soup of NFV methods. The basic idea of NFV is to
preserve monotonicity in the numerical solution. This is accomplished by mixing
low–order and high–order approximations for the advective terms with the mixing
coefficient depending on the local flow. NFV methods use the Euler equations as
their model equations and gain dissipation implicitly through their approximation
of the advective terms. This is in contrast to the artificial viscosity methods, which
add dissipation explicitly in the model equations.

The success of NFV methods in representing shock flows led Jay Boris to spec-
ulate that his FCT methods might also prove effective as an implicit subgrid scale
model for turbulent flows [47]. This idea, now termed implicit large eddy simulation
(ILES), was initially strongly opposed by the traditional turbulence community. Al-
though the quality of results produced by ILES simulations using many different
NFV algorithms speaks for itself, the turbulence community required a theory to
justify the technique. Such a rationale for ILES was provided in a paper by Mar-
golin and Rider [41]. That paper is based in part on a modified equation analysis4

(MEA) of MPDATA [52], one of the NFV scheme schemes that has successfully
reproduced many experimental results and computational benchmarks of the LES
community. In [41] it is shown that that MPDATA implicitly contains the artificial
viscosity of eq. (10). The same authors extended that result to include many other
NFV schemes in [23].

To summarize this section,

• Numerical methods for solving high Reynolds number flows solve the regular-
ized Euler equations.

• The regularization takes principally two different forms, the explicit regular-
ization of artificial viscosity methods and the implicit regularization of NFV
methods.

• In the sense of MEA, both the explicit and implicit regularizations have the
form of eq (10), being quadratic in the velocity gradient and in a finite length
scale.

However, the landmark paper of von Neumann and Richtmyer [56] does not derive
this unique form. In the next section, we will show that this “magic” term arises
naturally in the derivation of the finite scale equations that govern the motion of
finite–sized volumes of fluid. In section 5, we will offer a physical interpretation of
the source of the magic.

4 There is a one-to-one correspondence between the model equation and the discretized method
in the sense of modified equation analysis [28]. The modified equation is derived by treating the

discrete variables as if they were continuous, Taylor expanding and truncating to the lowest order
of terms containing the discretization parameters ∆x and (timestep) ∆t.
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4. Finite scale Navier–Stokes. Here we answer the question posed in the in-
troduction, “what equations govern the evolution of volume–averaged variables”.
First we will define the volume–averaged variables. Then we will briefly describe
the derivation of the closure theorem, which provides commutation relations for
switching the order of multiplication with volume averaging. Application of the
theorem then leads to the finite scale Navier–Stokes equations.

4.1. Volume averaging. The foundation of finite scale theory is the existence of
a finite length scale that is not inherently determined by the physical processes
being modeled. In the case of numerical methods, it is the computational cell
size, ∆x; however, the theory is general and is not constrained to depend on any
relation to numerical simulation. With a view toward use in developing models
for numerical simulation, we define the volume–averaged variables by integrating
over the computational cell; then, for example, the volume–averaged (macroscopic)
density in one spatial dimension (1D) is defined:

ρ̂(x) ≡ 1

∆x

∫ x+ 1
2 ∆x

x− 1
2 ∆x

ρ(x′) dx′ , (11)

where volume–averaged quantities are indicated with a hat. Further, we will use a
tilde to indicate density–averaged (Favre) variables, which will also naturally appear
in the theory; e.g., the density–averaged velocity in 1D is:

ũ(x) ≡ 1

ρ̂∆x

∫ x+ 1
2 ∆x

x− 1
2 ∆x

ρ(x′)u(x′) dx′ . (12)

We note that the both the volume–averaged quantities and the Favre averaged
quantities are smooth continuous functions.

To derive the finite scale equations, we will apply the averaging operator defined
in eq. (11) to each of the Navier–Stokes equations (1)–(4). Note in the averaging
process, nonlinear terms arise, e.g., in the advective terms, that must be resolved.
For example,

ρ̂u2 6= ρ̂ û2 .

That devolution is the subject of the following closure theorem.

4.2. Closure theorem. The compressible FSNS that are derived below follow from
the following general closure theorem, presented in 1D below, but readily extended
to three spatial dimensions and to the time domain:

Closure Theorem: for any (continuum) fields A and B that are sufficiently smooth
at small scales,

ÂB = Â B̂ +
1

3

(
∆x

2

)2

ÂxB̂x +HOT , (13)

where Ax ≡ ∂A
∂x , HOT are higher-order terms, e.g., O(∆x4), etc., and averaging

(overbars) are defined as in eq. (11).

In words, the derivation begins with the assumption that physical viscosity en-
sures that the flow field may be expanded in a convergent Taylor series at sufficiently
small length scales. In that case, the integrals of the expansion terms may be ex-
plicitly evaluated; note that by symmetry, only the terms with even powers of ∆x
survive. Equation (13) is easily verified for ∆x in this regime; see [41] for details.
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The proof proceeds with a combination of induction and renormalization for
larger values of ∆x. That is, we assume that eq. (13) holds for some large value of
∆x and prove that the same form then holds for 2∆x. It is important to recognize
that the meaning of the ‘hat’ depends on the averaging length scale, and so one
is effectively doing a change of variables in the renormalization. The invariance of
the parametric dependence of the equations is termed form invariance. Details of
the proof can be found in [41] where the time domain is considered and in [42, 23]
where multiple space dimensions are considered.

4.3. Presenting the finite scale Navier–Stokes equations. The derivation of
FSNS begins by applying the averaging operator of eq. (11) to the one–dimensional
version of the Navier–Stokes equations (1)–(3) and then commuting the order of
operations using the closure theorem (13) to resolve the nonlinear terms. We choose

the averaged density ρ̂, the averaged momentum density M̂ = ρ̂u, the averaged

total energy density Ê ≡ ρ̂E and the averaged pressure p̂ as the primary dependent
variables. Then the following intermediate form of FSNS is derived:

∂ρ̂

∂t
= − ∂

∂x

{
ρ̂ û+

1

3

(
∆x

2

)2

ρ̂xûx

}
, (14)

∂M̂
∂t

= − ∂

∂x

{
M̂ û+ p̂+

1

3

(
∆x

2

)2

M̂xûx

}
, (15)

∂Ê
∂t

= − ∂

∂x

{
Ê û+ (p̂+ P̂) ũ+ q̂ +

1

3

(
∆x

2

)2

Êxûx

}
. (16)

Note that the closure theorem indicates that terms of order ∆x4 and higher will
appear in general. The FSNS eqs. (14) – (16) represent a truncation to order ∆x2

of an infinite series of terms in even powers of the cell size. As a practical matter,
implementation of the FSNS in a FV computer program will also lead to higher–
order terms in the sense of the modified equation [28]. It is for this reason that there
are many useful formulations of NFV schemes for shock propagation and of subgrid
scale models (both LES and ILES) for turbulent flow, as described in section 3.2.

We begin an analysis of these equations by considering the continuity equa-
tion (14). The appearance of û and its derivatives cause an immediate problem
here. û cannot be a prognostic variable because we have chosen momentum as a
primary variable.

To proceed, we use the closure theorem to write to order ∆x2:

M̂ = ρ̂u ≈ ρ̂û+
1

3

(
∆x

2

)2

ρ̂xûx , (17)

and then define a momentum velocity ũ by

ũ = û+
1

3

(
∆x

2

)2
ûxρ̂x
ρ̂

=
M̂
ρ̂
. (18)

Note that ũ is just the Favre–averaged velocity, cf. eq. (12). Similarly, we define
the Favre–averaged total energy and internal energy

Ẽ ≡ Ê
ρ̂

=
ρ̂E

ρ̂
; Ĩ ≡ ρ̂I

ρ̂
(19)



196 LEN G. MARGOLIN AND ROY S. BATY

Using eq. (18), the continuity equation can be written in the more familiar form
of a conservation law:

∂ρ̂

∂t
= − ∂

∂x
(ρ̂ ũ) (20)

The revised momentum equation can be rewritten in terms of ũ as follows. From
eq. (18) we have

M̂ = ρ̂ũ (21)

so that

M̂x = ρ̂xũ+ ρ̂ũx . (22)

Also, since ũ and û differ by terms of order ∆x2, we can write the approximate
inverse of eq. (18)

û = ũ+
1

3

(
∆x

2

)2
ûxρ̂x
ρ̂
≈ ũ+

1

3

(
∆x

2

)2
ũxρ̂x
ρ̂

. (23)

Substituting for M̂ and û using eqs. (22) and (23) in eq. (15) then leads to

∂ρ̂ũ

∂t
= − ∂

∂x

{
ρ̂ ũ2 + p̂+ P̂

}
. (24)

where

P̂ ≡ 1

3

(
∆x

2

)2

ρ̂ ũ2
x − µ ρ̂ ũx . (25)

The finite scale momentum flux P̂ consists of the classical Newtonian viscosity
and a new term of order O(∆x2) that arises from the averaging of the momentum
advection.

Similarly, the energy equation can be rewritten in terms of ũ, Ẽ and Ĩ:

∂ρ̂Ẽ

∂t
= − ∂

∂x

{
ρ̂ ũẼ + (p̂+ P̂) ũ+ q̂

}
. (26)

where the finite scale heat flux

q̂ ≡ 1

3

(
∆x

2

)2

ρ̂ ũx Ĩx + (p̂u− p̂ ũ)− κ ρ̂ Ĩx . (27)

The finite scale heat flux q̂ consists of the classical Fourier heat flux and two new
terms. The first new term arises from averaging the nonlinear energy advection and
is also O(∆x2). The second new term arises from the averaging of the nonlinear
work term. In [35], it is shown to have the same form as the first term in the case of
a gamma law gas. More generally, this term will depend on the form of the equation
of state, but will also be O(∆x2).

The averaged pressure is given by

p̂ = (γ − 1)ρ̂I = (γ − 1)ρ̂(Ĩ + S) . (28)

Here, the appearance of S ≡ 1
2

(
∆x
2

)2
(ũx)2 merits further discussion. In the Navier–

Stokes equation (3), the total energy E = I + 1
2u

2 so that after the finite scale
averaging, one has

Ê = Î +
1

2
(ûu) . (29)

However, the specific volume–averaged kinetic energy is defined

K̂ ≡ 1

2
ũũ 6= 1

2
ûu . (30)
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The term S in eq. (28) represents unresolved kinetic energy. In other words, in
the finite scale equations there are three partitions of the total energy, namely the
averaged internal energy, the averaged kinetic energy and the unresolved kinetic
energy

Ẽ = Ĩ +
1

2
ũ2 +

1

2

(
∆x

2

)2

(ũx)2 (31)

A more complete derivation of these relations from kinetic theory can be found in
[37]. We note the similarity of this equation to energy measured in the Sobolev
norm which is a starting point for the LANS-alpha model [30].

5. A physical interpretation of artificial viscosity.
“Everything happens for a reason. It’s usually physics.” (George Takei)

The first term in eq. (25) in fact is Q, compare with eq. (10). It has arisen
straightforwardly in the mathematical derivation of the finite scale equations and
the recognition that finite volume algorithms are solving those finite scale equations.
However, it is now possible to provide a more physical interpretation.

5.1. Lagrangian parcels. Let us distinguish between a Lagrangian parcel, mean-
ing a finite volume of fluid whose boundaries move with velocity ũ, and a Lagrangian
point meaning a mathematical point of fluid that moves with velocity u. Integration
of eq. (20) over the fluid parcel leads to a more general notion of Lagrangian motion.
If the boundary of the parcel moves with the velocity ũ, then eq. (20) implies that
the total mass inside the volume remains constant. This does not preclude the flux
of mass across the boundary, but rather means that the surface integral of the flux
around the entire boundary vanishes. That is, the parcel exchanges mass with the
surrounding fluid, but there is no net change of mass of the parcel. However, the
flux of mass implies a concomitant flux of momentum and of energy associated with
the exchange of mass. In general, those integrals do not vanish. In other words,
the net zero exchange of mass with its neighbors will lead to a nonzero exchange of
momentum and energy. It is the artificial viscosity that accounts for that nonzero
exchange of momentum. Similarly, the artificial heat conduction of eq. (27) accounts
for the nonzero exchange of heat accounts for the nonzero exchange of energy. Such
a term has been proposed by Noh to deal with the troubling phenomenon of wall
heating [46], although it is not presently used in Lagrangian simulations.

Another inference of the nonzero mass exchange is that all fluid particles initially
within a particular parcel may eventually leave that parcel. That is, one cannot label
the parcel with any of the particles initially within the parcel. Particle exchange is
reminiscent of the particle relabeling symmetry [45].

One advantage of using FSNS rather than Navier–Stokes can be exposed in
Eulerian simulations of turbulence by estimating the effective Reynolds number.
In Navier–Stokes theory, the Reynolds number is defined [54]

Re ≡ UL
µ
,

where U is a typical velocity of the flow and L is some (often nebulous) characteristic
length scale of the flow. The Reynolds number is interpreted as a measure of the
relative importance of advective and diffusive processes in a flow; large Re indicates
diffusional instability and turbulence. However, if one identifies L with ∆x, it
becomes clear that the Reynolds number is not only a property of the flow, but
also of the discretization. Further, when considering the FSNS at scales where the
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observer is much larger than the molecular mean free path, ∆x >> `, the physical
viscosity can be neglected; then, an effective Reynolds number can be defined by

replacing µ by 1
3

(
∆x
2

)2
(Ux/∆x)

Re =
12U∆x∆x

U∆x2
= 12 (32)

Here, we have made the simplest order of magnitude estimates, e.g., Ux ∼ U/∆x.
Now since both the advective flux and the diffusive flux depend on the same length
scale, ∆x, the effective Reynolds number is no longer a ratio of length scales, but
is a constant. A critical Reynolds number for transition to turbulence, e.g., in pipe
flow, is of the order of thousands [54]. Thus, the effective Reynolds number is small
and the flow solutions of FSNS are not turbulent. This is the essence of why the
ILES methodology produces stable results without requiring any explicit subgrid
scale turbulence model. We note that the same scaling arguments apply for most
conventional LES models when the filter length is chosen proportional to ∆x.

5.2. Inviscid dissipation. The energy dissipation due to the momentum flux of
eq. (25) aligns with several results of inviscid dissipation in the classical theory of
high Reynolds number flows. From eqs. (26) and (25), the global rate of energy
dissipation by the momentum fluxes in a one-dimensional domain D is;

dED
dt

= −
∫
D

[
1

3

(
∆x

2

)2

ρ̂ ũ2
x − µρ̂ ũx

]
u dx . (33)

Integrating by parts and neglecting surface terms (work done by external forces)

dED
dt

=
1

3

(
∆x

2

)2

〈ρũ3
x〉 − µ〈ρũ2

x〉 . (34)

Here the brackets signify spatial integration over the domain. Then, in the limit
of vanishing viscosity (µ → 0) and interpreting ũx∆x ≈ ∆ũ, we have that the
inviscid energy dissipation is proportional to (∆ũ)3. This same proportionality was
derived by Kolmogorov for (incompressible) turbulent flows and is known as the
(4/5)th law, see e.g., [17]. The ability of an ILES calculation to reproduce the law
is demonstrated in [42].

The dependence of energy dissipation on (∆ũ)3 has also been noted in shocks.
Bethe [4] showed that the rate of entropy production across a shock is:

T
dS
dt
∼ (∆u)3

where T is the temperature. Recall that the change in the internal energy I is given
by the first law of thermodynamics

dI
dt

= T
dS
dt

+
p

ρ2

dρ

dt
.

Also, Frisch [17] notes a similar scaling for the dissipation of kinetic energy in the
case of shocks in a Burgers’ fluid.

Note that the inviscid energy dissipation scales with ∆x2. As the finite volume
grows, the inviscid dissipation increases as opposed to the viscous dissipation which
grows smaller, cf. section 2.2.
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5.3. Alpha models. The alpha models of Holm and many collaborators to which
we add the older regularization of Leray [33] have many similarities to FSNS. In
this collection of models designed to regularize turbulent flows, the advective terms
are modified so that the point velocity u is advected by a “smoothed” velocity û
(in our notation). The resulting equations depend on both those velocities so that
an additional constitutive law is required to relate them. In simulations using the
Leray regularization the averaging scale is taken to be order of the grid size ∆x
as in FSNS. In LANS-alpha, the averaging is done on the length scale α which is
the Lagrangian correlation length. The latter is a property of the flow whereas in
FSNS, ∆x can be chosen independent of the flow. However, one would expect to
choose the computational grid to resolve important macroscopic features of the flow
so that the two choices may not be dissimilar in practice.

Both the Leray and LANS-alpha have rigorous theoretical derivation [33, 30]
which is essentially different from our derivation of FSNS in section 4. However, all
three approaches depend on presuming a nonzero length scale over which to average,
a necessary ingredient to ensure the existence of two distinct velocity fields. Both
Leray and LANS-alpha have been successfully employed in numerical simulations,
see [19, 20, 10, 11] among many other examples. The relation between Leray and
LANS-alpha is discussed in [24]. Also, we note a recent synthesis of Leray and
LANS-alpha in [12].

5.4. Volume transport models. The volume transport model of Howard Bren-
ner [7] proceeds from yet a different direction, being based on classical mechanics
and thermodynamics rather than volume averaging. Brenner questions the asser-
tion that the velocity that appears in eq. (1) which he terms the mass velocity, vm,
is the same velocity that appears in eq. (2), which is the material velocity v. In [8],
he writes that the assumption vm = v is “a relation introduced into the foundations
of rational fluid mechanics by Euler [15] in 1755, and seemingly beyond question
ever since.” Brenner then discards the assumption of equality and shows there is
no logical contradiction in an alternative theory in which these velocities are not
equal. Brenner does not perform numerical calculations, but relies on experimental
validation that is centered in slow moving low Reynolds number flows where vari-
ations in density are primarily caused by gradients of temperature rather than of
pressure.

If, as Brenner argues in [7] vm 6= v, then a constitutive relation between the two
velocities is required, similar to the situation in the alpha models. Brenner proposes
[22] a constitutive relation which in one spatial dimension is:

v = vm + αv
1

ρ

∂ρ

∂x
, (35)

Here αv is a constant termed the “volume diffusivity”. Dimensionally, αv contains a
length scale. Although Brenner works in the context of the Navier–Stokes equations,
his theory has a nice interpretation within the FSNS. If we identify our velocity
ũ ∼ vm and û ∼ v, then eq. (17) suggests an interpretation for the volume diffusivity

αv = −1

3

(
∆x

2

)2

ũx (36)

Even though Brenner has been concerned mainly with low speed flows, his mod-
ifications would have large effect in flows with appreciable density gradients, e.g.,
shocks. As described in section 2.2, the Navier–Stokes theory does not capture the
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experimentally measured shock structure for shocks of strength Mach 2 and above.
Greenshields and Reese [22] applied Brenner’s model to simulate shock structure
and write: “While it is important not to draw strong conclusions based on just
one test case, our results are generally encouraging for the Brenner–Navier–Stokes
equations.” We add that those authors found a large sensitivity to the value of αv
which they assumed was constant.

6. Discussion. In this paper we have been primarily concerned with deriving al-
gorithms for the numerical simulation of high Reynolds number flows, e.g., flows
with shocks and/or turbulence. To summarize the discussion in section 3, cur-
rent algorithms approximate the Euler equations, regularized either by the explicit
methodology of artificial viscosity, or on the implicit methodology of nonoscilla-
tory approximation; in both cases, calculations can be made stable and convergent.
However convergent is not the same as accurate, especially when the underlying
model does not guarantee unique solutions. Such is the case for the Euler equa-
tions which are known to allow multiple (weak) solutions. The strategy then is to
regularize the equations by adding dissipation. It is the form and magnitude of
that regularization that is at issue. A recent overview of many regularization tech-
niques as applied both to the continuous Euler equations and to discrete numerical
algorithms can be found in [38].

In section 4, we have pursued an alternate strategy. Noting first that the con-
servation laws are fundamentally written in integral form and second, that most
modern numerical schemes use finite volume approximation, it seems unnecessary
(for practical purposes) to treat the equations in PDE form, i.e., not necessary to
take the limit as the integral domains shrink to a mathematical point. Instead, we
have derived the evolution equations for the averages of the field variables over finite
domains. This was accomplished by integrating the Euler equations (or the Navier–
Stokes equations) over a finite volume and then permuting the order of operations
of spatial and temporal differentiation with the volume integration.

There are subtleties in dealing with nonlinear advective terms as integration and
multiplication do not commute. Indeed, it is precisely that lack of commutativity
that gives rise to inviscid dissipation – i.e., dissipation independent of the physical
viscosity. The key to this derivation is knowing the commutation relations. We have
used a closure theorem, briefly described in section 4.2 with several references to
the detailed derivation in the literature. Application of the theorem to the Navier–
Stokes equations leads to our principal result, the finite scale Navier–Stokes (FSNS)
in section 4.3. Those commutation relations depend on the domain of the integrals
∆x, which is how that length scale enters into the FSNS.

In section 5, we provide some physical interpretation of the FSNS. The concepts of
Lagrangian motion are generalized for discrete fluid parcels (finite volumes) which
move with the Favre–averaged velocity. We show that the energy dissipated by
the inviscid flux terms is congruent with previous theoretical results of inviscid
dissipation in shocks and turbulence.

In section 5.3 we discuss similarities of FSNS to alpha models of turbulence
which also result from adding a finite length scale through spatial averaging. One
important practical difference is that the FSNS can be closed without reference
to the particle velocity u. LANS-alpha models have been tested successfully in
numerical simulations of turbulence, but have not, to our knowledge, been applied
to flows with shocks.
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In section 5.4, we discuss the volume transport model which has been developed
in the context of classical continuum theory and thermodynamics. In the underlying
theory, Howard Brenner questions an implicit assumption of Euler that the velocities
that appear separately in the mass and momentum equations of Navier–Stokes are
the same. Brenner does not explicitly introduce an additional length scale, but
needs to define a volume–diffusivity parameter to develop a constitutive relations
between his velocities. We show that his constitutive relation can be interpreted in
the sense of the FSNS relation between the average velocity and the Favre average
velocity, thus implicitly invoking the length scale ∆x.

We conclude this paper with some thoughts in the context of the quotes that open
our introduction. Amir Alexander is a mathematician and a historian. In “Duel
at Dawn” [1] he writes about the development of modern mathematics in Europe,
describing the transition from the “gèométres” of the eighteenth century (e.g., Euler,
Lagrange, D’Alambert) to the “algébristes” of the nineteenth century (e.g., Cauchy,
Galois, Abel). Where the gèométres were motivated by the problems of the real
world, the algébristes worked in the pursuit of abstraction and mathematical truth.

Physicists today debate whether nature at the finest length scales is continuous or
discrete. However, Bohr reminds us that in either case, measurements of nature are
invariably done with finite instruments and are limited by discrete scales of length
and time. It would seem that discrete equations are the more effectual language for
physics.

More specifically, the conservation laws of continuum mechanics are formulated in
terms of integral balances. So long as the integral domains remain finite, the discrete
scales appear in both the equations and in their solutions. It is only in the limiting
process that leads to the PDEs where the mathematical difficulties arise. However,
PDEs are easier to analyze. We believe that an important contribution of the finite
scale theory is to demonstrate the equivalence of the PDEs that govern the evolution
of the integral averages of the conserved field variables with the integral equations
that govern the evolution of (experimentally unmeasureable) field variables at a
point.

Los Alamos, April 2018.
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and chocolate cake, we still grow old together.
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