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A B S T R A C T

The associations between indices of brain structure and measured intelligence are unclear. This is partly because
the evidence to-date comes from mostly small and heterogeneous studies. Here, we report brain structure-in-
telligence associations on a large sample from the UK Biobank study. The overall N=29,004, with N=18,426
participants providing both brain MRI and at least one cognitive test, and a complete four-test battery with MRI
data available in a minimum N=7201, depending upon the MRI measure. Participants' age range was
44–81 years (M=63.13, SD=7.48). A general factor of intelligence (g) was derived from four varied cognitive
tests, accounting for one third of the variance in the cognitive test scores. The association between (age- and sex-
corrected) total brain volume and a latent factor of general intelligence is r=0.276, 95% C.I.= [0.252, 0.300].
A model that incorporated multiple global measures of grey and white matter macro- and microstructure ac-
counted for more than double the g variance in older participants compared to those in middle-age (13.6% and 5.
4%, respectively). There were no sex differences in the magnitude of associations between g and total brain
volume or other global aspects of brain structure. The largest brain regional correlates of g were volumes of the
insula, frontal, anterior/superior and medial temporal, posterior and paracingulate, lateral occipital cortices,
thalamic volume, and the white matter microstructure of thalamic and association fibres, and of the forceps
minor. Many of these regions exhibited unique contributions to intelligence, and showed highly stable out of
sample prediction.

1. Introduction

The association between brain volume and intelligence has been one
of the most regularly-studied—though still controversial—questions in
cognitive neuroscience research. The conclusion of multiple previous
meta-analyses is that the relation between these two quantities is po-
sitive and highly replicable, though modest (Gignac & Bates, 2017;
McDaniel, 2005; Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 2015),
yet its magnitude remains the subject of debate. The most recent meta-
analysis, which included a total sample size of 8036 participants with
measures of both brain volume and intelligence, estimated the corre-
lation at r=0.24 (Pietschnig et al., 2015). A more recent re-analysis of
the meta-analytic data, only including healthy adult samples
(N=1758), found a correlation of r=0.31 (Gignac & Bates, 2017).
Furthermore, the correlation increased as a function of intelligence
measurement quality: studies with better-quality intelligence tests—for

instance, those including multiple measures and a longer testing
time—tended to produce even higher correlations with brain volume
(up to 0.39). In a meta-analysis, issues of cross-cohort heterogeneity
might have an important bearing on the magnitude of the correlation.

Here, we report an analysis of data from a large, single sample with
high-quality MRI measurements and four diverse cognitive tests. We
use latent variable modelling to create a general intelligence (‘g’) factor
from the cognitive test and estimate its association with both total brain
volume and several more fine-grain imaging-derived indices of brain
structure. We judge that the large N, study homogeneity, and diversity
of cognitive tests relative to previous large scale analyses provides
important new evidence on the size of the brain structure-intelligence
correlation. By investigating the relations between general intelligence
and characteristics of many specific regions and subregions of the brain
in this large single sample, we substantially exceed the scope of pre-
vious meta-analytic work in this area.
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There is considerable debate about what the association between
brain size and general intelligence means. It is unclear, for example,
whether brain size is a direct proxy for neuron number (discussed in
Pietschnig et al., 2015). There is also an apparent paradox that there are
substantial sex differences in total brain volume (on the order of 1.41
standard deviations; Ritchie et al., 2018) but litte-to-no sex differences
in mean intelligence (Deary, Irwing, Der, & Bates, 2007; Johnson,
Carothers, & Deary, 2008; Lakin & Gambrell, 2014; Ritchie et al.,
2018). More recent work indicates that multiple brain properties might
be required to better explain individual differences in general in-
telligence, and some of these might be compensatory for differences in
overall brain size (Deary, Penke, & Johnson, 2010; Kievit et al., 2012;
Kievit et al., 2014; Luders et al., 2004; Ritchie et al., 2015). For ex-
ample, having a more sparsely- and better-organised dendritic arbor (as
measured by cortical neurite density and orientation dispersion) may
predict higher intelligence beyond simple measures of grey matter vo-
lume (Genç et al., 2018). Furthermore, in an older cohort with a narrow
age range (N=672), Ritchie et al. (2015) found that incorporating
multiple global, but tissue-specific, brain MRI measures (including
tissue volumes, measures of white matter microstructure, and hallmarks
of brain ageing) accounted for up to 21% of the variance in general
intelligence, which was substantially higher than could be accounted
for by total brain size alone (~12%).

Such results, combined with indications that there is regional het-
erogeneity in the magnitude of intelligence associations across both
grey and white matter (Jung & Haier, 2007; Deary et al., 2010; Basten,
Hilger, & Fiebach, 2015; Karama et al., 2011; Cox et al., 2018; Ryman
et al., 2016), extend the focus beyond a single, well-replicated proxy
(total brain volume) and toward tissue- (and region-) specific associa-
tions with general intelligence. One of the most influential accounts of
the neurobiological underpinnings of general intelligence (also known
as general cognitive ability, or “g”) has been the Parieto-Frontal In-
tegration Theory (P-FIT; Jung & Haier, 2007). The P-FIT was initially
based on a synthesis of disparate structural and functional brain ima-
ging results. However, none of the Brodmann regions implicated in
intelligence were supported by >60% of the studies reviewed, which
the authors pointed out might be considered a relatively weak con-
sensus.

The P-FIT model implicates the following regions as being asso-
ciated with intelligence differences: the lateral frontal, superior tem-
poral, medial temporal, parietal and extrastriate (lateral occipital) re-
gions, along with the white matter tracts that connect them. Specific
reference was originally made to the arcuate fasciculus; this pathway is
variously described as being just adjacent to the superior longitudinal
fasciculus, or as one of the components thereof (Dick & Tremblay, 2012;
Kamali, Flanders, Brody, Hunter, & Hasan, 2014). Together, these form
a ‘dorsal stream’ of anterior-posterior cortical connectivity. Alongside
other fibres such as the inferior longitudinal, inferior fronto-occipital,
uncinate, and cingulum fasciculi, these ‘association’ fibres—along with
the genu of the corpus callosum (forceps minor)—facilitate connectivity
across the distal cortical regions highlighted by the P-FIT model. The
model has generally received support from subsequent work (Deary
et al., 2010; Basten et al., 2015; Karama et al., 2011; Cox et al., 2018;
Ryman et al., 2016).

As with the meta-analyses on brain volume and intelligence de-
scribed above (Gignac & Bates, 2017; Pietschnig et al., 2015), the broad
heterogeneity of studies on the P-FIT might produce a less precise
picture of the brain basis of cognitive abilities. Further evaluation of the
model would greatly benefit from large-sample research that in-
vestigates the grey and white matter components of this putative in-
telligence framework, together in the same analysis. We conduct that
analysis in the present study.

We capitalize on data from the UK Biobank study, a large-scale
biomedical study of health and wellbeing, which includes brain MRI
and various measures of cognitive ability. The UK Biobank participants
have completed various cognitive measures; originally, they were

administered a battery of bespoke tests with relatively poor reliability
(Lyall et al., 2016). Using an earlier data release (Ritchie et al., 2018),
we previously estimated the correlation between brain size and one of
those tests, “Fluid Intelligence” (which we refer to as Verbal-Numerical
Reasoning) to be r=0.177. We found that the correlation did not differ
by sex. Another study using an earlier release of UK Biobank imaging
data examined the association between Verbal-Numerical Reasoning
and brain size, reporting a correlation of r=0.19 (N=13,608; Nave,
Jung, Linnér, Kable, & Koellinger, 2019). In addition, analyses of re-
gional white and 10 grey matter measures have been reported with
respect to Verbal-Numerical Reasoning in an earlier UK Biobank re-
lease; however, the authors of that study cited several reasons to doubt
that this test, in isolation, is a valid indicator of fluid cognitive ability
(Kievit, Fuhrmann, Borgeest, Simpson-Kent, & Henson, 2018; see also
Hagenaars et al., 2016).

In this pre-registered study, we use a newer subset of UK Biobank
participants who have completed an enhanced cognitive assessment
battery at their brain imaging assessment. The overlap of the complete
cognitive battery and the various MRI measures ranges from N=8165
to 7318 following exclusions that are described below. Their data have
only recently been released, and have not previously been analysed by
our team. The enhanced cognitive battery includes three new measures
based on standardised cognitive tests: Symbol-Digit Substitution,
Matrix Reasoning, and Trail-Making. These three tests, combined with
the previous Verbal-Numerical Reasoning measure, allows the estima-
tion of brain imaging associations with a latent factor of general in-
telligence (g), that arguably gives coverage of the cognitive domains of
reasoning, processing speed, working memory, and executive function.
In a large sample size, the current study design thus: results in a better-
quality cognitive measure than was previously possible in the UK
Biobank data; mitigates variability in the administration and mea-
surement of cognitive and brain imaging constructs (potentially al-
lowing for stronger brain-intelligence correlations; Gignac & Bates,
2017); and, given the detailed brain imaging measures available, fa-
cilitates a detailed estimate of the global and regional brain correlates
of latent general intelligence.

Our analyses followed a preregistered protocol and 4 hypotheses
(https://osf.io/w7evd/). First, we tested whether the four cognitive
tests were correlated moderately-highly (r>0.40), and formed a latent
general factor that explains 40% or higher of the variance across tests.
Next, we examined the association between this cognitive factor and
total brain volume, and we hypothesised that there would be no sig-
nificant sex difference in the size of the brain-cognitive correlation for
any of the models. We then hypothesised that different global measures
of grey and white matter would each account for significant unique
variance in g. We then aimed to test associations between general in-
telligence and brain grey and white matter regional measures, hy-
pothesising that the strongest associations would concur with regions
implicated by the Parieto-Frontal Integration Theory of intelligence (P-
FIT; Jung & Haier, 2007).

2. Methods

The UK Biobank study is a large-scale biomedical study of the de-
terminants of the diseases of middle and older age, which includes brain
MRI and measures of cognitive function (Sudlow et al., 2015). Cogni-
tive tests and brain imaging data were acquired on the same assessment
day. The tests used here were administered at the UK Biobank brain
imaging assessment. The imaging assessment took place at 3 different
assessment centres. The majority were in Manchester, with more recent
appointments now also taking place in Newcastle, and most recently in
Reading. Cognitive tests were administered to participants working
independently on a touchscreen computer with no tester observing.
MRI data was acquired using the same hardware and software. The
current data release from UK Biobank initially included 30,316 parti-
cipants who attended the scanning appointment, i.e. they had a record

S.R. Cox, et al. Intelligence 76 (2019) 101376

2

https://osf.io/w7evd/


for age at scanning. Following exclusions, the total N=29,004. The
minimal N with complete cognitive-MRI overlap was N=7318; further
information is provided in Statistical Analysis, Table 1 and Figs. 1 and
S1. UK Biobank Field IDs are listed in Table S1. Most of them had scores
for the Verbal-Numerical Reasoning test (always administered at the
MRI appointment). Many fewer had the more recently-introduced
cognitive tests (Matrix Pattern Completion, Symbol-Digit and Trail
Making Test Part B). Missing MRI data was due to the lag between MRI
acquisition and its subsequent processing for release by the UK Biobank.
The UK Biobank study was conducted under generic approval from the
NHS National Research Ethics Service (approval letter dated 17th June
2011, ref. 11/NW/0382), under approved project 10279.All data and
materials are available via UK Biobank (http://www.ukbiobank.ac.uk).

2.1. Cognitive tests

The four cognitive tests used in the current study were: Matrix
Reasoning, Symbol-Digit Substitution, Verbal-Numerical Reasoning,
and Trail-Making Test. Specifically, for the Trail-Making Test, we used
part B, since this test includes both elements of speed and executive
functioning (Salthouse, 2011).

2.1.1. Matrix pattern completion
The UK Biobank Matrix Reasoning test is an adapted version of the

Matrices test in the COGNITO battery (Ritchie et al., 2014). This test of
non-verbal fluid reasoning requires participants to inspect a grid pat-
tern with a piece missing in the lower right-hand corner and select
which of the multiple choice options at the bottom of the screen com-
pletes the pattern both horizontally and vertically. This 15-item test
assesses participants' ability to problem solve using novel and abstract
materials. The score is the number of correctly answered questions in
three minutes.

2.1.2. Symbol-digit substitution
Symbol-Digit Substitution was used as a measure of processing speed.

It is similar in format to the Symbol Digit Modalities Test (Smith, 1991),
which is a well-validated measure of processing speed. At the top of the
screen, participants were shown a key pairing shapes with numbers.
Beneath the key were rows of shapes with an empty box under each
shape. Using the key, participants had 60 s to enter the number in the
empty boxes that are paired with the shapes. Participants were in-
structed to work as quickly and as accurately as possible. The score is
the number of correct symbol-digit matches made in 60 s.

2.1.3. Verbal-numerical reasoning (VNR)
Referred to as 'Fluid Intelligence' in UK Biobank, this test of verbal

and numerical reasoning required participants to answer 13 multiple-
choice questions assessing verbal (e.g., “Bud is to flower as child is to?”
Possible answers: Grow/Develop/Improve/Adult/Old) and numerical
(e.g. “150…137…125…114…104… What comes next?” Possible an-
swers: 96/95/94/93/92) abilities. Each question appeared at the top of
computer screen, and 3–5 possible answers were provided underneath.
Participants were to select which of the answers they thought was
correct, or select “Do not know”, or “Prefer not to answer”. The score is
the number of questions answered correctly in 2min.

2.1.4. Trail-making test part B
This test is a computerised version of the Halstead-Reitan Trail-

Making Test (Reitan & Wolfson, 1985). It is often said to be an as-
sessment of executive function. Though not considered a classical test of
intelligence, Trails B performance is genetically and phenotypically
strongly related to general intelligence as well as the cognitive domain
of processing speed (Hagenaars, Cox, Hill, Davies, & Liewald, 2018;
MacPherson et al., 2017; MacPherson, Allerhand, Cox, & Deary, 2019;
Salthouse, 2011). In part B, participants were presented with the
numbers 1–13, and the letters A-L arranged quasi-randomly on a
computer screen. The participants were instructed to switch between

Table 1
Participant characteristics split out by assessment centre, and for the full sample.

Manchester Reading Newcastle Full Sample

M(SD)a N M(SD) N M(SD) N M(SD) N

Age (years) 62.818 (7.484) 22,037 65.202 (7.299) 866 63.962 (7.379) 6101 63.130 (7.480) 29,004
Sex (F:M) 11,315: 10,722 22,037 453: 413 866 3256: 2845 6101 15,024: 13,980 29,004
Matrix Reasoning 8.047 (2.113) 8994 8.277 (2.045) 850 7.904 (2.124) 5671 8.007 (2.115) 15,515
Symbol-Digit 19.212 (5.255) 9019 18.753 (5.152) 858 18.714 (5.235) 5681 19.005 (5.247) 15,558
VNR 6.778 (2.070) 20,455 6.800 (2.058) 860 6.466 (2.001) 5668 6.713 (2.061) 26,983
TMTba 496 (236) 9103 512 (230) 866 503(236) 5710 499 (235) 15,679
TBV 1,170,062 (110900) 17,223 – 0 1,154,425 (110376) 3104 1,167,674 (110960) 20,327
GM 618,392 (55474) 17,226 – 0 611,240 (54923) 3104 617,300 (55448) 20,330
NAWM 547,110 (61736) 16,146 – 0 537,269 (61090) 3062 545,541 (61737) 19,208
WMH a 2500 (3641) 16,146 – 0 3290(4506) 3062 2622 (3816) 19,208
gFA 0.025 (0.824) 15,448 – 0 −0.131 (0.834) 2989 0.00 (0.827) 18,437
gMD 0.022 (0.918) 15,448 – 0 −0.113 (0.907) 2989 0.00 (0.918) 18,437

Note.Means and standard deviations (SD) reported, except for amedian and interquartile ranges are given. VNR: verbal numerical reasoning, TMTb: Trail Making Test
Part b, TBV: total brain volume, GM: grey matter volume, NAWM: normal-appearing white matter volume, WMH: white matter hyperintensity volume, gFA: general
factor of white matter fractional anisotropy, gMD: general factor of white matter mean diffusivity.

Fig. 1. Indicative overlap between initial cognitive measures in the imaging
visit (VNR; verbal numerical reasoning), MRI measures, and the Enhanced
Cognitive Battery (Matrix Reasoning, Symbol-Digit and Trail-Making Part B)
among the 29,004 participants included in the current analysis. For ease of
illustration, the MRI numbers are based on grey matter volume (highest N
among global MRI measures), and the Enhanced Battery numbers are based
upon Trail Making Part B (highest N among the Enhanced Battery). A total of
18,426 have MRI and at least one cognitive test. There are slight variations in
missingness among Enhanced Battery and MRI measures (see Table 1).
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touching the numbers in sequential order, and the letters in alphabe-
tical order (e.g., 1-A-2-B-3-C) as quickly as possible. In this compu-
terised version, when the participant touches the correct number or
letter, the number or letter is highlighted and a line appears connecting
the correct answer to the previously pressed response. Each time the
participant pushes an incorrect number or letter, the number or letter
flashes red to indicate to the participant a mistake has been made. The
participant must select the correct number or letter in the sequence to
move on. UK Biobank records both the time taken and the number of
errors made to complete part B. In this analysis, we do not examine
errors because few participants made errors. The median number of
errors was 0. The time taken to complete part B accounts for errors as
making errors will increase the amount of time taken to complete the
task. The score used here is the time (in deci-seconds) taken to suc-
cessfully complete the test. Those with a score coded as 0 (denoting
“Trail not completed”) had their score set to missing.

2.2. Brain imaging acquisition and analysis

All brain MRI data were acquired on a Siemens Skyra 3 T scanner
with a standard Siemens 32-channel head coil, in accordance with the
open-access protocol (http://www.fmrib.ox.ac.uk/ukbiobank/
protocol/V4_23092014.pdf), documentation (http://biobank.ctsu.ox.
ac.uk/crystal/docs/brain_mri.pdf), and publication (Alfaro-Almagro
et al., 2018). T1-weighted MPRAGE data was acquired in the sagittal
plane at 1mm isotropic resolution; the T2-weighted FLAIR acquisition
at 1.05×1×1mm resolution, was also acquired in the sagittal plane.
The diffusion MRI (dMRI) data was acquired using a spin-echo echo-
planar sequence with 10 T2-weighted (b≈0 smm2) baseline volumes,
50 b=1000 smm−2 and 50 b=2000 smm−2 diffusion-weighted vo-
lumes, with 100 distinct diffusion-encoding directions and 2mm iso-
tropic voxels. We used global and regional brain Imaging Derived
Phenotypes (IDPs) provided by the UK Biobank brain imaging team:
total brain volume (TBV, which is the sum of grey and white matter and
excludes cerebrospinal fluid), grey matter volume (GM), and white
matter volume (WM) from FSL FAST (Zhang, Brady, & Smith, 2001), 14
subcortical volumes using FSL FIRST (Patenaude, Smith, Kennedy, &
Jenkinson, 2011) and white matter hyperintensity volume (WMH)
using BIANCA (Griffanti et al., 2016), which uses both T1-weighted and
T2-weighted volumes. We estimated normal-appearing white matter
volume (NAWM) as the difference between total WM and WMH. Re-
gional brain information was also available as UK Biobank IDPs in the
form of tract-averaged fractional anisotropy and mean diffusivity for
each of 27 white matter tracts using AutoPtx (de Groot et al., 2013),
and as individual grey matter cortical segmentations according to the
Harvard-Oxford Atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).
The T1-W volume was non-linearly warped to MNI152 space using
FNIRT; the Harvard-Oxford cortical atlas is also defined in MNI152
space, and the previously-estimated warp field is inverted and applied
to the ROIs to derive a version of the ROIs in native space for masking
on the FAST grey matter segmentation. These white matter tracts and
cortical regions are shown in Fig. 2. Head positioning coordinates were
derived from the NIFTI imaging data: X and Z head positioning co-
ordinates used the Center of Gravity of the brain mask, which was
converted into real-world coordinates using the qform matrix of the
image. The Y coordinate was obtained by linearly registering the brain
mask to a reference brain mask and taking the smallest Y coordinate.

2.3. Statistical analyses

All individuals who reported any of the neurological or neurode-
generative health conditions listed in Supplementary Material (Table
S1) were removed prior to analysis. Outliers (+/-4SDs) were removed
from brain and cognitive measures. This was <1% of data for all
variables; full numbers for each cognitive and MRI measure are pro-
vided as Supplementary Data. All participants were of White European

ancestry. Of an initial 30,316 UK Biobank participants who had a re-
cord of age at attending the imaging assessment, 29,004 provided data
on at least one of the primary variables of interest (global brain imaging
or cognitive) following exclusions, and 18,426 had at least one cogni-
tive test and MRI data. All structural equation modelling (SEM) ana-
lyses were conducted using Full Information Maximum Likelihood
(FIML) estimation within R, using the lavaan package for SEM (Rosseel,
2012). FIML takes advantage of all available data, including data from
participants who are missing data on some of the dependent variables.
We provide information on the number of participants with complete
data for illustrative purposes in the Results section. Throughout, unless
explicitly stated, indicators were corrected for age and sex, with the
MRI variables also corrected for scanner head positioning confounds
(see Section 2.2; X, Y and Z coordinates provided by the UK Biobank
team: UKB IDs: 25756, 25,757, 25,758). Specifically, we do not correct
variables for age when running multi-group models where age is al-
ready the grouping term (Sections 2.3.4 and 3.4), and we do not correct
variables for sex when sex is the grouping term (Sections 2.3.3 and 3.5).
In contrast to our pre-registration, covariates were applied to manifest
variables within SEMs (i.e. we did not need to residualise data outside
the model to enable model convergence and fit). Model fits were as-
sessed with a chi-squared test, the Comparative Fit Index (CFI), the
Tucker-Lewis Index (TLI), the Root Mean Square Error of Approxima-
tion (RMSEA), and the Standardised Root Mean Square Residual
(SRMR).

2.3.1. Estimating a latent general factor of general intelligence, ‘g’
We performed a confirmatory factor analysis (CFA) of the 4 cogni-

tive tests: Symbol-Digit Substitution, Matrix Reasoning, Trail-Making
Test Part B, and Verbal-Numerical Reasoning. We hypothesised that the
four tests would correlate moderately-highly (with intercorrelations of
r>0.40), and would form a single latent general factor explaining
~40% of the variance across the 4 tests, with good fit to the data (CFI
and TLI> 0.95, SRMR and RMSEA <0.05). We ran a version without,
and then with age and sex correction at the manifest level. Since
principal components analyses (PCAs) are commonly also used in in-
telligence research (e.g. Nave et al., 2019), but do not separate common
and test-specific variance, we also provide a PCA estimate of g (tests not
corrected for age and sex) using the first unrotated principal compo-
nent, for comparison with the CFA.

2.3.2. Associations between general intelligence (g) and global brain MRI
measures

Next, we estimated the association of the latent general intelligence
factor (‘g’) with total brain volume, and then 6 global measures of grey
and white matter: grey matter, normal-appearing white matter and
white matter hyperintensity volumes (TBV, GM, NAWM, WMH), and
general factors of fractional anisotropy and mean diffusivity (gFA and
gMD). The general factors of white matter microstructure were formed
from diffusion indices for white matter pathways of interest, which
were extracted from confirmatory factor analysis, as previously de-
scribed (Cox et al., 2016). We tested each individual brain-g association,
i.e. we fitted a separate SEM for each brain MRI measure. We then fitted
a single SEM in which all indicators contributed to g variance; a so-
called Multiple Indicators Multiple Causes (MIMIC; Muthén, 1989)
model. We excluded TBV from this, to avoid model fit and theoretical
part-whole issues. Significant correlated residual paths among the
imaging variables estimated from modification indices were included.
False-Discovery Rate (FDR; Benjamini & Hochberg, 1995) correction of
the p-values (implemented using the p.adjust function in R) was applied
across the six bivariate associations of interest, and then across each of
the path estimates in the multivariate SEM. Manifest variables were
corrected as described above.

We then conducted an additional—non-pre-registered—analysis, to
investigate whether the substantially lower proportion of g variance
accounted for by multiple global MRI measures in this sample, when
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Fig. 2. Brain imaging regions of interest according to the Harvard-Oxford Atlas (top: cortical regions) and AutoPtx (bottom: white matter tracts; adapated from
Cox et al., 2019).
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compared to our prior work in an older cohort (Ritchie et al., 2015),
was due to moderating effects of age. We split the sample by age into
groups with equal-sized cognitive-MRI overlap (middle age
N=10,164; older age N=10,166) to ensure no imbalance in statistical
power (above and below age 63.29 years). Initially, we tested for
measurement invariance of g between the two age groups. Specifically,
we were interested in weak factorial invariance (equal factor loadings)
rather than strong (equal loadings and intercepts; as defined by
Widaman, Ferrer, & Conger, 2010), given the expected difference in
cognitive performance between middle and older participants. We did
this by comparing two multi-group SEMs; in the first, the cognitive test
loadings on g were freely estimated, whereas in the second they were
constrained to be equal in the middle and older-aged groups. We used a
chi-squared test, the Akaike Information Criterion (AIC), and the
sample-adjusted Bayesian Information Criterion (saBIC), and an addi-
tional check of factor congruence (coefficient of factor congruence;
Lorenzo-Seva & ten Berge, 2006) using the ‘psych’ package, to test
whether there was a difference between these sub-models. Congruence
coefficients index the similarity between factor solutions; a congruence
coefficient >0.90 indicates an extremely high level of similarity of the
factor solutions. Next, we used a different set of two multi-group models
to test whether the associations between g and the MRI measures dif-
fered as a function of age. In the first, the g-brain associations were
freely estimated, and in the second, they were constrained to be equal
between the two age groups. All measures were corrected for sex, and
the MRI measures were also corrected for MRI head position. The group
g loadings were set to equality. We ran this test for both a single g-TBV
association, and then where multiple global MRI measures (GM,
NAWM, WMH, gFA, gMD) predicted g. Differences between the two
multi-group SEMs were assessed with a chi-squared test, the AIC, and
the saBIC.

2.3.3. Sex differences in g-brain MRI associations
We then investigated sex differences in the size of the brain-cogni-

tive associations. Before doing so, we tested for measurement in-
variance between the sexes by creating a multi-group SEM including
just the cognitive tests, with sex as the grouping variable, and tested for
strong measurement invariance (as defined by Widaman et al., 2010). If
strong measurement invariance was found (i.e., the model with strong
invariance does not fit significantly more poorly, by a chi-squared test,
the AIC, and the saBIC, than one where factor loadings and intercepts
are freely-estimated), we aimed to test a set of models where the brain-
cognitive associations was fixed to equality across the two sub-models
grouped by sex, and one where it was freely-estimated. We used a chi-
squared test, the AIC, and the saBIC to test whether there was a dif-
ference between these sub-models (thus indicating that there is a sex
difference). For these analyses, the variables were adjusted for all the
above-mentioned covariates except sex (because this was the grouping
variable).

2.3.4. Associations between g and regional brain MRI measures
Finally, we examined associations between g and regional brain

measures: i) the fractional anisotropy and mean diffusivity in 27 white
matter pathways, ii) cortical volumes of 48 regions according to the
Harvard-Oxford cortical atlas segmentations, and iii) 14 subcortical
volumes (bilateral nucleus accumbens, amygdala, caudate, hippo-
campus, pallidum, putamen, thalamus). We applied FDR correction
within each family of tests: across all 96 cortical tests, and separately
across the 27 tests of WM tracts for FA, and then for MD, and across all
14 subcortical tests. We hypothesised that the associations between
general intelligence and brain volumes across the cortex would be
consistent with the Parieto-Frontal Integration Theory (P-FIT; Jung &
Haier, 2007), and be strongest in lateral frontal, superior parietal and
temporal regions. Likewise, we hypothesised that thalamic and asso-
ciation fibres, plus forceps minor will show the statistically largest as-
sociations with general intelligence. The additional use of subcortical

volumes was an addition to our pre-registered plan; subcortical struc-
ture did not figure largely in the P-FIT (Jung & Haier, 2007), though
more recent work has reported associations between intelligence and
overall subcortical volume (Ritchie et al., 2015), caudate (Basten et al.,
2015; Grazioplene et al., 2015; Rhein et al., 2014), hippocampal
(Valdés Hernández et al., 2017) and thalamic volume (Bohlken et al.,
2014).

2.3.5. Out-of-sample prediction
Following peer review, we also included a series of analyses in

which we tested the ability to predict g from multivariate brain struc-
tural parameters. To do this, we treated the larger Manchester sample
as a training set, and the Newcastle sample as the test set. We did this
separately for cortical volumes, FA in white matter tracts, MD in white
matter tracts, and subcortical volumes. Training was performed by in-
itially fitting a MIMIC SEM in which multiple brain MRI measures
predicted g (covariates were age and sex for all manifest variables, and
also head coordinates for all manifest imaging variables). Modification
indices were consulted to identify residual correlations among MRI
indicators until model fit was within our pre-registered criteria. We did
not apply regularised regression methods here, given recent evidence
that this approach does not outperform standard SEM methods in
MIMIC models using larger samples (Jacobucci, Brandmaier, & Kievit,
2019). Given the highly similar left/right bivariate associations with g
in our foregoing analyses, averages of left and right were computed for
white matter, cortical and subcortical regions in the interests of model
parsimony. We then created weighted a composite score in the test data
(and also in the training data, for comparison), according to the beta
weights observed in the training sample, and ran a new MIMIC SEM
(fixing g loadings and the residual correlation across samples). Stan-
dardised associations between the weighted composite MRI score and g
were then compared between training and test samples. Finally, in re-
sponse to peer review, we conducted a supplementary analysis to as-
certain the degree to which the associations between regional volu-
metric measures (cortical and subcortical volumes) and g were
independent of total brain volume. We did this in two different ways:
first, by adjusting each ROI in the training MIMIC model for TBV, from
which the beta weights were then estimated and applied into the test
set, and second by using the beta weights from the initial MIMIC models
(i.e. uncorrected for TBV), and then including total brain volume as a
covariate in the regression between g and the composite weighted
scores.

3. Results

3.1. Estimating a latent general factor of general intelligence, ‘g’

Participant characteristics are shown in Table 1. The cognitive tests
were all correlated with medium effect sizes according to Cohen (1992):
the Pearson's r range was |0.300 to 0.405|. A first principal component
(without age and sex correction) accounted for 55% of the variance,
with loadings ranging from |0.71 to 0.80| (Table S2). The confirmatory
factor analysis, which was informed by N=27,100 (complete cognitive
data on N=15,029), in which each indicator was not corrected for age
and sex, had two fit indices (TLI and RMSEA) outside our pre-registered
criteria (CFI= 0.973, TLI= 0.918, RMSEA=0.078, SRMR=0.024).
Modification indices suggested the addition of a residual correlation
between Verbal-Numerical Reasoning and Matrix Reasoning
(r=0.170), following which model fit was above our pre-registered
threshold across all fit indices (CFI= 0.995, TLI= 0.969,
RMSEA=0.048, SRMR=0.010). The general factor of cognitive
ability accounted for 40% of the cognitive test score variance (stan-
dardised loadings were Matrix Reasoning= 0.550, Symbol-
Digit= 0.626, Verbal-Numerical Reasoning=0.532, Trail-Making part
B=−0.794). When we corrected each cognitive test within the SEM
for age and sex, keeping the abovementioned residual correlation, the
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model fit the data well (CFI= 0.998, TLI= 0.978, RMSEA=0.030,
SRMR=0.004). The general factor of cognitive ability accounted for
32% of the cognitive test score variance (standardised loadings were
Matrix Reasoning= 0.505, Symbol-Digit= 0.479, Verbal-Numerical
Reasoning= 0.592, Trail-Making part B=−0.666).

3.2. Associations between general intelligence (g) and brain MRI measures

Results between g and global brain MRI measures are shown in
Table 2 and Fig. 3. SEM fit statistics are reported in Table S3, and re-
sidual correlations among the global brain tissue measures from the
MIMIC model are reported in Table S4. In all models, the cognitive and
MRI indicators were adjusted for age and sex, and the MRI indicators
also adjusted for head positioning confounds. The latent factor of
general intelligence was associated with TBV at β=0.276, p< .001.
This model estimate was informed by N=18,426 (complete data
N=8092). Associations with GM (β=0.281) and NAWM (β=0.246)
were significantly larger than the other three tissue-specific measures
(i.e., WMH, gFA, gMD; p for comparisons <0.001). The associations of g
with white matter hyperintensities, gFA, and gMD were β=−0.106,
0.090 and−0.066, respectively.

In a multivariate SEM (MIMIC model; complete cases= 7494), we
found that all MRI measures (GM, NAWM, WMH, gFA, gMD) accounted

for 6.16% of the variance in g. The unique contributions to this variance
were largest for grey matter volume (β=0.201) with equivalent con-
tributions of NAWM and WMH volumes (β=0.102 and β=−0.097,
respectively). Neither measure of white matter microstructure made
significant unique contributions beyond this, following FDR correction
(gFA β=−0.003, p= .865; and gMD β=−0.037, p= .049).

Ritchie et al. (2015) previously reported that the total variance in g
explained by multiple MRI markers in an older cohort (all aged ap-
proximately 73 years) was 18–21%. To determine whether the differ-
ence between that estimate and the one reported here may be attribu-
table to differences in the age range of the samples, we conducted a
post-hoc supplementary test of differences in the proportion of variance
explained by age. Initially, we tested whether g exhibited weak mea-
surement invariance across the two age groups. Both models had ex-
cellent fit to the data, and were highly similar: saBIC indicated that
weak invariance was preferred, contradicting the AIC results and the
small but significant difference detected by the chi-squared test
(Δχ2(3)= 27.617, p≤.001, ΔAIC=22, ΔsaBIC=−6.32). Comparing
the magnitude and rank order of the freely estimated factor loadings
between middle-aged (MR=0.506, SDS=0.539, VNR=0.614,
TMTb=−0.719) and older (MR=0.522, SDS= 0.492, VNR=0.569,
TMTb=−0.701) participants also suggested that g exhibited weak
factorial invariance between groups (coefficient of factor con-
gruence=1.00).

We then investigated whether the proportion of g variance ac-
counted for by MRI measures was substantially greater in older than
middle-aged participants. Results are shown in Table 3. A model with
unconstrained g-MRI associations fitted the data significantly better
than when the associations were constrained to equality between age
groups (Δχ2(7)= 183. 22, p≤.001, ΔAIC=169, ΔsaBIC= 134). In
the model in which g-MRI associations were allowed to differ by age
group, GM, NAWM, WMH, gFA and gMD together explained a total of
5.4% of the variance in g among the middle aged group, compared to
13.6% in older age. g-brain association magnitudes were all stronger in
older age for GM (0.159 versus 0.298), WMH (−0.092 versus −0.132),
gFA (0.051 versus −0.096) and gMD (0.012 versus −0.131); the one
exception was NAWM volume (which showed stronger g associations in
middle than older age; 0.134 versus 0.054). Moreover, we did not ob-
serve this significant age difference in variance explained in g by TBV
alone, or by each individual MRI measure in isolation (all p-values for
chi-squared tests were non-significant following FDR correction, with

Table 2
Associations between g and global MRI measures across the whole sample.

Model Individual Simultaneous

Std. Est. SE p Std. Est. SE p

TBV 0.276 0.019 <0.001 – –
GM 0.281 0.020 <0.001 0.201 0.019 <0.001
NAWM 0.246 0.013 <0.001 0.102 0.020 <0.001
WMH −0.106 0.013 <0.001 −0.097 0.013 <0.001
gFA 0.090 0.018 <0.001 −0.003 0.018 0.865
gMD −0.066 0.012 <0.001 −0.037 0.019 0.049

Note. Standardised estimates (Std. Est.) and standard errors (SE) reported. TBV:
total brain volume, GM: grey matter volume, NAWM: normal-appearing white
matter volume, WMH: white matter hyperintensity volume, gFA: general factor
of white matter fractional anisotropy, gMD: general factor of white matter mean
diffusivity. Manifest variables are corrected for age and sex; brain measures also
corrected for head positioning confounds.

Fig. 3. Associations between global brain MRI measures and g. Panel a) shows associations with total brain volume, and panel b) shows tissue-specific brain MRI
measures accounting for 6.54% of the variance in g. Standardised estimates are reported; grey dashed paths are non-significant. Indicators are all corrected for age,
sex, with imaging data also corrected for scanner head position coordinates. MRI residual correlations are shown in Table S4.
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the exception of GM and WMH, which was more strongly associated
with g in the older group. (GM: 0.276 versus 0.328; Δχ2(1)= 10.827,
p< .001; WMH: −0.115 versus −0.165; Δχ2(1)= 6.262, p= .012).

In summary, whereas the individual associations between brain
measures and intelligence were of relatively similar magnitudes in
middle and older age, when entered together they explained more than
double the variance in g in older age. Inspection of the age differences
in the correlational structure among these imaging markers (Fig. S2)
indicated that the source of increased variance explained is not likely to
be attributable to their diverging collinearity (i.e. they overlap less in
older age, and thus convey more unique information), given that the
only notable differences were in associations between WMH and both
gFA and gMD, which were stronger in older than younger age.

3.3. Sex differences in g-brain MRI associations

Before testing for sex differences in the size of the associations be-
tween g and brain MRI measures, we tested for measurement invariance
between the sexes. We found that the model of strong factorial in-
variance of g did not fit more poorly than the model in which factor
loadings and intercepts were freely-estimated (ΔAIC=0,
ΔsaBIC=−31, Δχ2 (6)= 11.821, p= .066). These results are reported
in Table S5. We then tested for sex differences in the magnitude of
associations between g and MRI measures. We did so by comparing two
group models; one in which the brain-g association is fixed to equality
between sexes, and the other in which it is freely estimated. We found
that there were no significant sex differences in the magnitude of the
association between g and total brain volume (females β=0.260, males
β=0.214 when freely estimated; both β=0.276 when constrained to
be equal) or for any global brain MRI measure (all p≥ .117) except for
NAWM (p= .008, standardised estimate for females= 0.236,
males= 0.177), which remained significant following FDR correction.

3.4. Associations between g and white matter microstructure

SEMs testing associations between g and the FA and MD of each
white matter tract fitted the data well (all CFI≥ 0.995, TLI≥ 0.987,
RMSEA ≤0.015, SRMR ≤0.009); results are shown in Fig. 4, and Ta-
bles S6 and S7. Associations with g were in the expected direction, such
that higher g was related to higher FA and lower MD. Only a few
pathways had non-significant associations with g (FA and MD in the left
acoustic radiation, FA in the middle cerebellar peduncle, and MD in the
right parahippocampal cingulum, Forceps Major, and bilateral medial
lemniscus). The effect sizes were not homogeneous across tracts (FA
range= 0.012 to 0.110; MD range=−0.100 to 0.007). Consistent

with our hypothesis, the magnitude of associations with g were nu-
merically largest within thalamic pathways (FA mean= 0.078, MD
mean=−0.091), and in association fibres and Forceps Minor (FA
mean=0.062, MD mean=−0.049) than within projection fibres and
Forceps Major (FA mean=0.039, MD mean=0.027).1 However, it is
also notable that both aspects of the cingulum bundle showed among
the weakest g relationship among association fibres, and that more
generally there was a considerable amount of overlap between these
classes of tract (for example, the right corticospinal tract MD was as-
sociated with g at levels comparable with most association fibres).

3.5. Associations between g and cortical regions

Associations between g and cortical regional volumes were all po-
sitive and all significant following FDR correction. The results are re-
ported in Fig. 5 and in Table S8; all models fitted the data well
(CFI≥ 0.995, TLI≥ 0.985, RMSEA ≤0.018, SRMR ≤0.010). As with
the white matter analyses above, there was regional heterogeneity in
association magnitudes across the cortical surface. Substantial portions
of the frontal lobe (frontal pole, frontal orbital, subcallosal) were
among the numerically largest associations, bilaterally (range= 0.166
to 0.216), and these were significantly larger than other frontal regions
(p< .001). Associations between the insula cortex and g (left= 0.194,
right= 0.205) were also large compared to the average magnitude
across all ROIs (M=0.116, SD=0.036). Notably, the temporal lobe
(range=0.152 to 0.062) exhibited a gradient of anterior > posterior
for both lateral and medial portions, and the lateral surface also showed
evidence of a superior > inferior gradient. Compared to the above-
mentioned frontal, anterior temporal and insula volumes, parietal re-
gions were consistently and significantly more weakly associated with g
(range=0.066 to 0.100, p< .001). With the exception of the lingual,
precuneus, and lateral occipital cortex (range=0.110 to 0.156), occi-
pital volumes were among the most weakly associated with g
(range=0.065 to 0.093).

3.6. Associations between g and subcortical volumes

As with the cortical analyses, subcortical volumes were all positively
associated with g, and all were significant following FDR correction.
The results are reported in Table S9. All models fitted the data well
(CFI≥ 0.994, TLI≥ 0.983, RMSEA ≤0.018, SRMR ≤0.011), and

Table 3
Individual and unique contributions to g from global MRI measures across middle and older age groups.

Model Middle (≤ 63.29 yrs) Older (> 63.29 yrs)

Individual Simultaneous Individual Simultaneous

Std. Est. p Std. Est. p Std. Est. p Std. Est. p
TBV 0.287 <0.001 – – 0.308 <0.001 – –
R2 0.082 – – 0.095 – –

GM 0.276a <0.001 0.159 <0.001 0.328a <0.001 0.298 <0.001
NAWM 0.257 <0.001 0.134 <0.001 0.268 <0.001 0.054 <0.001
WMH −0.115a <0.001 −0.092 <0.001 −0.165a <0.001 −0.132 0.007
gFA 0.113 <0.001 0.051 0.029 0.108 <0.001 −0.096 <0.001
gMD −0.065 0.012 0.628 −0.126 −0.131 <0.001
R2 0.054 0.136

Note. Std. Est: standardised estimate. Groups split at 63.29 years. aMagnitudes were significantly different by age, according to a χ2 test (FDR q<0.05). Models are
corrected for sex; brain measures also corrected for head positioning confounds. Associations between g and TBV were not significantly different between middle and
older ages: Δχ2(1)= 3.874, p= .049, ΔAIC=2, ΔsaBIC=−3.223. However, the magnitude of g associations with multiple global measures (simultaneously
modelled) were significantly different between age groups: Δχ2(7)= 183.22, p≤.001, ΔAIC=169, ΔsaBIC=134. TBV: total brain volume, GM: grey matter
volume, WM: white matter volume, WMH: white matter hyperintensity volume, FA: fractional anisotropy, MD: mean diffusivity.

1 We note that the splitting of the commissural fibres in this way was a pre-
registered hypothesis.
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standardised estimates ranged from 0.062 to 0.256. Largest effect sizes
were found for the Thalamus (left= 0.251, right= 0.256), which was
significantly larger than for all other subcortical regions (p< .001). The
Amygdala showed the weakest associations of all (left= 0.075,
right= 0.062), whereas the remaining volumes (Accumbens, Caudate,
Hippocampus, Pallidum and Putamen) showed comparable magnitudes
(range=0.105 to 0.165).

3.7. Out of sample prediction of g using multivariate MRI data

We investigated whether simultaneously modelling the regional
MRI predictors of g would substantially alter the pattern of regional
associations, when compared to the results of creating a single model
for each region, as reported above. We tested the generalisability of
these findings by splitting the sample by scanning site, assigning

Fig. 4. Associations between white matter tract-specific microstructure and g. Tabulated results also reported in Tables S6 and S7. Top panel shows left and right
lateral and superior views of the white matter tracts of interest, heatmapped according to association magnitude. Lower panel displays the association magnitudes
sorted by tract class and then from strongest to weakest (based on the average of FA and MD), with 95% CIs; MD valences have been flipped to aid visual comparison.

Fig. 5. Associations between regional cortical volumes and g with 95% CIs. Left and right associations are shown separately (left hand regions appear first).
Association magnitudes are also reported in Table S5.
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Manchester as the training data, and Newcastle as the test data. The
beta weights obtained from the MIMIC models in the training data are
shown in Fig. 6 and Tables S10–13. The associations between g and the
resultant weighted composite score are shown in Table 4 and Fig. 6).

In the training data, unique contributions to g variance were made
by higher FA in the anterior and posterior thalamic radiations, the
uncinate and middle cerebral peduncle (β range 0.053 to 0.128), but
with lower FA in the acoustic radiations and inferior fronto-occipital
fasciculus (β=−0.060, and β=−0.082, respectively). For MD, beta
weights were highest in the expected direction in the posterior and
superior thalamic radiations, uncinate and middle cerebellar peduncle
(β range− 0.030 to −0.177), but the association was positive in the
inferior longitudinal fasciculus (β=0.225). For cortical volumes, g was
most strongly associated with larger fronto-polar, subcallosal, insula,
precentral, anterior superior temporal, temporal fusiform, and in-
tracalcarine cortices (β range 0.038 to 0.062), but also with a smaller
anterior cingulate gyrus and cuneal volume (β=−0.041, and
β=−0.032, respectively). Finally, larger thalamus (β=0.194),

putamen (β=0.225) and hippocampal (β=0.024) volumes uniquely
predicted g.

The weighted composite scores showed a highly stable out of sample
prediction of g. In the case of FA, the point estimates were identical to
three decimal places (β=0.152), and g associations were also of
comparable magnitude for MD (train β=0.180; test β=0.141), cor-
tical (train β=0.320; test β=0.244) and subcortical (train β=0.277;
test β=0.249) volumes. Correcting for TBV partly attenuated asso-
ciations between g and composite weighted scores for cortical (range
22.5% to 40.9%) and subcortical (range 2.5% to 20.5%) volumes, but
they remained significant predictors of g,whose magnitudes were stable
across training and test data (Table S14).

4. Discussion

In this large sample of middle and older aged participants, we found
that the association between total brain volume and a latent factor of
general intelligence was r=0.276. The current single-cohort analysis
was not confounded by cross-cohort heterogeneity in the protocol for
intelligence and brain size measurement which have affected recent
meta-analyses of this association (McDaniel, 2005; Rushton & Ankney,
2009; Pietschnig et al., 2015; Gignac & Bates, 2017). This estimate is at
the mid-point between the meta-analytic effect size estimate from
Pietschnig et al., (2015; r=0.24) and the quality-corrected estimate of
Gignac and Bates (2017; r = 0.31). It is also considerably larger than
previous estimates using a single cognitive indicator (verbal numerical
reasoning) in an earlier UK Biobank release (r=0.19, N=13,608;
Nave et al., 2018; r=0.177, N=5216; Ritchie et al., 2018), empha-
sising the utility of our latent variable approach, which was also in-
formed by a larger sample. The fact that the association between g and
TBV was not significantly different between sexes is in contrast the
results reported by McDaniel (2005), but not with a larger, more recent
meta-analysis (Pietschnig et al., 2015), and prior work in an earlier UK

Fig. 6. Out of sample prediction (Manchester to Newcastle) of g from regional MRI data. Left panel shows the spatial distribution of standardised beta weights. Right
panel shows the associations (standardised estimates and 95% confidence intervals) between g and the weighted composite scores (derived using those weights) in
the training and test samples.

Table 4
Out of sample prediction (Manchester to Newcastle) of g from regional MRI
data.

Est. SE p ci.lower ci.upper Complete N

FA Train 0.152 0.013 <0.001 0.127 0.178 4768
Test 0.152 0.025 <0.001 0.102 0.201 2510

MD Train 0.180 0.014 0.003 0.152 0.208 4707
Test 0.141 0.029 0.001 0.084 0.197 2494

Cortical Train 0.320 0.013 <0.001 0.294 0.345 5246
Test 0.244 0.028 <0.001 0.188 0.300 2589

Subcortical Train 0.277 0.013 <0.001 0.251 0.302 5253
Test 0.249 0.028 <0.001 0.194 0.305 2595

Note. Standardised estimates (Est.), standard errors (SE) and 95% CIs (ci.upper
and ci.lower) are reported. FA: fractional anisotropy, MD: mean diffusivity.
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Biobank release using the VNR only (Ritchie et al., 2018). Given that
the mean differences in intelligence are generally extremely modest or
null (Deary, Irwing, Der, & Bates, 2007; Johnson, Carothers, & Deary,
2008; Lakin & Gambrell, 2014; Ritchie et al., 2018), this adds weight to
the hypothesis that more specific brain characteristics compensate for
the relatively larger brain size difference between males and females.

We also ascertained that the g-TBV association belies important
heterogeneity at both the global tissue level, and at the regional level
across cortex, subcortex and white matter. GM and NAWM were the
strongest global tissue correlates of g, with WMH and microstructural
measures showing weaker but significant associations in separate
models. However, when modelled simultaneously in a MIMIC model,
unique contributions of WMH and NAWM were near identical (GM still
largest), whereas information about white matter microstructure did
not carrying any unique information about individual differences in g.
Together, these measures explained only 6.16% of g variance. This was
substantially lower than prior estimates using similar global structural
brain metrics (Ritchie et al., 2015) which explained as much as 21% g
variance. Given that their participants were from an older cohort – all
participants were born in 1936 and were approximately 73 years old at
scanning – we conducted a post-hoc analysis to ascertain whether the
brain measures would account for more variance in older than in
younger participants in our sample. We found that these measures ac-
counted for more than double the g variance in older participants
compared to those in middle-age (13.6% and 5.4%, respectively); thus
while still smaller than that accounted for in Ritchie et al. (2015), this
does support the notion that age moderates the relationship between
general intelligence and multiple aspects of brain tissue structure. This
age moderation pattern was only observed in a multi-predictor analysis
that simultaneously included multiple MRI-based predictors and not in
an analysis of total brain volume or individual MRI predictor alone.

These age differences stood in contrast to the apparent age invariance
of the association between g and total brain volume (as found by
Pietschnig et al., 2015). This supports the notion that total brain volume is
a proxy for several other aspects of brain integrity whose variances are i)
uniquely informative for cognitive function and ii) more informative than
brain size alone. Moreover, total brain volume is likely to be an age-
varying indicator of brain integrity, raising questions about the value of
considering the brain size-intelligence relationship, in isolation, for fur-
thering our mechanistic insight into the cerebral basis of intelligence.
Overall, the age moderation pattern suggests that gmay be less sensitive to
the variance around ‘healthier’ / ‘younger’ averages (higher GM and
NAWM volume, lower WMH volume, higher FA and lower MD).

In our analysis of regional brain correlates of intelligence, the cortical
and grey matter associations were stronger than for the regional white
matter microstructural parameters, on average, though association mag-
nitudes were all of small effect size (Cohen, 1992). Nearly all regional
measures were significant following FDR correction, and our findings of
regional heterogeneity of g associations across the tissues of the brain were
partly consistent with our hypotheses based on the P-FIT (Jung & Haier,
2007). Specifically, we hypothesised that g would be most strongly posi-
tively associated with lateral frontal, superior parietal and temporal cor-
tical volumes, and show stronger (positive for FA, negative for MD) re-
lationships with g in thalamic and association fibres, plus forceps minor. In
accordance with this, we found relatively stronger associations in regions
such as the frontal pole, dorsolateral frontal cortex, paracingulate, anterior
aspects of both lateral and medial temporal lobes, and lateral occipital
cortex. However, the comparatively weaker associations in inferior frontal,
anterior cingulate, and superior parietal / angular / supramarginal areas
were less consistent with P-FIT. Moreover, medial frontal regions (orbi-
tofrontal and subcallosal), central and precentral gyri were among the
strongest associations here, but were not explicitly implicated in prior
reviews (Basten et al., 2015; Jung & Haier, 2007), and we also found as-
sociations with the insula and precuneus / posterior cingulate volumes
which were only more recently implicated in general intelligence (Basten
et al., 2015), and concurs with more recent insights into the dense and

wide-ranging connectivity profile of the insula (Nomi, Schettini, Broce,
Dicks, & Uddin, 2018). With reference to the white matter pathways,
magnitudes were consistently smaller than for cortical regional volumes,
but were strongest among thalamic and most association pathways, along
with the forceps minor, which facilitate connectivity across many of the
distal cortical regions highlighted by the P-FIT model.

Finally, we opted to include subcortical volumes in a post-hoc (non-
pre-registered) analysis. Consistent with prior reports (Basten et al.,
2015; Grazioplene et al., 2015; Rhein et al., 2014), we found significant
bilateral associations with the caudate, though these were not sig-
nificantly larger than the magnitudes found for the majority of sub-
cortical structures. In fact, thalamic volume was substantially more
strongly related to general intelligence (≥1.5 times as large) than any
other subcortical structure (r for left and right= 0.255 and 0.251). This
finding is in line with the highly complex connectivity profile of the
thalamus, whose various nuclei share connections across much of the
cortex (including prefrontal and hippocampal pathways; Behrens et al.,
2003; Aggleton et al., 2010), its role in orchestrating cortical activity as
well as an information relay (Rikhye, Wimmer, & Halassa, 2018), and a
prior report of its phenotypic and genetic associations with intelligence
(Bohlken et al., 2014). It is also consistent with previously-reported
associations of the thalamus and its radiations with ageing, and to
potential determinants thereof, such as vascular risk (Cox et al., 2016;
Cox et al., 2019). However, it is also notable that the association be-
tween g and all subcortical structures, though not as large as for the
Thalamus, were still comparable or larger than those exhibited by white
matter microstructural measures.

Following peer review, we also included an analysis that considered
the unique contributions of each regional MRI measure to intelligence,
accounting for their correlational structure (and thus also their con-
tribution beyond the more global, brain-wide metrics to which they all
contribute). We also ascertained the robustness of these results by
testing their ability to predict g out of sample, exploiting the fact that
the data had been sampled from two testing sites (Manchester and
Newcastle). The regions making the strongest unique contributions to
intelligence were broadly in line with our bivariate results: frontal pole,
subcallosal, insula, anterior lateral and medial temporal cortical vo-
lumes, microstructure of the thalamic radiations and uncinate fasci-
culus, alongside greater volumes of the thalamus, putamen and hip-
pocampus, though the effect sizes were all substantially lower than
when modelled individually (which is to be expected given their large
degree of collinearity). Notably, the weighted composite score based on
the analysis in the training set showed excellent out of sample perfor-
mance, adding some weight to the generalisability of these findings.

Our supplementary analyses showed that the regional volumetric in-
formation accounted for significant g variance beyond total brain volume,
though we note that interpreting this type of correction is complex,
especially when correcting the individual regions for volume during the
initial training model; the resultant weightings indicate unique regional
volumetric contributions to cognitive ability beyond all other regions and
also beyond TBV (for which all regional volumes are proxies, to some
degree). As such, each weighting represents the importance of cortical or
subcortical configural differences, were all brains the same size. Given the
disproportionate regional composition of the cortex as a function of brain
size (Essen, 2018), these results are therefore more difficult to directly
reconcile with fundamental questions of ‘where in the brain is bigger
better?’. Finally, we observe that whereas our uncorrected out of sample
predictions did not appear to explain substantially more g variance than
total brain volume alone, increasing the regional specificity of that ex-
planation might offer more tractable insights into the underlying cerebral
basis of general cognitive ability.

The study has several limitations. The information reported here is
correlational in nature, and though it describes what intelligent brains
look like (insofar as these are some of the axes along which brains differ as
a function of intelligence), it cannot directly differentiate between regions
that are and are not required to support the cognitive processes subsumed
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beneath the umbrella of g. Nevertheless, it continues to be of interest and
value to robustly quantify how and where brain structure and intelligence
are associated; along with longitudinal data, lesion studies and other
methodologies, such studies will help to triangulate the contributions that
brain regions play in giving rise to individual differences in g. The study
sample is also range restricted in three respects. First, they are members of
a voluntary research study (and UK Biobank is known to be range re-
stricted in some ways compared to the general population; Fry et al.,
2017), and participants in this study are also what is known as “WEIRD”
(from Western, educated, industrialised, rich and democratic societies;
Henrich, Heine, & Norenzayan, 2010), meaning that these results are
obtained in a doubly-selective group. Second, we know that the brain
imaging subset of UK Biobank participants tends to live in less deprived
areas (Lyall et al., 2019); given the known associations between SES and
cognitive function, the sample is also likely to therefore be range restricted
with respect to brain and cognitive measures. Third, the age range of the
sample is restricted to middle and older age, omitting important matura-
tional periods of life where different global and regional metrics may be
differentially relevant to intelligence differences. These sample limitations
may affect the generalisability of our results with respect to the total brain,
global tissue or regional results, and the pattern of age moderation; these
whole-life-course patterns could more optimally be addressed in a large
scale multi-cohort mega-analytic framework. The degree to which these
findings apply to non-WEIRD participants would also clearly benefit from
future work. Though the reliability of the more recent cognitive tests that
we used here is not known, we note that the loadings and proportion of
variance explained would be very unlikely to occur if they were unreliable
tests, and that these compare favourably with the correlational structure of
other UK Biobank cognitive tests where test-retest reliability is known to
be low (Lyall et al., 2014). Moreover, the tests selected here were based on
well-validated cognitive tests, and a paper covering their design and re-
porting results of a validation study of this enhanced cognitive battery in
UK Biobank is the subject of ongoing work by the authors (CFR and IJD).
We also did not correct our full-sample analyses for assessment site. The
sites are described as “identical” in UK Biobank Brain Imaging Doc-
umentation. Correcting for variability in head positioning inside the
scanner may allow any potential systematic differences in the im-
plementation of the same UK Biobank sampling protocol across sites to be
mitigated while preserving any small but potentially meaningful varia-
bility that might otherwise have been eliminated by a nominal covariate.
The close replication of g predictions out-of-sample do not suggest any
non-trivial confounding by scanner differences. Finally, it could be argued
that the brain imaging methods might limit the fidelity with which we can
measure the regional specificity of g associations across the brain. The 27
major pathways have the advantage of being well characterised and aid
consistent identification across subjects, but they do not allow a direct
measure of the WM connectivity between specific cortical or subcortical
sites of the brain in native space, which would allow for a more precise
and stringent test of g associations with the WM pathways underlying the
P-FIT, as well as a less biased set of pathways (for example, the current
dataset has more information on thalamic connectivity than on other
subcortical pathways). Similarly, the cortical parcellation used here was
one of convenience and does not correspond directly onto the Brodmann
Areas used by Jung and Haier (2007), which makes mapping the current
findings onto prior hypotheses opaque. For example, whereas the Harvard-
Oxford atlas includes a paracingulate region (Brodmann Area 32), this
additional cortical fold is not always present, and thus is perhaps more
usefully referred to as “superior medial” cortex (e.g. see Cox et al., 2014).
Importantly, the superior lateral occipital area likely incorporates cortical
territories that other parcellation schemas would designate as parietal;
otherwise the parietal areas in the present schema are relatively small,
which may account for the relatively stronger association between g and
superior lateral occipital cortex. Likewise, frontal pole region subsumes a
large portion of the frontal lobe compared to that described by Brodmann
and is likely to include a sizeable portion of anterior dorsolateral pre-
frontal areas (BA 9/46). Though these concordance issues are well-known,

and there is no straightforward solution (Bohland, Bokil, Allen, & Mitra,
2009; Cox et al., 2014), it is important to interpret the results with these
limitations in mind.

In conclusion, this preregistered study provides a large single
sample analysis of the global and regional brain correlates of a latent
factor of general intelligence. Our study design avoids issues of pub-
lication bias and inconsistent cognitive measurement to which meta-
analyses are susceptible, and also provides a latent measure of in-
telligence which compares favourably with previous single-indicator
studies of this type. We estimate the correlation between total brain
volume and intelligence to be r=0.276, which applies to both males
and females. Multiple global tissue measures account for around double
the variance in g in older participants, relative to those in middle age.
Finally, we find that associations with intelligence were strongest in
frontal, insula, anterior and medial temporal, lateral occipital and
paracingulate cortices, alongside subcortical volumes (especially the
thalamus) and the microstructure of the thalamic radiations, associa-
tion pathways and forceps minor.
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