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Models in which scalar field dark energy interacts with dark matter via a pure momentum coupling have
previously been found to potentially ease the structure formation tension between early and late-Universe
observations. In this paper, we explore the physical mechanism underlying this feature. We argue
analytically that the perturbation growth equations imply the suppression of structure growth, illustrating
our discussion with numerical calculations. Then we generalize the previously studied quadratic coupling
between the dark energy and dark matter to a more general power-law case, also allowing for the slope of
the dark energy exponential potential to vary. We find that the structure growth suppression is a generic
feature of power-law couplings and it can, for a range of parameter values, be larger than previously found.
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I. INTRODUCTION

During the past two decades, cosmological observa-
tions have achieved a remarkable degree of precision.
Measurements of Type Ia supernovae [1], the cosmic
microwave background (CMB) [2], and large scale struc-
ture [3,4] indicate that around 96% of the energy content of
the Universe is in the form of so-called dark energy and
dark matter. These exotic species may be described by the
standard cosmological model, ΛCDM, in which dark
energy takes the form of a cosmological constant and dark
matter is taken to be cold, in other words having an
equation of state equal to zero.
While ΛCDM fits the available data very well, it suffers

from a number of issues that motivate the study of
alternatives. These include the fine-tuning [5] and coinci-
dence [6] problems. In addition, there are certain tensions
between early and late-Universe observations in ΛCDM.
The present-day expansion rate of the Universe,H0 and the
growth of structure, quantified by σ8, can be calculated
using the best-fit ΛCDM parameters to cosmological data,
including the CMB. This gives rise to a smaller H0 and a
larger σ8 than the results of local, late-Universe measure-
ments (for a recent discussion, see Ref. [7]). At present,
the tension in H0 appears to be the more problematic of
the two, though either or both issues may be caused
by systematic effects that have not been accounted for.

Future data from surveys such as EUCLID should
confirm or resolve these tensions [8]. In the meantime, it
is worth exploring alternative explanations involving new
physics. In this work, we are especially interested in
possible resolutions to the σ8 tension. The value of σ8
inferred from CMB data is 0.811� 0.006 [2], while cluster
counts from the Sunyaev-Zeldovich effect give σ8 ¼
0.77� 0.02 [9] and weak lensing gives values of σ8
ranging from 0.65 to 0.75 [10–12].
A popular class of modifications to ΛCDM is quintes-

sence [13], in which the cosmological constant Λ is set to
zero and a scalar field ϕ is introduced whose dynamical
properties produce a negative equation of state giving rise
to the observed late-time accelerated expansion of the
Universe. Normally, it is assumed that the scalar field does
not interact with dark matter. However, there is no reason
why this must be the case, and the consequences of relaxing
this assumption have been widely studied. See Ref. [14]
and references therein for a discussion of recent research on
interacting dark energy.
Traditionally, couplings between dark energy and dark

matter are introduced at the level of the equations of
motion; for example,

∇μTðcÞ
μν ¼ Jν; ∇μTðDEÞ

μν ¼ −Jν; ð1Þ
such that the overall energy-momentum tensor Tμν ¼
TðcÞ
μν þ TðDEÞ

μν , where (c) denotes cold dark matter and
(DE) dark energy, is conserved as usual. Jν is the flow
of energy and momentum between dark energy and dark
matter. A notable example was pioneered by Wetterich and
Amendola [15–17], in which Jν ¼ βTðcÞ∇νϕ, where β is a
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constant, ϕ is the quintessence field, and TðcÞ is the trace
of the dark matter energy-momentum tensor. Other cou-
plings that have been proposed in the literature include
promoting β to be a function of ϕ [18,19], introducing a
direct dependence on the expansion rate [20,21], and
couplings with nonlinear dependence on the energy-
momentum tensor or the scalar field gradient [22,23].
In Ref. [24], a construction was developed using the pull-

back formalism for fluids to introduce dark energy-dark
matter couplings at the level of the action. Defining the
coupling at the level of the action is desirable for several
reasons. It is often a more intuitive way to see the coupling,
and it is easier to connect it to more fundamental physics.
Perhaps more importantly, instabilities can often be more
easily identified and avoided, saving time and computation
when studying new models. The construction of Ref. [24]
leads to three distinct classes, or “Types” of models.
Type 1 has been shown to include the commonly consid-
ered coupled quintessence model [16,17] as a subclass
[24,25]. Type 2 models have not been widely studied, but
allow for both energy and momentum transfer between
dark energy and dark matter. We focus on Type 3 models,
which have a pure momentum coupling between dark
energy and dark matter.
Type 3 models are interesting for several reasons. Due to

the absence of a coupling at the background level between
dark energy and dark matter, they are much less tightly
constrained than Types 1 and 2 [24]. They give rise to a
varying speed of sound of dark energy, the consequences of
which were studied in Ref. [26]. Perhaps most significantly,
Type 3 models have been shown to provide a basis for
easing the tension between early and late-Universe probes
of structure formation by reducing the predicted value of σ8
inferred from early Universe data [27].
In this paper, we investigate the mechanism by which

Type 3 models provide this reduction in structure growth
and also study a more general form of the coupling function
than previously considered. In Sec. II, we present the
cosmological equations of motion for the Type 3 models
under consideration. In Sec. III, we describe in broad terms
the way in which the structure growth suppression comes
about, before explaining in detail the impact of a Type 3
coupling on the background cosmological evolution in
Sec. IV and how the linear perturbations are affected in
Sec. V. Finally in Sec. VI, we present our conclusions and
discuss possible avenues for future work.

II. EQUATIONS OF MOTION

In the formalism of Ref. [24], a Type 3 model is
described by the Lagrangian,

Lðn; Y; Z;ϕÞ ¼ FðY; Z;ϕÞ þ fðnÞ; ð2Þ

where n is the fluid number density, Y ¼ ð1=2Þ∇μϕ∇μϕ is
the usual kinetic term, and

Z ¼ uμ∇μϕ ð3Þ

is a direct coupling between the gradient of the scalar field
and the fluid velocity uμ.
We consider a coupled quintessence model of the form

F ¼ Y þ VðϕÞ þ γðZÞ; ð4Þ

where VðϕÞ is the scalar field potential and γðZÞ is the
coupling function. In this work, we limit our analysis to
power-law couplings of the form γðZÞ ¼ βn−2Zn, where
n is an integer and n ≥ 2. The background equations
of motion may be found by assuming a spatially flat
Friedmann-Lemaître-Robertson-Walker metric,

ds2 ¼ a2ðτÞð−dτ2 þ dxidxiÞ; ð5Þ

where aðτÞ is the scale factor and τ is the conformal time. a
evolves according to the usual Friedmann equation,

H2 ¼ 1

3M2
P
ðρ̄b þ ρ̄c þ ρ̄γ þ ρ̄ϕÞa2; ð6Þ

expressing the conformal Hubble parameter H in terms of
the background energy densities of baryons (ρ̄b), dark
matter (ρ̄c), radiation (ρ̄γ), and the scalar field (ρ̄ϕ). MP

denotes the reduced Planck mass. The energy density and
pressure of the scalar field are given by [24]

ρ̄ϕ ¼ 1

2

_̄ϕ 2

a2
þ

_̄ϕ

a
γ;Z þ γðZÞ þ VðϕÞ; ð7Þ

p̄ϕ ¼ 1

2

_̄ϕ 2

a2
− γðZÞ − VðϕÞ; ð8Þ

where ϕ̄ is the background value of the scalar field and dots
denote differentiation with respect to conformal time. The

background part of Z is given by Z̄ ¼ − _̄ϕ=a. The scalar
field obeys

ð1 − γ;ZZÞð ̈ϕ̄ −H _̄ϕÞ þ 3aHðγ;Z − Z̄Þ þ a2V;ϕ ¼ 0; ð9Þ

and the background energy density of the cold dark matter
is not modified by the Type 3 coupling,

_̄ρc þ 3Hρ̄c ¼ 0: ð10Þ

To perturb the equations of motion to linear order, we
work in the synchronous gauge, where the metric tensor
reads

ds2 ¼ a2ðτÞ
�
−dτ2 þ

��
1þ 1

3
h

�
γij þDijν

�
dxidxj

�
:

ð11Þ
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Here, h and ν are scalar perturbation variables, Dij is the

traceless derivative operatorDij ¼ ∇⃗i∇⃗j − ð1=3Þ∇⃗2
γij, and

∇⃗i is the covariant derivative associated with the three-
space metric γij. The unit timelike vector field uμ is
perturbed as

uμ ¼ að1; ∇⃗iθÞ: ð12Þ

The cold dark matter density contrast δc ¼ δρc=ρ̄c obeys
the standard continuity equation (in Fourier space),

_δc ¼ −k2θc −
1

2
_h; ð13Þ

while the velocity divergence θc obeys the modified Euler
equation [24],

_θc þHθc ¼
ð3Hγ;Z þ γ;ZZ

_̄ZÞδϕþ γ;Z _δϕ

aðρ̄c − Z̄γ;ZÞ
; ð14Þ

and the scalar field perturbation, δϕ, obeys

ð1 − γ;ZZÞðδ̈ϕþ 2H _δϕÞ − γ;ZZZ
_̄Z _δϕ

þ ðk2 þ a2V;ϕϕÞδϕþ 1

2
ð _̄ϕþ aγ;ZÞ _hþ ak2γ;Zθc ¼ 0:

ð15Þ

The perturbed Einstein field equations are not modified
by a Type 3 coupling and take their standard form; see,
e.g., Ref. [28].

III. OVERVIEW OF SUPPRESSION OF
STRUCTURE FORMATION

As found in Ref. [27], Type 3 models can result in a
suppression of structure growth relative to ΛCDM. We
examine the mechanism by which this suppression occurs
with reference to the underlying equations of motion.
Following Ref. [27], we consider a Type 3 coupled
quintessence model with an exponential potential of the
form

VðϕÞ ¼ Ae−λϕ=MP ð16Þ

and a power-law Type 3 coupling function given by

γðZÞ ¼ βn−2Zn; ð17Þ

where for n ¼ 2 we recover the quadratic coupling studied
in Ref. [27]. We consider only values of βn−2 such that γðZÞ
is negative, as positive γðZÞ can result in a ghost instability
if γ;ZZ > 1 [24]. Since Z always takes negative values, this
means that we consider only negative values of βn−2 for n
even and only positive βn−2 for n odd. We use the modified
version of the Boltzmann code CLASS [29–32] developed

by the authors of Ref. [27], further modifying it to compute
the evolution of power-law couplings with n > 2.
The matter power spectrum at a time t is given by

Pðk; tÞ ¼ 2π2

k3
T2ðk; tÞPðkÞ; ð18Þ

where PðkÞ is the primordial power spectrum, which is
assumed to have the form PðkÞ ¼ Asðk=k�Þns−1, and Tðk; tÞ
is the transfer function describing the evolution of the
matter density perturbation δmðk; tÞ [33]. All perturbed
quantities, and the transfer function, are computed numeri-
cally by CLASS. The present-day matter power spectrum
Pðk; t0Þ is denoted by PðkÞ for compactness. Since the
primordial power spectrum is close to scale invariant, with
ns ≈ 1 [2], the matter power spectrum PðkÞ derives all its
interesting features from the transfer function. Due to
the gravitational interaction between dark matter and
baryons, their density contrasts obey δc ≈ δb ≈ δm to a
very good approximation. In our numerical evolution, we
took ns ¼ 0.97 [2].
The amplitude of the late-time matter density perturba-

tions is commonly parametrized in terms of σ8, defined as

σ2R ¼ 1

2π2

Z
WRðkÞ2PðkÞk2dk; ð19Þ

with R ¼ 8h−1 Mpc, whereWRðkÞ is the Fourier transform
of the spherical top-hat window function,

WRðkÞ ¼
3

k3R3
½sinðkRÞ − kR cosðkRÞ�: ð20Þ

The structure growth suppression is illustrated for the
n ¼ 2 case by Figs. 1 and 2, which show the linear matter

FIG. 1. The linear matter power spectrum, PðkÞ, for an
exponential potential, VðϕÞ ¼ Ae−λϕ=MP and a coupling γðZÞ ¼
β0Z2 for various values of β0. The slope of the potential is set to
λ ¼ 1.22 and the sound horizon at recombination is held fixed
at θs ¼ 0.0104.
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power spectrum and σ8 for the quadratic coupling function
and an exponential potential. Following Ref. [27] here, we
fix the slope of the potential to be λ ¼ 1.22, which is within
the range of values providing a good fit to cosmological
data [27]. In Sec. IV and V, we investigate the effect of
varying λ. We have set the sound horizon at recombination,
which is tightly constrained by CMB measurements [2], to
θs ¼ 0.0104. Except where stated otherwise, we keep λ and
θs fixed throughout. Fig. 1 is the analog of the right-hand
panel of Fig. 2 in Ref. [27]. The slightly different value of
PðkÞ in the large k limit is due to different input parameters
used in Ref. [27]. For moderate values of β0, there is a slight
reduction in σ8 relative to uncoupled quintessence (given
by the limit of small jβ0j). For large values of jβ0j, we see

enhancement of σ8 relative to uncoupled quintessence.
Qualitatively, the suppression arises because the Type 3
coupling gives the CDM fluid a nonzero velocity diver-
gence θc, given by Eq. (14). This results in a suppression of
the CDM density contrast. We find numerically that the two
terms on the right-hand side of Eq. (13) are always of
opposite signs, and the second term is larger in magnitude,
which means that the larger jθcj, the smaller jδcj is.
The steps by which the Type 3 coupling γðZÞ impacts the

parameter σ8 are shown schematically in Fig. 3. In Sec. IV,
we discuss how the Type 3 coupling affects the background
cosmological evolution, and in Sec. V we demonstrate its
effect on the perturbations, in particular how the CDM
density contrast θc depends on the coupling.

IV. EFFECT OF TYPE 3 COUPLING ON THE
BACKGROUND EVOLUTION

For a Type 3 coupled quintessence model with power-
law coupling γðZÞ ¼ βn−2Zn and an exponential potential
VðϕÞ ¼ Ae−λϕ=MP , the scalar field evolution equation,
Eq. (9), becomes

�
1 − nðn − 1Þβn−2

�
−

_̄ϕ

a

�n−2�
̈ϕ̄þ 2H _̄ϕ

þ nð4 − nÞaHβn−2

�
−

_̄ϕ

a

�n−1

− a2
λA
MP

e−λϕ̄=MP ¼ 0;

ð21Þ

where we have used Z̄ ¼ − _̄ϕ=a. To understand the behav-
ior of the scalar field, it is instructive to consider certain
limiting cases.
In the interest of readability, in the following, we use the

general quantity γ;ZZ in place of its specific form for the

power-law coupling, nðn − 1Þβn−2ð− _̄ϕ=aÞn−2. First, we
consider the case in which 1 ≫ jγ;ZZj. This can result

from either jβn−2j or j _̄ϕj being very small. In this limit, the
second term in the square bracket of Eq. (21) becomes
negligible, as does the third term of the equation and hence

̈ϕ̄þ 2H _̄ϕ − a2
λA
MP

e−λϕ̄=MP ¼ 0; ð22Þ

which is simply the scalar field equation for uncoupled
quintessence. In this case, the scalar field will roll down the

potential with ϕ̄ and _̄ϕ increasing with time.
In the opposite case, where 1 ≪ jγ;ZZj, Eq. (21) becomes

− nðn − 1Þβn−2
�
−

_̄ϕ

a

�n−2
̈ϕ̄þ nð4 − nÞaHβn−2

�
−

_̄ϕ

a

�n−1

− a2
λA
MP

e−λϕ̄=MP ¼ 0: ð23Þ

FIG. 2. The dependence of σ8 on β0 for a quadratic coupling
function and an exponential potential, as in Fig. 1.

FIG. 3. A schematic illustration of the steps by which the Type
3 coupling affects the amplitude of fluctuations σ8.
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Note that for n ¼ 4 the second term in Eq. (23) is equal to

zero, and therefore one would not neglect the 2H _̄ϕ term in
Eq. (21). For our present purposes, however, this distinction
is not vital. What is important to note is that, since we are
considering the regime where jγ;ZZj ≫ 1, Eq. (23) predicts

a slower evolution of _̄ϕ and hence ϕ̄ due to the large factor

multiplying ̈ϕ̄.
Provided n ≠ 2, we can now see that a Type 3 coupled

quintessence model will transition from the first limit, when
_̄ϕ is very small, to the second limit, since _̄ϕ grows with
time. Larger jβn−2j will result in an earlier transition from
the uncoupled quintessence regime of Eq. (22) to the
“slowed” regime of Eq. (23). This is demonstrated by

Fig. 4, which shows the evolution of _̄ϕ for n ¼ 3 and n ¼ 4.

To understand the way in which _̄ϕ scales with βn−2, it is
instructive to consider the special case in which n ¼ 2. In
this case, the scalar field equation Eq. (21) becomes

ð1 − 2β0Þð ̈ϕ̄þ 2H _̄ϕÞ − a2
λA
MP

e−λϕ̄=MP ¼ 0: ð24Þ

The factor multiplying the kinetic term is now independent
of time, implying that the transition described above for
general n is not present for n ¼ 2. Instead, one can see that
for small jβ0j the uncoupled quintessence case is recovered
for all time, and for large jβ0j the scalar field evolution is

slowed; while for all β0,
_̄ϕ scales as 1=ð1 − 2β0Þ, which we

have confirmed numerically.
We can obtain the scaling behavior for general n,

illustrated by Fig. 4, in a schematic way as follows. In

analogy to the n ¼ 2 case in which _̄ϕ scales with

1=ð1 − 2β0Þ, let us suppose that _̄ϕ for general n will scale
as the inverse of the term in square brackets of Eq. (21),

_̄ϕ ∼
1

1 − nðn − 1Þβn−2ð− _̄ϕ=aÞn−2
: ð25Þ

This relation is of little use in its present form because it

contains _̄ϕ on both sides. However, as above, we can
consider the two limits: 1 ≫ jγ;ZZj and 1 ≪ jγ;ZZj. In the
first case, there is no scaling with βn−2 as the uncoupled
quintessence case is recovered. In the second case, how-
ever, Eq. (25) becomes

_̄ϕ ∼
1

−nðn − 1Þβn−2ð− _̄ϕ=aÞn−2
; ð26Þ

and we can now rearrange to obtain

_̄ϕ ∼ jβn−2j− 1
n−1; ð27Þ

which agrees with the late time, large jβn−2j regime
in Fig. 4.

A. Impact on expansion rate

In order to understand how the expansion rate depends
on the Type 3 coupling, it is necessary to consider the
evolution of the scalar field energy density ρ̄ϕ. The energy
density and pressure are given by Eqs. (7) and (8). For a
power-law coupling and exponential potential,

ρ̄ϕ ¼ 1

2

� _̄ϕ

a

�2

− ðn − 1Þβn−2
�
−

_̄ϕ

a

�n

þ Ae−λϕ̄=MP ð28Þ

and

p̄ϕ ¼ 1

2

� _̄ϕ

a

�2

− βn−2

�
−

_̄ϕ

a

�n

− Ae−λϕ̄=MP : ð29Þ

FIG. 4. The evolution of the conformal time derivative of the scalar field with the scale factor a for a Type 3 coupling of the form
γðZÞ ¼ βn−2Zn for different values of the coupling parameter jβn−2j. The left panel shows the n ¼ 3 case and the right panel shows
n ¼ 4. The units of βn−2 are ðMpc=MPÞn−2.
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The energy density of the scalar field obeys the usual
conservation equation,

_̄ρϕ þ 3Hðρ̄ϕ þ p̄ϕÞ ¼ 0; ð30Þ

⇒ _̄ρϕ ¼ −3H
�� _̄ϕ

a

�2

− nβn−2

�
−

_̄ϕ

a

�n�
: ð31Þ

Once again it is instructive to consider this expression in the
small and large βn−2 limits separately. In the limit where
1 ≫ jγ;ZZj, the second term in the square bracket of
Eq. (31) is negligible and the uncoupled quintessence case
is recovered. In the limit where 1 ≪ jγ;ZZj, however, the
first term in the square bracket can be neglected and one
obtains

_̄ρϕ ¼ 3nHβn−2

�
−

_̄ϕ

a

�n

: ð32Þ

We have already established that in this limit, _̄ϕ scales
according to Eq. (27), so we can infer _̄ρϕ scales with βn−2 as

_̄ρϕ ∼ jβn−2j− 1
n−1: ð33Þ

Finally, since βn−2ð− _̄ϕ=aÞn is always negative for the
choices of βn−2 we consider, we can conclude that ρ̄ϕ falls
with time, and does so more slowly the larger jβn−2j is.
Thus, for very large values of jβn−2j, the scalar field
behaves similarly at the background level to a cosmological
constant.
As in the case of uncoupled quintessence, a steeper

scalar field potential also results in a faster evolution of ϕ̄
and hence a drop in ρ̄ϕ. In terms of the background
evolution, we therefore find that the potential parameter

λ and the Type 3 coupling parameter βn−2 act in opposition
to each other, with an increase in the former tending to
speed up the scalar field evolution and the latter tending to
slow it. Both of these effects are illustrated by Fig. 5 for a
Type 3 coupling with n ¼ 2.
The expansion rate can be calculated using the

Friedmann equation. At early times, the contribution of
the scalar field is negligible compared to those of matter
and radiation but at late times it is the dominant species. A
small value of jβn−2j, allowing ρ̄ϕ to fall, will give rise to a
smaller present-day expansion rate than a large value of
jβn−2j, which slows the evolution of ρ̄ϕ and gives an
expansion rate close to that expected from a cosmological
constant. Fig. 6 illustrates the impact of the slope of the
potential and the Type 3 coupling parameter on the present-
day expansion rate for a Type 3 coupling with n ¼ 2. It can
be seen that steep potentials give rise to unrealistically low
values of H0 unless the Type 3 coupling is sufficiently
strong.

V. EVOLUTION OF LINEAR PERTURBATIONS

A. Dependence on coupling parameter

Type 3 models affect the cosmological perturbations
through the modified equation for the CDM velocity
divergence, Eq. (14). In the case of a power-law coupling,
Eq. (14) can be written as

_θc þHθc ¼
nβn−2½a4−nð− _̄ϕÞn−1δϕ�_
a4½ρ̄c − nβn−2ð− _̄ϕ=aÞn�

: ð34Þ

It turns out that the second term in the denominator is
always significantly smaller than the first. Thus, to under-
stand the behavior of θc, it suffices to consider the

FIG. 5. The evolution of the background energy density of the
scalar field ρ̄ϕ as a function of the scale factor, a, for two values of
the coupling parameter β0 and the potential parameter λ.

FIG. 6. The present-day value of the Hubble parameter,H0, as a
function of the coupling parameter, jβ0j, for a range of potential
parameters, λ, for a quadratic coupling function γðZÞ ¼ β0Z2, and
an exponential potential VðϕÞ ¼ Ae−λϕ=MP .
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numerator. Let us separately consider how βn−2ð− _̄ϕÞn−1
and δϕ depend on βn−2.
From Eq. (27), we can see that for sufficiently large

jβn−2j, the factor βn−2ð− _̄ϕÞn−1 is approximately constant
and any β dependence of θc must come from δϕ. In the limit

of small jβn−2j, however, we have already seen that _̄ϕ is
approximately independent of βn−2, so the factor

βn−2ð− _̄ϕÞn−1 rises linearly with βn−2.
As illustrated by Fig. 7, δϕ is constant with βn−2 for

small jβn−2j, and drops as

δϕ ∼ jβn−2j− 1
n−1; ð35Þ

for large jβn−2j, with the transition from the approximately
constant regime to the jβn−2j−1=ðn−1Þ regime occurring at
larger jβn−2j on smaller scales. For the special case of
n ¼ 2, we can make a more precise statement and say that
δϕ scales as 1=ð1 − 2β0Þ on large scales. The black line in

the top panel of Fig. 7 illustrates this scaling, closely
matching the form of the magenta and cyan lines which
correspond to large scales, while the blue line, correspond-
ing to small scales, is constant for a wide range of β0.
The above scaling arguments for the factors in Eq. (34)

allow us to understand how θc depends on βn−2. For
small jβn−2j, we expect jθcj to rise linearly with jβn−2j,
while for large jβn−2j we expect it to fall as jβn−2j−1=ðn−1Þ.
This behavior is illustrated in Fig. 8. The broad peak of
jθcj on small scales results from the fact that δϕ is
approximately constant for a wide range of βn−2 on small
scales. Once again, we can be more precise in the special

case in which n ¼ 2. Inserting the scalings for _̄ϕ and δϕ
into Eq. (34), we find that θc scales as β0=ð1 − 2β0Þ2 on
large scales (black solid line in the top panel of Fig. 8)
and as β0=ð1 − 2β0Þ on small scales (black dashed line in
the top panel of Fig. 8).

FIG. 7. The present-day value of the scalar field perturbation δϕ
for a Type 3 coupling γðZÞ ¼ βn−2Zn as a function of βn−2 for
different scales k. The top panel shows the n ¼ 2 case and the
bottom panel shows n ¼ 3.

FIG. 8. The present-day CDM velocity divergence θc for a Type
3 coupling γðZÞ ¼ βn−2Zn as a function of βn−2 for several scales
k. The top panel shows the n ¼ 2 case and the bottom panel
shows n ¼ 3.
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B. Dependence on potential

The slope of the potential, λ, also has an impact on the
growth of matter perturbations. Fig. 9 demonstrates for a
coupling with n ¼ 2 that a steeper potential can give rise to
a very large reduction in σ8, certainly large enough to
resolve the discrepancy between early and late-Universe
observations. It should be noted that increasing the slope λ
of the potential has the effect of reducing the expansion
rate, which is to be avoided since this exacerbates the
Hubble tension. (See Ref. [7] for a recent discussion.) The
lines in Fig. 9 stop once H0 < 30 km−1Mpc−1 but even
much smaller reductions in H0 are problematic. However,
from Figs. 6 and 9, one can see that there are choices for λ
and β0 that give rise to significant reduction in σ8 without
having a noticeable impact on H0, for example, λ ¼ 3,
β0 ¼ −102.
To understand how structure growth depends on λ, one

needs to consider the CDM velocity divergence. Figure 10
shows, again for the n ¼ 2 case, how the evolution of θc is
affected by the potential parameter λ: larger λ, correspond-
ing to a steeper potential, results in jθcj rising more rapidly.
Larger θc at a given time reduces the time derivative of the
CDM density contrast δc [see Eq. (13)], resulting in a
smaller jδcj at the present epoch and hence a reduction of σ8
for large λ as seen in Fig. 9. The λ dependence of θc can be

seen in the θc equation [Eq. (14)]. Substituting for ̈ϕ̄ using
Eq. (24), Eq. (14) becomes

_θc ¼ −Hθc þ
2β0

1−2β0
a2V;ϕδϕ − 2β0

_̄ϕ _δϕ

ðρ̄ca2 − 2β0
_̄ϕ 2Þ

; ð36Þ

which, for an exponential potential VðϕÞ ¼ Ae−λϕ=MP ,
yields

_θc ¼ −Hθc þ
− 2β0

1−2β0
a2Aλe−λϕ=MPδϕ − 2β0

_̄ϕ _δϕ

ðρ̄ca2 − 2β0
_̄ϕ 2Þ

: ð37Þ

Both of the terms in the numerator become larger in
magnitude when λ is large. In the first term, this is obvious;
in the second, it is a consequence of the V;ϕϕ term in
Eq. (15). Hence, a large slope λ results in a large (negative)
θc leading to a reduction in δc and a suppression of structure
growth.

C. Metric perturbation

As can be seen in Eq. (13), the CDM density contrast
depends not only on the CDM velocity divergence but also
on the time derivative of the metric perturbation h. This
latter quantity has a weak indirect dependence on the Type
3 coupling through its dependence on the background
expansion rate. In general, a larger expansion rate at a given
time results in a smaller value of _h, which in turn reduces
jδcj and suppresses structure growth. For all of the cases we
have considered, this effect is much smaller than the effect
due to θc.

VI. CONCLUSIONS

Unlike most coupled dark energy models that have been
studied in the literature, Type 3 models, as classified at the
Lagrangian level in Ref. [24], consist of a coupling between
the momentum of the dark matter and the gradient of the
dark energy scalar field. It was demonstrated in Ref. [27]
using Markov chain Monte Carlo (MCMC) methods that
such models can ease the tension between early and late-
Universe measurements of the degree of structure forma-
tion in the Universe.

FIG. 9. The amplitude of matter fluctuations σ8 as a function of
the coupling parameter jβ0j for a range of potential parameters λ
for a quadratic coupling function γðZÞ ¼ β0Z2 and an exponen-
tial potential VðϕÞ ¼ Ae−λϕ=MP .

FIG. 10. The evolution of the CDM velocity divergence θc as a
function of the scale factor a for a range of different potential
parameters λ with a coupling parameter β0 ¼ −102, at a scale
k ¼ 0.1 Mpc−1. The sound horizon at recombination is held fixed
at θs ¼ 0.0104.
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In this work, we have presented an explanation, using
both analytical and numerical methods, of why Type 3
models suppress the growth of structure. We considered a
fairly general power-law coupling function, finding that it
gives rise to similar structure suppression behavior to the
quadratic case previously studied.
We explored in detail the behavior of the background

cosmological evolution of Type 3 coupled quintessence
models, demonstrating how the scalar field evolution
depends on the coupling and the scalar field potential,
and how the expansion rate is affected. In particular, we
find that, as with uncoupled quintessence, a steeper slope of
the scalar field potential gives rise to faster evolution of the
scalar field and thus a reduced present-day expansion rate
H0. On the other hand, increasing the strength of the
coupling via the parameter βn−2 slows down the scalar field
evolution and gives rise to a present-day expansion rate
similar to that predicted by ΛCDM. In the models we have
studied, there is no mechanism for increasing H0 beyond
the value predicted by ΛCDM and hence resolving the
existing Hubble constant tension.
This understanding of the background evolution was

then applied to the perturbed equations of motion. AType 3
coupling between dark energy and CDM gives rise to a
nonzero CDM velocity divergence, θc, which suppresses
structure growth via its role in the evolution of the density
contrast of CDM, δc [see Eq. (13)]. We found that the value
of jθcj rises and falls with jβn−2j, with a maximum
corresponding to the maximum possible structure suppres-
sion. We demonstrated this behavior using both approxi-
mate analytic arguments based on the equations of motion
and a numerical analysis using an appropriately modified
version of CLASS.
We also demonstrated how the structure suppression

depends on the slope λ of the scalar field potential. In
particular, increasing λ gives rise to a stronger suppression of
structure growth. As our background analysis demonstrated,
this can have the unwanted side effect of reducing the
predicted value of H0, thus worsening the Hubble tension.
However, for appropriate values, such as λ ¼ 3 and
β0 ¼ −102, the structure suppression can be achieved with-
out the Hubble constant being reduced. Thus, our results
indicate an even greater suppression of structure formation is
possible than what has previously been realized.

In order to understand the physical origin of the
suppression of structure, we have held most cosmological
parameters fixed. To fully explore the interplay between
model parameters such as βn−2 and λ and cosmological
parameters such as σ8 and H0, a multiparameter MCMC
analysis is needed. In Ref. [26], such an analysis was
carried out using CMB data from Planck for a Type 3 model
with a cubic coupling, allowing the potential parameter λ to
vary between 0 and 2.1. They found the Type 3 model to be
consistent with the CMB data but marginally disfavored
when compared to ΛCDM.
We have not discussed the physical origin of the Type 3

coupling. Presenting a more physically motivated model
would be a worthwhile avenue for future study. Recently in
[34,35] the authors have considered the presence of related
interactions in the context of Horndeski theories of modi-
fied gravity. We note that our analysis has involved the use
of large dimensionless numbers for the coupling parameter
β0. Without reference to a deeper underlying theory, it is
difficult to say whether such values are reasonable, but the
requirement of large dimensionless numbers is somewhat
unappealing. This would be a challenge for any future
physically motivated Type 3 theory. Another possible focus
of future research would be to study Type 3 models in a
more model-independent way, using the PPF formalism
developed in Ref. [25]. In this approach, there is a certain
set of nonzero parameters that define a Type 3 model,
which can in principle be constrained by observational
surveys. Type 3 interacting dark energy is still a young and
little-studied area of research but it has been shown to have
interesting consequences for the structure and evolution of
the Universe.

ACKNOWLEDGMENTS

F. N. C. is supported by a United Kingdom Science and
Technology Facilities Council (STFC) studentship. A. A., E.
J. C., and A.M. G. acknowledge support from STFC Grant
No. ST/P000703/1. A. P. is a U.K. Research and Innovation
Future Leaders Fellow, Grant No. MR/S016066/1, and also
acknowledges support from the UK Science and Technology
Facilities Council through Grant No. ST/S000437/1. A. P. is
grateful to the University of Nottingham for hospitality
during the initial stages of this work. We are grateful to
Thomas Tram for useful discussions.

[1] A. G. Riess et al., Astrophys. J. 826, 56 (2016).
[2] N. Aghanim et al. (Planck Collaboration), arXiv:1807

.06209.
[3] B. Abolfathi et al., Astrophys. J. Suppl. Ser. 235, 42

(2018).

[4] L. Samushia et al., Mon. Not. R. Astron. Soc. 439, 3504
(2014).

[5] J. Martin, C.R. Phys. 13, 566 (2012).
[6] H. E. S. Velten, R. F. vom Marttens, and W. Zimdahl, Eur.

Phys. J. C 74, 3160 (2014).

UNDERSTANDING THE SUPPRESSION OF STRUCTURE … PHYS. REV. D 101, 043531 (2020)

043531-9

https://doi.org/10.3847/0004-637X/826/1/56
https://arXiv.org/abs/1807.06209
https://arXiv.org/abs/1807.06209
https://doi.org/10.3847/1538-4365/aa9e8a
https://doi.org/10.3847/1538-4365/aa9e8a
https://doi.org/10.1093/mnras/stu197
https://doi.org/10.1093/mnras/stu197
https://doi.org/10.1016/j.crhy.2012.04.008
https://doi.org/10.1140/epjc/s10052-014-3160-4
https://doi.org/10.1140/epjc/s10052-014-3160-4


[7] L. Verde, T. Treu, and A. G. Riess, Nat. Astron. 3, 891
(2019).

[8] L. Amendola et al. (Euclid Theory Working Group), Living
Rev. Relativity 16, 6 (2013).

[9] P. A. R. Ade et al. (Planck Collaboration), Astron. As-
trophys. 571, A20 (2014).

[10] H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454
(2017).

[11] F. Köhlinger, M. Viola, B. Joachimi, H. Hoekstra, E. van
Uitert, H. Hildebrandt, A. Choi, T. Erben, C. Heymans, S.
Joudaki, D. Klaes, K. Kuijken, J. Merten, L. Miller, P.
Schneider, and E. A. Valentijn, Mon. Not. R. Astron. Soc.
471, 4412 (2017).

[12] J. Alsing, A. Heavens, and A. H. Jaffe, Mon. Not. R. Astron.
Soc. 466, 3272 (2017).

[13] B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).
[14] B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon,

Rep. Prog. Phys. 79, 096901 (2016).
[15] C. Wetterich, Astron. Astrophys. 301, 321 (1995).
[16] L. Amendola, Phys. Rev. D 60, 043501 (1999).
[17] L. Amendola, Phys. Rev. D 62, 043511 (2000).
[18] D.-J. Liu and X.-Z. Li, Phys. Lett. B 611, 8 (2005).
[19] L. Lopez Honorez, O. Mena, and G. Panotopoulos, Phys.

Rev. D 82, 123525 (2010).

[20] A. P. Billyard and A. A. Coley, Phys. Rev. D 61, 083503
(2000).

[21] C. G. Boehmer, G. Caldera-Cabral, R. Lazkoz, and R.
Maartens, Phys. Rev. D 78, 023505 (2008).

[22] J. P. Mimoso, A. Nunes, and D. Pavon, Phys. Rev. D 73,
023502 (2006).

[23] X.-m. Chen and Y. Gong, Phys. Lett. B 675, 9 (2009).
[24] A. Pourtsidou, C. Skordis, and E. J. Copeland, Phys. Rev. D

88, 083505 (2013).
[25] C. Skordis, A. Pourtsidou, and E. J. Copeland, Phys. Rev. D

91, 083537 (2015).
[26] M. S. Linton, A. Pourtsidou, R. Crittenden, and R. Maart-

ens, J. Cosmol. Astropart. Phys. 04 (2018) 043.
[27] A. Pourtsidou and T. Tram, Phys. Rev. D 94, 043518 (2016).
[28] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995).
[29] J. Lesgourgues, arXiv:1104.2932.
[30] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[31] J. Lesgourgues, arXiv:1104.2934.
[32] J. Lesgourgues and T. Tram, J. Cosmol. Astropart. Phys. 09

(2011) 032.
[33] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).
[34] R. Kase and S. Tsujikawa, arXiv:1910.02699.
[35] R. Kase and S. Tsujikawa, arXiv:1911.02179.

FINLAY NOBLE CHAMINGS et al. PHYS. REV. D 101, 043531 (2020)

043531-10

https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.12942/lrr-2013-6
https://doi.org/10.12942/lrr-2013-6
https://doi.org/10.1051/0004-6361/201321521
https://doi.org/10.1051/0004-6361/201321521
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1093/mnras/stx1820
https://doi.org/10.1093/mnras/stx1820
https://doi.org/10.1093/mnras/stw3161
https://doi.org/10.1093/mnras/stw3161
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1088/0034-4885/79/9/096901
https://doi.org/10.1103/PhysRevD.60.043501
https://doi.org/10.1103/PhysRevD.62.043511
https://doi.org/10.1016/j.physletb.2005.02.048
https://doi.org/10.1103/PhysRevD.82.123525
https://doi.org/10.1103/PhysRevD.82.123525
https://doi.org/10.1103/PhysRevD.61.083503
https://doi.org/10.1103/PhysRevD.61.083503
https://doi.org/10.1103/PhysRevD.78.023505
https://doi.org/10.1103/PhysRevD.73.023502
https://doi.org/10.1103/PhysRevD.73.023502
https://doi.org/10.1016/j.physletb.2009.03.064
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.91.083537
https://doi.org/10.1103/PhysRevD.91.083537
https://doi.org/10.1088/1475-7516/2018/04/043
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1086/176550
https://arXiv.org/abs/1104.2932
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://arXiv.org/abs/1104.2934
https://doi.org/10.1088/1475-7516/2011/09/032
https://doi.org/10.1088/1475-7516/2011/09/032
https://doi.org/10.1086/305424
https://arXiv.org/abs/1910.02699
https://arXiv.org/abs/1911.02179

