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Abstract
Kinkingnéhun and colleagues (NeuroImage 37 [2007] 1237–1249) have recently described a novel
approach for lesion-behavior mapping (LBM), referred to as Anatomo-Clinical Overlapping Maps
(AnaCOM). Conventional voxelwise LBM tools apply statistics to contrast behavioral performance
of patients with lesions that encompass given voxels to control patients where these voxels are spared.
In contrast, AnaCOM contrasts performance of patients with injury involving given voxels to the
performance of neurologically healthy participants. The authors correctly note that their procedure
can offer substantially more statistical power than conventional LBM methods. We compared
AnaCOM to conventional LBM techniques by examining hemiparesis (a common consequence of
stroke) as the behavior of interest. We found that AnaCOM detected many regions of the middle
cerebral artery territory not associated with the motor system. We suggest that conventional LBM
techniques detect regions that are damaged in patients with a deficit while spared in those without a
deficit, while AnaCOM detects regions that are associated with a deficit. Therefore, this new measure
may offer poor specificity. Furthermore, on theoretical grounds we suggest that permutation-based
thresholding will be a more sensitive method for controlling familywise error than the method of
counting lesion-overlap clusters used by AnaCOM. Finally, we note that the within group variability
tends to be smaller for neurologically healthy controls than in neurological patients, due to ceiling
effects. Therefore, we suggest that nonparametric measures or the Welch’s t-test are more appropriate
than the conventional pooled variance t-test used by AnaCOM.
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Introduction
Lesion behavior mapping (LBM) studies correlate the location of brain injury to neurological
symptoms, revealing the critical anatomy for normal behavioral function. LBM studies have
direct clinical implications for understanding neurological disorders and planning
rehabilitation. LBM studies also allow a strong level of inference: determining whether a region

Address for correspondence: Chris Rorden, Department of Communication Sciences and Disorders, University of South Carolina, SC
29208, USA, E-mail: rorden@gwm.sc.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2010 February 15.

Published in final edited form as:
Neuroimage. 2009 February 15; 44(4): 1355–1362. doi:10.1016/j.neuroimage.2008.09.031.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is critical for a task. In contrast, brain activation studies aim to determine the brain regions
involved with a task. Despite these strengths, LBM studies have their own set of limitations
(Rorden and Karnath, 2004), and therefore a balanced approach is to combine brain activation
techniques (like fMRI) with brain disruption techniques (such as LBM). However, current
trends suggest that brain activation research is growing at a far faster rate than lesion studies
(Fellows et al., 2005). One of the major limitations of LBM studies is that traditional statistical
methods offer very low statistical power, and therefore LBM studies need large sample sizes,
typically requiring years of data collection. Kinkingnéhun and colleagues (2007) have
suggested a novel method (AnaCOM) for LBM that on the surface appears to offer substantially
better sensitivity than traditional methods. Our aim was to explore this technique and compare
it to existing methods commonly used in LBM.

There are several tools for lesion-behavior mapping. These can be broadly classified as region
of interest based (ROI) LBM and voxelwise LBM. With ROI based methods, one examines
whether the presence of damage (or amount of damage) to a small number of predefined
anatomical regions predicts symptoms observed in neurological patients. For example, if both
injury and deficit are scored as either intact or impaired, one can conduct a Fisher exact test,
while if the extent of injury is a continuous measure one can employ the Mann-Whitney test
(Herskovits, 1999). However, it is worth noting that ROI based methods can only identify
patterns within predefined anatomical regions (e.g. if one divided the visual cortex between
posterior and anterior regions, one could not accurately differentiate symptoms that correspond
to ventral versus dorsal occipital damage). In contrast, with voxelwise LBM the entire brain is
mapped as a volume of small 3D ‘voxels’ (typically, each voxel has a volume of 1mm3 to
27mm3), with an independent statistical test conducted for each voxel (i.e. for every voxel, one
computes whether or not injury to that voxel predicts a deficit). Voxelwise LBM potentially
offers better spatial precision than ROI-based LBM, and can reveal critical brain regions
associated with a given deficit without a priori assumptions.

In this article, we focus on two major sources for the low statistical power of conventional
voxelwise LBM studies. First, partial damage to a specific anatomical region can lead to deficits
(the ‘partial damage problem’). Second, voxelwise analysis must contend with the ‘multiple
comparisons problem’. AnaCOM attempts to address both of these problems. Therefore, we
will investigate their solution to each problem in turn.

The Partial Injury Problem
Popular tools for voxelwise LBM include BrainVox (Frank et al., 1997), MRIcro (Rorden and
Brett, 2000), VLSM (Bates et al., 2003), NPM (Rorden et al., 2007), the statistical modules of
VoxBo (Kimberg et al., 2007), as well as the correlational methods described by Tyler et al.
(2005). These tools differ in major respects including type of deficit (e.g. is the symptom a
continuous measure with graded performance, or is the behavior binomial: either present or
absent?), statistical test and statistical thresholding. However, all of these tools share a common
assumption for computing statistics. Specifically, for every voxel a statistical test compares
performance of individuals with injury to that voxel to the performance of individuals where
that voxel is not injured. Therefore, these tests will detect brain regions that predict poor
performance when injured and good performance when spared.

In stark contrast, Kinkingnéhun et al. (2007) propose a method they refer to as Anatomo-
Clinical Overlapping Mapping (AnaCOM), which contrasts the behavioral performance of
patients who have damage to a specific voxel to a group of neurologically healthy controls.
Therefore, the difference between the conventional LBM and AnaCOM lies in the control
population: conventional techniques examine the data from neurological patients while
AnaCOM uses data from neurologically healthy individuals. While this distinction appears
subtle, this change in the reference population dramatically influences the regions detected by
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AnaCOM. Specifically, AnaCOM addresses a weakness with conventional LBM that we refer
to as the ‘partial injury problem’. This issue is illustrated in Figure 1 (see also Kinkingnéhun
et al.’s Figure 11). Essentially, a functional module of the brain may be quite large, yet
behavioral impairments can be observed when only a portion of this module is damaged.
Therefore, two neurological patients may exhibit behavioral deficits due to damage to the same
module even though there are no commonly injured voxels. With traditional LBM, the mutually
exclusive nature of these injuries means that each individual is treated as the control for the
other. On the other hand, AnaCOM contrasts each patient with a healthy control. As a
consequence, AnaCOM should be able to detect lesion-behavior correlations with much
smaller patient groups.

However, we argue that the assumptions made by this technique are often violated. One of the
core problems with lesion mappings is that the locations of brain injury are not random, but
rather reflect the brain’s vascular architecture. As a concrete example of this problem, consider
the common clinical condition of hemiparesis (weakness or paralysis moving the contralesional
arm and/or leg). This symptom is due to damage to the motor cortex, the corticospinal tract,
the basal ganglia, and is frequently associated with damage of the somatosensory cortices.
However, all of these regions are supplied by blood from the middle cerebral artery, which
also supplies blood to large portions of the lateral cortical convexity (Caviness et al., 2002).
Therefore, patients with MCA territory injury will often show hemiparesis, but they will also
often show damage to other portions of the cortex. We thus hypothesize that AnaCOM will
detect injury to the entire MCA territory, while traditional LBM will be more specific for
identifying regions associated with hemiparesis. This concern is illustrated in Figure 2. To test
this hypothesis, we first conducted a Monte-Carlo simulation, based on a sample of 136
neurological stroke patients with right hemisphere lesions. We conducted a second analysis on
a synthetic behavioral deficit – this analysis used the same dataset and parameters, with the
sole exception being the replacement of the true behavioral measure (paresis) with a score that
solely reflects the extent of damage to an arbitrary cortical region (roughly corresponding to
Brodmann’s Area 44). The logic behind this synthetic measure is that paresis can be the
consequence of different anatomical injuries (e.g. motor cortex, the corticospinal tract, basal
ganglia). If, as predicted, AnaCOM discovers a large territory associated with paresis, one
could argue that this either reflects poor normalization or the discovery of new motor regions.
In contrast, the sole factor influencing our synthetic behavior is the extent of damage to BA44,
after normalization.

The multiple comparison problem
One of the primary reasons that any voxelwise analysis technique suffers from low statistical
power is the ‘multiple comparison problem’ (MCP). As an extreme example, consider a study
conducted with 1mm3 voxels where we test every single voxel in the gray and white matter.
In this case, we will conduct around a million statistical tests, so with a conventional p <0.05
alpha level (only detecting voxels that have a 5% or less chance of being due to random noise)
one would expect around 50,000 false positives. A conventional solution to this problem is to
apply Bonferroni Correction, where we adjust the statistical threshold to control for overall
familywise error rate (FWE). Therefore, when conducting one million tests, we would adjust
our threshold from p <0.05 to p<0.00000005, so that the chance of identifying false positives
anywhere in the dataset is just 5%. Unfortunately, while this correction does control for
multiple comparisons, it also necessarily leads to very low statistical power – very few real
effects will be revealed. We discuss four methods for addressing the familywise error problem:
overlap thresholding, cluster thresholding, permutation thresholding, and false discovery rate
thresholding.
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One method to tackle the MCP is to only compute statistics for voxels that are damaged in a
reasonable proportion of the patients, a procedure we term ‘overlap thresholding’. For example
Kinkingnéhun et al. report data from 64 patients, and in their conventional LBM analysis they
only compute statistics for voxels that are injured in at least three individuals, which reduces
the number of statistical tests to 349,454. The logic for this is clear – the aim is to discover
which brain regions are involved in common neurological syndromes. Therefore, by definition
very rarely injured brain regions are unlikely to be the primary culprits in common disorders.
Furthermore, regardless of whether one uses AnaCOM or traditional LBM methods, the very
small number of observations found in rarely injured brain regions inherently results in low
statistical power. While sensible, note that overlap thresholding does not dramatically reduce
the number of statistical tests, so it is usually used in combination with the three other methods
for addressing the MCP, which we describe next.

AnaCOM addresses the MCP by using a cluster thresholding method, which computes one
statistical test for each spatial cluster, rather than for each voxel, with a cluster defined as a
contiguous set of voxels that share a common lesion-overlap pattern (i.e. these voxels are all
damaged in the same patients). Kinkingnéhun et al. report that their dataset could be defined
as 1642 clusters, substantially reducing the number of comparisons relative to overlap
thresholding alone (e.g. their average cluster spans 200 voxels). While cluster thresholding has
been used by previous statistical LBM tools (Frank et al., 1997; Bates et al., 2003),
Kinkingnéhun and colleagues are the first to have clearly described their implementation,
including the issue of how to define contiguity (e.g. how do we define a neighboring voxel:
must it share a face [6 neighbors per voxel], or do we also include edges [18 neighbors per
voxel], or do we count corners as well [26 neighbors per voxel]?). The cluster thresholding
method takes advantage of the redundancy in LBM datasets, where lesions are large contiguous
regions.

While cluster thresholding is a principled solution to the MCP, permutation thresholding offers
the optimal solution. Permutation thresholding has been previously described as a method of
FWE control in LBM studies (Frank et al., 1997; Kimberg et al., 2007; Rorden et al., 2007).
With LBM, our test statistic is based on contrasting the performance of patients with a lesion
(consider the scores of three individuals: A = 3; B=2; C=2.5), to those without a lesion (consider
four individuals D = 7; E = 6, F = 5; G = 9). With permutation testing (also known as
‘randomization testing’) we simply randomly scramble the order of the test scores between
participants thousands of times to precisely compute how often we would observe a similar or
more extreme set of test scores, offering a nonparametric measure of probability (this technique
randomly samples the distribution revealed by ‘exact testing’, where one exhaustively tests all
of the possible permutations). Permutation thresholding extends this concept to the MCP.
Specifically, for LBM we create thousands of permutations of the participant’s behavioral
scores, and for each permutation we record the single most statistically significant voxel in the
entire brain. Once completed, we rank-order these familywide maxima: if we have conducted
1000 permutations, the 50th most extreme familywide maximum indicates the 5% threshold to
control for familywise error. Just like cluster thresholding, permutation thresholding is
sensitive to the inherent redundancy of lesion maps, and therefore the effective number of
statistical tests will be fewer than voxelwise Bonferroni correction. However, we argue that
permutation thresholding will offer more accurate FWE control than the cluster thresholding
suggested by Kinkingnéhun and colleagues. Specifically, we note two facts that will tend to
make cluster thresholding somewhat more conservative than the solution provided by
permutation thresholding. First, the method described by Kinkingnéhun et al. suggests that the
number of statistical tests is estimated by the number of contiguous clusters, while Permutation
Thresholding reveals that the number of statistical comparisons is driven by the number of
distinct voxel-lesion patterns (DLP). This is illustrated in Figure 3. Because the number of
unique lesion patterns will generally be less (and never more) than the number of contiguous
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clusters, this suggests that the cluster analysis tends to be somewhat conservative. The second
reason that cluster analysis will tend to return a slightly more conservative threshold rests in
the fact that in the real world, statistical tests such as the t-test tend to be slightly conservative.
Specifically, these tests only deliver optimal results when all their inherent assumptions are
met, while tending to be conservative in situations where the assumptions are violated (i.e.
failing ‘gracefully’). In the real world, statistical tests often include small violations, leading
to slightly inaccurate p-values. Cluster analysis simply adjusts the statistical threshold based
on the number of clusters, and therefore is not sensitive to this influence. On the other hand,
permutation thresholds determine the actual statistical probabilities for the observed data and,
in turn, return nominal values despite small violations of a test’s assumptions. A clear
illustration of this included in Rorden et al’s (2007) Figure 3A which contrasts the conservative
Fisher Exact test to the more accurate Liebermeister measure. This figure shows that the
Liebermeister test is more sensitive than Fisher’s test under FDR thresholding (described
below), reflecting the more extreme values detected by the Liebermeister measure. However,
the lower panel of this figure demonstrates that the two tests perform identically under
permutation thresholding: the Fisher test is consistently conservative, so all the permutations
deliver lower scores than the Liebermeister measure.

We suggest that counting the number of distinct voxel-lesion patterns (as first suggested by
Kimberg et al., 2007) is slightly more accurate than counting the number of contiguous lesion
clusters (as suggested by Kinkingnéhun et al.). Our reasoning is that this method accurately
models the number of tests conducted during permutation thresholding (see Figure 3), and is
computationally simpler (as one does not need to compute which neighbors are identical in
order to define a contiguous cluster). Nevertheless, we acknowledge that cluster thresholding
and counting distinct voxel-lesion patterns will tend to offer very similar solutions.

While permutation does offer the optimal solution to FWE correction, we note that there are
clear reasons why people have sought alternatives such as cluster thresholds. First, traditional
permutation thresholding is very computationally expensive, with the time required for an
analysis scaling linearly with the number of permuations (e.g. a test that requires one minute
will need over 16 hours if one wishes to generate one thousand permutations). Second, there
are many situations where one wants to examine multiple factors (or remove variability
described by nuisance covariates). In theory, it is possible to calculate permutation thresholds
for some multifactorial designs (see Good, 2005), or remove nuisance variables by regressing
nuisance effects from the data. In practice, an approximation of the permutation threshold (such
as counting DLPs) offers an attractive alternative.

Our software (NPM; Rorden et al. 2007) implements a novel solution to the computational
cost of permutation thresholding. Specifically, rather than computing permutations for each
voxel, we compute permutations for each DLP. This method offers precisely the same result
as full permutation thresholding, but is potentially much faster (due to the spatial contiguity
observed with lesion maps). For example, consider an analysis where 51,000 voxels are tested,
but there are only 9,100 DLPs – in this case the statistical computations for the DLP-based
permutation threshold should be approximately five times quicker than the full permutation
method. In practice, we predict that the benefit will be somewhat mitigated by the time required
to generate and detect DLPs, so the benefit may be relatively small for computationally
inexpensive tests (like the t-test), but more dramatic for demanding tasks such as the rank-order
Brunner Munzel test. Our software also utilizes multithreading, a more conventional method
for accelerating permutation thresholding. This should allow a computer with eight CPU cores
to be much more rapid than a system with only a single core. Below we validate the efficiency
of these techniques.
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One final solution to the MCP is to control the False Discovery Rate (FDR) rather than the
Familywise Error Rate. FWE controls the rate of making any false alarms: if we compute 1000
tests with a 5% FWE, there is only a 5% chance that there will be a single false alarm. On the
other hand, FDR controls the ratio of false alarms to hits. For example, consider a test where
100 voxels survive a 5% FDR, in this case we expect that approximately 5 detected voxels are
actually false alarms. FDR and Bonferroni FWE offer identical performance when only a tiny
percentage of the voxels have a detectable signal. On the other hand, FDR is much more
sensitive in situations where a large proportion of the sample shows signal. Therefore, FDR is
dynamic, reflecting the signal in a given dataset. FDR provides a principled approach for
offering reasonable statistical power when conducting many tests. Both VLSM (Bates et al.,
2003) and NPM (Rorden et al., 2007) allow FDR thresholding for LBM studies. We suggest
that this is often a useful threshold for smaller LBM studies, where one does not have the
statistical power to achieve full FWE control.

In brief, we speculate that estimating the Bonferroni correction using the DLPs should closely
approximate the FWE threshold identified through permutation thresholding. If this assertion
is correct, DLPs would provide a computationally simple (and slightly less conservative)
alternative to the cluster analysis method described by AnaCOM and would therefore provide
a useful tool when permutation thresholding is not practical. To test this hypothesis, we
conducted a Monte-Carlo simulation where we calculated both the DLPs and permutation
thresholds for a sample of neurological patients. Furthermore, we predict that using DLPs to
compute precise permutations is faster than computing permutations for each voxel. To test
this prediction, we calculated the time required for these two methods.

Methods
In order to examine the performance of AnaCOM versus conventional LBM measures, we
conducted an analysis including 136 consecutively admitted neurological patients with
unilateral, right hemisphere strokes reported in Karnath et al. (2004) where hemiparesis scores
were available. The degree of paresis of the upper and lower limbs was scored with the usual
clinical ordinal scale, where ‘0’ stands for no trace of movement and ‘5’ for normal movement.
For our analysis, we used the mean score of the upper and lower limb tests as our measure of
hemiparesis. The mean score for these patients was 3.05 (with a range of 0.5), a standard
deviation of 1.9 and a skew of −0.49. In contrast, it is exceptionally unusual for neurologically
healthy controls to achieve a score other than 5. Therefore, for the AnaCOM test we contrasted
patient data against a group of twenty controls scoring 5 on this task.

To contrast AnaCOM to conventional LBM we conducted a Monte-Carlo simulation. The
simulation was repeated 25 times, with each simulation drawing 64 patients from the population
of 136 stroke patients. For the AnaCOM simulations we contrasted these 64 selected patients
to the scores of twenty healthy controls. Note that the sample size of patients and controls
precisely matches the dataset described by Kinkingnéhun et al. in their validation of AnaCOM.
Therefore, for each of the 25 simulations, the same sample of patients was analyzed using three
tests: AnaCOM, traditional LBM using a t-test (Bates et al., 2003) and traditional LBM using
the Brunner-Munzel test (Rorden et al., 2007). Statistics were only computed for voxels that
were damaged in at least three individuals. The statistical maps for each test were thresholded
using the DLPs to generate a Bonferroni 5% correction for familywise error. In other words,
if there were 9100 distinct voxel-lesion patterns, only voxels which exceeded a Z-score of
4.3967 (Z-inverted for 0.05/9100) would be included as being detected. We then created a
mean map for each test, revealing the percentage of simulations where each voxel exceeded
the FWE threshold.
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We conducted a second analysis using the same data and parameters, only changing the
behavioral performance score. While the previous analysis used the actual paresis scores, in
this second analysis the behavioral score was based linearly on the extent of Brodmann Area
44 injured: all controls and all patients with no injury to this region were given a score of 1000,
patients with complete damage to this region received a score of 0, and an individual with 40%
of this region damaged scored 600. The logic behind this synthetic score was to allow an
objective measure for the test performance. One could argue that paresis might be due to large
number of injuries, including white matter injury. In contrast, this simulated behavioral
measure is purely driven by damage to a single region.

Implicit in our use of DLP thresholding is that this value closely approximates the threshold
determined using the more computationally expensive Permutation Thresholding. To
investigate this premise, during the Monte-Carlo simulation described above we
simultaneously measured these two thresholding methods. For each simulation, we computed
the 5% permutation threshold (estimated with 2000 permutations for both the traditional t-test
and traditional Brunner-Munzel results), the 5% DLP threshold, and the lesion overlap
threshold. For example, if a total of 51,000 voxels were lesioned in at least three individuals,
the lesion overlap threshold would be 4.76. If there were 9100 distinct voxel-lesion patterns,
the DLP threshold would be 4.3967. A unique lesion pattern is defined as the occurrence of a
specific order of brain injury.

Our software (NPM; Rorden et al. 2007) implemented a novel form of permutation
thresholding: conducting one statistical test for each DLP, rather than for each lesion. We
hypothesized that this offers a computationally efficient method for estimating permutation
thresholds. We conducted Monte-Carlo simulations to see if the DLP-based permutation
threshold was significantly faster than the conventional permutation thresholding technique.

Our software also includes two techniques to accelerate analysis: DLP-based permutation
threading and multithreading. We conducted twenty Monte-Carlo simulations to evaluate these
techniques, with each simulation selecting 64 patients from our population and conducting a
traditional t-test based LBM. Specifically, we compared the computation times for a single
thread versus eight simultaneous threads. In addition, we computed the time required to
estimate 1000 permutations using the DLP-based and voxelwise permutation thresholds. Note
that this comparison is a stringent test of the DLP method: this method incurs a fixed cost for
identifying the DLPs, but will see greater benefits for more permutations (e.g. if we had selected
4000 instead of 1000 permutations) and more computationally expensive tests (e.g. the t-test
evaluated is much faster than rank-order tasks). The computation time excluded the time to
load the dataset and save statistical maps (a single threaded process that required 10 seconds
for each simulation, regardless of permutation method and thread count). All tests were run on
an eight-core 3GHz Intel Xeon X5365 system with 5Gb of RAM running the Windows XP
64-bit operating system.

Results
Results for the paresis measure are shown in Figure 4, with the rows showing performance of
AnaCOM (Fig. 4A and 4D), the traditional LBM t-test (Fig. 4B) and traditional LBM with the
Brunner-Munzel test (Fig. 4C). Our planned repeated measures t-tests indicated that AnaCOM
detected more voxels than traditional methods. Specifically, AnaCOM detected an average of
33,870 voxels per simulation (SD = 4208), while the conventional t-test detected 2657 voxels
(SD = 1512) and the Brunner-Munzel test detected 1590 voxels (SD = 1428). Statistics revealed
that AnaCOM detected statistically more voxels than the traditional t-test (t(24)=37.12, p <
0.0001) and the Brunner Munzel test (t(24)=37.66, p < 0.0001); further the traditional t-test
detected more voxels than the traditional Brunner Munzel test (t(24)=3.88, p < 0.0007).
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Furthermore, increasing the number of healthy controls used in the AnaCOM analysis from 20
to 64 individuals further boosted the number of voxels detected (mean 48,445; SD = 3508,
compare Fig. 4A with 4D).

Note that in our simulation AnaCOM (Fig. 4A) always detected injury to areas associated with
hemiparesis (e.g. motor cortex, corticospinal tract, putamen). On the other hand, AnaCOM
also exhibits relatively low specificity – many simulations detected regions of the middle
cerebral artery territory that are not classically associated with the motor system. In contrast,
the t-test (Fig. 4B) sometimes fails to detect regions considered critical to movement, but also
has a lower chance of false alarms (rarely detecting regions not associated with hemiparesis).
Finally, the Brunner-Munzel test (Fig. 4C) appears less selective to regions associated with
hemiparesis. We suggest the difference between the classical t-test and Brunner-Munzel test
reflect that rank-order tests are not especially efficient with small sample sizes (see Rorden et
al., 2007). In addition, increasing the number of controls included in the AnaCOM analysis
from 20 to 64 individuals dramatically influenced the number of voxels detected by this test
(Fig. 4D).

As noted, visual inspection of Figure 4 indicates that AnaCOM often detects regions not
traditionally associated with the motor system. We argue that this reflects poor spatial
specificity, but the previous description could in theory reflect improved sensitivity. In other
words, one could interpret Figure 4A as revealing “previously undiscovered motor regions”.
If this is the case, damage to these “novel motor areas” should predict paresis, even after one
factors out deficits predicted by damage to the classic motor areas. However, analysis of the
data suggests that many of the results probably reflect poor specificity. For example, consider
the voxel at MNI coordinates X= 32, Y=−76 Z=0, which was detected in all 25 of the AnaCOM
simulations using a control population of 64 individuals. The 15 individuals with injury to this
voxel have a mean paresis score of 4.3 (SD = 1.1), while the 121 people where this voxel is
spared actually perform better (2.9, SD = 1.9). To further investigate this effect, we conducted
a multiple regression analysis that used paresis scores as the dependent measure with damage
to this novel voxel as well as classic motor areas as independent variables. The classic areas
of the motor system were defined as the precentral gyrus and putamen as localized by Tzourio-
Mazoyer et al. (2002) and the corticospinal tract identified by Bürgel et al. (2006). For each
individual we counted the number of voxels injured in this classic motor area (a continuous
measure) as well as the presence or absence of injury to the novel location identified by
AnaCOM. Damage to classic areas correlated with paresis severity (r= 0.58, t[133]=7.923,
p<0.0001) while there was a numerical trend for damage to the novel area to predict better
performance (r=−0.232, t[133]=−1.54, p<0.126). This suggests that this voxel does not impair
motor performance.

Results from the synthetic behavioral data are shown in Figure 5. In this simulation, the extent
of ‘impairment’ is defined as the percent damage to Brodmann’s Area 44 (this region is shown
in panel 5D). This allows us to precisely measure the incidence of hits (accurately detecting
the 1247 voxels that influence the behavior) and false alarms (reporting voxels that have
absolutely no direct influence on the behavioral score). AnaCOM made an average of 1216
hits, but with an average of 38529 misses. In contrast, the t-test made an average of 1181 hits
with 12259 misses. Finally, the Brunner-Munzel test made an average of just 132 hits (as noted
earlier, this test can have low power with small sample sizes) with 4480 misses. Note that
despite the conservative statistical threshold (5% corrected for multiple comparisons), all of
the tests made a substantial number of false alarms. Presumably, this reflects the influence of
vasculature in predicting lesion location, a concept we discuss in the discussion.

We also conducted repeated measures t-tests to determine if the DLP threshold accurately
estimated the permutation threshold. For the t-test, the mean statistical threshold determined
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using permutation thresholding was Z > 4.41 (SD 0.1242), while the unique lesion pattern
method returned a mean threshold of 4.39 (St Dev 0.01454), finally the lesion overlap threshold
yielded a mean threshold of 4.76 (St Dev 0.0116). Planned statistical comparisons using the
repeated-measures t-test revealed no difference between the results derived from permutation
and unique lesion patterns (t(24)=0.77, ns), while both were statistically different than the
lesion overlap method (permutation method differed t(24)=13.73, p < 0.0001; unique pattern
differed t(24)=94.13, p < 0.0001). Likewise, for the Brunner-Munzel test the mean threshold
for the Permutation Test was Z= 4.42 (SD 0.1435), while the values for the DLP and lesion
overlap method were identical to the values from the t-test thresholds. Planned t-tests revealed
that the lesion overlap method was statistically different from the permutation (t(24)=11.4, p
<0.0001) and the DLP measure (t(24)=94.13, p <0.0001), but that the permutation and DLP
methods did not differ (t(24)=0.98 P<0.3367).

Full permutation thresholding (one computation per voxel for each permutation) was compared
to our DLP-based permutation thresholding (one computation per DLP for each permutation).
Further, we contrasted runs with one thread to runs using eight simultaneous threads. For one
thread, the DLP method required 53.3 s (SD = 3.5) while the full method required 115.5 s (SD
= 6.5). For eight simultaneous threads, the DLP method required 17.3 s (SD = 0.66) versus
24.8 s (SD = 1.15) for the full method. Therefore, increasing the number of threads lead to a
nearly linear improvement (eight times the threads resulted in a factor of 5.9 to 7.1 increase in
speed). The DLP-based method also resulted in a faster computation, but these effects
decreased as the number of threads increased. This likely reflects our implementation where
each thread generates its own cache of recently observed DLPs (we speculate that a
multithreaded process that builds a single comprehensive list of all DLPs should scale better
than our implementation).

Discussion
Our results suggest that AnaCOM offers poor specificity. We suggest that this test is prone to
identify unrelated regions that are only associated with crucial regions in terms of vascular
architecture.

A further concern regards a core assumption of AnaCOM – that stroke patients without lesions
to a critical module will perform in the same range as normal controls. This hypothesis is
probably violated when examining patients with acute stroke (which make up the large percent
of LBM studies). Patients during acute care are often emotionally stressed, and adapting to an
unfamiliar living condition. Many acute stroke patients exhibit generally poor performance on
a wide range of tasks due to reasons that are not directly related to the location of their brain
injury. Therefore, the traditional method of conducting statistical tests within a group of stroke
patients with similar time since lesion onset seems more appropriate than AnaCOM’s approach
of comparing patients with acute brain injury to neurologically healthy controls.

We acknowledge that our investigation of hemiparesis, as well as our synthetic behavioral
measure, offer an exceptionally difficult challenge for the AnaCOM method. In particular, the
control population performs at ceiling on these tasks, showing no variability. Therefore, one
could argue that the specificity of AnaCOM may fluctuate somewhat depending on the
behavioral task applied. However, we argue that this performance is similar to many common
neuropsychological tests.

Another unusual quirk of AnaCOM is the influence of the control population size. It is
interesting that Kinkingnéhun et al. (2007) contrasted the performance of 64 neurological
patients to a sample of just 20 neurologically healthy controls. It is worth noting that it is much
easier to collect data from neurologically healthy controls (as one does not need to collect brain
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scans, plot the extent of the injury, and normalize the data). By increasing the size of the control
sample, one can dramatically increase the statistical significance, without actually modulating
the effect size, as shown by contrasting Figures 4A and 4D. This increased statistical power
also impairs the specificity of this measure.

To analyze their data, the authors of AnaCOM use a traditional t-test, which makes several
assumptions regarding the data. Specifically, this test assumes that the data are normally
distributed and that the two groups have similar variance. We suggest that both of these
assumptions often may be violated if AnaCOM is applied to typical neuropsychological
measures. Specifically, for many neuropsychological measures one might expect control
patients to have ceiling effects, while stroke patients may show a graded range of performance
(with individuals showing variable levels of impairment). The ceiling effects can lead to
negatively skewed distributions (violating the normality assumption). Furthermore, if the
neurologically healthy group exhibits ceiling effects, this group will have less variability than
the patient group. On the other hand, more challenging tasks may lead to a graded range of
performance in the healthy individuals, but floor effects in the brain damaged patients. This
would lead to positively skewed data as well as variance differences between groups. We
suggest that if the data are reasonably normal, Welch’s t-test may be more appropriate than the
classic Student’s t-test. The Welch’s t-test is sensitive to differences in the between group
variance, while the traditional t-test pools variability. Further, in situations where the data is
in fact normal, the Welch’s t-test has similar statistical power to the conventional t-test (Ruxton,
2006), though it may offer slightly less power with unequal group sizes. Alternatively, a non-
parametric test, such as the Brunner-Munzel measure could be used (Rorden et al., 2007).

In our synthetic behavioral analysis, the ‘patient deficit’ was actually a pure measure of the
extent injury to BA44. Again, this analysis found that AnaCOM was particularly liberal –with
this test typically identifying much of the middle cerebral artery territory. However,
conventional LBM techniques also often detected regions outside BA44, even though by
definition these voxels did not directly influence the behavioral measure. This analysis reveals
a core weakness of the lesion mapping methods – damage to peripheral regions is often strongly
predicted by injury closer to the root of the vascular branch. This can lead to LBM methods
identifying central regions as being involved with functions (see Hillis et al., 2004; Husain &
Nachev, 2007). This finding impacts the inference that can be drawn from contemporary lesion
mapping studies. The tests accurately identify that regions near BA44 are predictive of the
deficit variable (which might be clinically relevant). However, one cannot infer that all the
regions identified using lesion mapping are necessary for the task (limiting the theoretical
inference). This analysis demonstrates that this confound can pose a real challenge for lesion
mapping, and emphasizes that this method must be complemented by other convergent
methods that have different sets of assumptions.

The inherently low statistical power of conventional voxelwise LBM means that it is rarely
suitable for the small sample sizes common when examining rare disorders. In these situations,
researchers may be tempted to use AnaCOM. We argue that the inferences that can be drawn
from the use of this tool are limited. Potential alternatives include region of interest analysis
or conducting a Bayesian lesion-deficit analyses (BLDA) as described by Chen et al. (2008).
This technique detects complex linear or nonlinear associations between brain-lesion locations
and behavior. The multivariate BLDA complements the mass-univariate approach of
conventional voxelwise LBM. Unlike conventional methods, BLDA can dissociate different
regions that independently predict deficits. Furthermore, traditional methods ignore the fact
that lesions are contiguous clusters (as they treat each voxel as an independent analysis). In
contrast, BLDA can identify clusters that are strongly associated with a deficit (as BLDA
explicitly models the spatial correlations among voxels), potentially offering better sensitivity
and allowing the user to generate conditional probability tables that are useful for computing
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the sensitivity and specificity of the cluster. These measures can also help plan power analyses
for planning larger, objectively thresholded studies using traditional LBM techniques.
Unfortunately, similar to traditional LBM methods, this technique is also sensitive to the
influence of vasculature, this is demonstrated in red on Figure 5D. This figure shows the results
of BLDA applied to the entire dataset of 136 individuals (as this software currently requires
binomial behavioral data, we scored any individual with at least 10% injury to BA44 as
impaired, with all other individuals counted as having normal performance). Note that the
region identified by BLDA extends well beyond the border of BA44, though these results can
not be directly compared to the other statistical analyses (as we used a binomial classifier for
BLDA and a larger patient sample).

A clear result of our investigation is that counting the distinct lesion patterns provides a
computationally simple approximation of permutation thresholding. This is useful in situations
where permutation thresholding is not practical – for example, some forms of multifactorial
analysis or estimating a power analysis. We note that the DLP threshold is very similar to the
cluster threshold suggested by Kinkingnéhun et al. (2007), though it will tend to be slightly
less conservative (as shown in Figure 3), and is computationally more efficient (as one does
not need to consider a voxel’s neighbors). Our simulations found that there was no statistically
detectable difference between DLP and true permutation thresholding. In contrast, on
theoretical grounds we predicted that DLP would tend to be slightly over-conservative. Indeed,
this is precisely the pattern reported by Kimberg and colleagues (2007) where the DLP test
reliably performed more conservatively than the permutation values. One important difference
is that the lesions plotted by Kimberg and colleagues were plotted on each and every slice of
their dataset, while our dataset used lesion maps that were plotted on one slice each 8mm (or
10mm for the most dorsal slices). As a result, our dataset had less spatial coherence than a
complete voxelwise analysis. Therefore, we suggest that the results of Kimberg and colleagues
probably more closely approximate typical usage, where lesions are drawn on all slices of a
high-resolution image. With modern computers, the computational cost of permutation
thresholding is negligible, and therefore we recommend this technique when applicable, but
suggest that DLP provides an alternative for multi-factor designs and estimates of statistical
power.

We also implemented and validated an accelerated permutation thresholding method. Our
results suggest that this method is substantially quicker full permutation thresholding while
returning identical results. In addition, our multithreaded implementation further reduces
computational time for systems with multiple CPU cores. Where applicable, we suggest that
permutation thresholding offers the optimal method for controlling familywise error.

In conclusion, we suggest that AnaCOM the inference one can draw based on AnaCOM are
substantially different from traditional LBM. Therefore, results using this new technique need
to be interpreted with caution. We acknowledge that traditional voxelwise LBM has low
statistical power for small sample sizes, but suggest that region of interest or BLDA approaches
avoid many of the limitations inherent with AnaCom.
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Figure 1.
The partial injury problem. Consider a module responsible for motor control (black shape).
Two individuals have lesions that damage part of this module (dotted and dashed lines),
impairing movement. Both patients have deficits, yet their injuries are mutually exclusive. This
causes conventional lesion deficit mapping to have poor statistical power: voxels that are
damaged in one patient with a deficit are spared in the other patient who has the same deficit.
AnaCOM is resistant to this problem, as the performance of patients with damage to a particular
voxel is contrasted with performance of neurologically healthy individuals.
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Figure 2.
Poor specificity of AnaCOM: strokes often damage portions of the middle cerebral artery
territory (black shape). This territory includes regions that are critical for movement (dashed
line) as well as regions that are not (dotted lines). However, damage to one region will often
be accompanied by damage to another region. In this situation, AnaCOM has poorer specificity
than conventional LBM techniques. Note that the critical features of this diagram are identical
to Figure 1.
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Figure 3.
A comparison of cluster thresholding as described by Kinkingnéhun and colleagues versus
permutation thresholding. Consider the lesion maps of five patients (A..E). The region in gray
is lesioned in patients A, B and C exclusively. Cluster thresholding counts the two gray areas
as two independent tests (as they are not spatially contiguous). In contrast, these two locations
will generate the same test statistic in every possible permutation. Therefore, Bonferroni
correction based on the number of spatially contiguous clusters will tend to be more
conservative than the value determined through permutation thresholding. We argue that
counting the number of unique lesion overlap patterns best approximates the permutation
thresholding.
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Figure 4.
Voxels that predict hemiparesis, as reported by AnaCOM (A, using 20 healthy controls),
traditional LBM with the t-test (B), traditional LBM with the Brunner-Munzel test (C) and
AnaCOM using 64 healthy controls (D). These maps show the results of twenty-five Monte-
Carlo simulations, each selecting 64 stroke patients from a population of 136, and each
thresholded at p < 0.05 corrected for multiple comparisons based on the number of unique
lesion patterns. Therefore, regions that appear red were detected in all of the simulations, while
regions in green were detected in 60% of the simulations. Axial slices correspond to −16, −8,
0, 8, 16, 24, 32 and 40mm in MNI space. Note that AnaCOM identifies large regions of middle
cerebral artery territory (A).
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Figure 5.
The discrepancy displayed in Figure 4 between traditional LBM tests (Fig. 4B and C) and the
AnaCOM method (Fig. 4A and D) could in theory be due to either enhanced sensitivity or
poorer specificity of AnaCOM. Therefore, we conducted a new analysis where each patient’s
‘behavioral deficit’ was actually calculated as the extent of injury to Brodmann’s Area 44 (this
region is shown in panel 5D). Therefore, by definition the ‘deficit’ can be perfectly predicted
by damage to BA44, and no other region directly predicts this deficit. In all other respects, this
analysis was identical to Figure 4. The results of 25 Monte-Carlo simulations are shown for
AnaCOM (A, using 20 healthy controls), traditional LBM with the t-test (B), traditional LBM
with the Brunner-Munzel test (C). Panel D shows the actual extent of our BA44 region in green,
while in red we show the region detected by Bayesian lesion-deficit analyses [BLDA] (using
the entire 136 patient dataset, as described in the text). Note that all tests appear biased by
vasculature (e.g. damage to the rostral part of the MCA territory strongly predicts injury to
BA44). However, this bias is especially pronounced for AnaCOM, which typically detects
most of the middle cerebral artery territory.
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