
HAL Id: hal-02091699
https://hal.laas.fr/hal-02091699

Submitted on 6 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey on Parallel Genetic Algorithms for Shop
Scheduling Problems

Jia Luo, Didier El Baz

To cite this version:
Jia Luo, Didier El Baz. A Survey on Parallel Genetic Algorithms for Shop Scheduling Problems. IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW 2018), May 2018,
Vancouver, Canada. pp.629-636, �10.1109/IPDPSW.2018.00103�. �hal-02091699�

https://hal.laas.fr/hal-02091699
https://hal.archives-ouvertes.fr

 1

A Survey on Parallel Genetic Algorithms for Shop

Scheduling Problems

Jia LUO

LAAS-CNRS, Universite de Toulouse, CNRS

Toulouse, France

jluo@laas.fr

Didier EL BAZ

LAAS-CNRS, Universite de Toulouse, CNRS

Toulouse, France

elbaz@laas.fr

Abstract—There have been extensive works dealing with

genetic algorithms (GAs) for seeking optimal solutions of shop

scheduling problems. Due to the NP hardness, the time cost is

always heavy. With the development of high performance

computing (HPC) in last decades, the interest has been focused

on parallel GAs for shop scheduling problems. In this paper, we

present the state of the art with respect to the recent works on

solving shop scheduling problems using parallel GAs. It

showcases the most representative publications in this field by the

categorization of parallel GAs and analyzes their designs based

on the frameworks.

Keywords—Shop Scheduling; Genetic Algorithms; Parallel

Computing; HPC

I. INTRODUCTION

The Genetic algorithm (GA) is a stochastic search
algorithm based on the principle of natural selection and
recombination [1]. It is a kind of evolutionary algorithm and
has been successfully applied to solve many optimization
problems, e.g., knapsack problems, shop scheduling problems
or travelling salesman problems [2][3][4]. Nevertheless, when
GAs are applied to more complex and larger problems, the
required time to find adequate solutions is increased.
Particularly, repeated fitness function evaluation is often the
most prohibitive and limiting segment when GAs are hired to
find an optimal solution for high-dimensional or multimodal
implementations. Meanwhile, GAs also suffer from the
problem of a tendency to converge towards local optima rather
than the global optimum. Previous works in this area suggest to
enlarge population size, increase mutation rate or hire niche
penalty in selection to keep the diversity of GAs. However, any
of them may raise the complexity of the algorithm and lead to
more time consumption.

No doubt, parallel implementation is considered as one of
the most promising choices to make GAs work faster. There
are different ways of exploiting parallelism in GAs [5]: master-
slave models, fine-grained models, island models and hybrid
models. The master-slave model is the only one that does not
affect the behavior of the algorithm by distributing the
evaluation of fitness function to slaves. The fine-grained model
works with a large spatially population. The evolution
operations are restricted to a small neighborhood with some
interactions by overlap structure. The island model divides
populations into subpopulations. Subpopulations on the islands
are free to converge towards different sub-optima and a
migration operator can help mix good features that emerge

from the local island. The hybrid model combines any two of
the above methods.

The shop scheduling problem is one of the best known
combinatorial optimization problems where jobs are assigned
to machines at particular times. The use of evolutionary
algorithms for shop scheduling problems started around 1980
[6]. There have been a huge number of publications dealing
with GAs for shop scheduling problems. Due to the NP
hardness, the time cost to obtain an adequate solution by the
serial GA is always heavy. With the development of high
performance computing (HPC) in last decades, the
implementation of parallel GAs to shop scheduling problems
has been extensively studied. The purpose of this paper is to
give a tutorial survey of recent works on solving scheduling
problems in manufacturing systems using parallel GAs.

The rest of this paper is organized as follows. In section 2, a
brief introduction about shop scheduling problems and their
new integrated factors are given. Section 3 discusses the typical
parallel GAs, namely, master-slave models, fine-grained
models and islands models, developed for the scheduling
problems in manufacturing systems. Section 4 analyzes the
frequently used HPC frameworks and their associated parallel
GAs design in this domain. Finally, conclusions are stated in
section 5.

II. SHOP SCHEDULING PROBLEMS

The shop scheduling problem is a classic optimization
problem. One instance of the problem consists of a set of n jobs
J1, J2, …, Ji , ..., Jn and a set of o machines M1, M2, …, Mm, …,
Mo. Each job Ji comprises a number of g stages S1, S2, …, Ss,
…, Sg. The processing time of one step of Ji on a particular
machine is denoted as an operation and is abbreviated by (j, s,
m). Usually, it is given in advance as Pjsm with the release time
Rj and the due time Dj. Additionally, other required conditions
are shown in Table 1.

TABLE I. OTHER REQUIRED CONDITIONS FOR SHOP SCHEDULING PROBLEMS

NO. Description

1 Each operation of a job must be processed by one and only one

machine.
2 Each machine can process no more than one operation at a time.

3 Each job is available for processing after the release time.

4 Setup times for job processing and machine assignment times

between stages are not taken into consideration.
5 There is infinite intermediate storage between machines.

 2

There are three ways to classify the scheduling problem in
manufacturing systems by the machine environment, the job
characteristics and the optimization criterion [7]. Most of the
works concern on the three basic types: a flow-shop, a job-shop
and an open-shop. In a flow-shop, each job passes through the
machines with the same order whereas a job-shop enables
specified jobs have possibly different machine orderings. In an
open-shop, there is no particular route imposed on jobs. In
addition to theses three types, flexible shops also catch a lot of
attentions. It is a combination of a shop scheduling problem
and a parallel machine scheduling problem, in which at least
one stage consists of several parallel machines [6]. Most of the
works considered are the flexible flow shop or the flexible job
shop.

When a feasible schedule is given, we can compute for
each Ji: the completion time Cj, the tardiness Tj = max{0, Cj -
Dj}, and the unit penalty Uj = 1 if Cj > Dj, otherwise 0. The
most common optimality criteria are the minimization of the
makespan Cmax, the minimization of the sum of the weighted
completion time ∑𝑤𝑗𝐶𝑗 , the minimization of the sum of the

weighted tardiness ∑𝑤𝑗𝑇𝑗, and the minimization of the sum of

the weighted unit penalty ∑𝑤𝑗𝑈𝑗 , or any combination among

them.

With the development of modern manufacturing, some new
factors are integrated into the basic shop scheduling problems,
such as energy controlling, dynamic environment and so on.
Xu et al. built a discrete-time mixed-integer programming
model and a slot-based mixed-integer programming model in
[8] to achieve a global optimal solution between the peak
power and the traditional production efficiency without any
compromise on computing efficiency. Tang et al. [9] adopted a
predictive reactive approach based on an improved particle
swarm optimization to search for the Pareto optimal solution in
dynamic flexible flow shop scheduling problems reducing the
energy consumption and the makespan.

Most shop scheduling problems are known as strong NP-
hard problems [10]. Many works to solve it by exact methods
and meta-heuristic methods have been done. However, this
class of problems requires complex and time-consuming
solution algorithms. Although the speed of the best
supercomputer increases 10 times each 3 or 4 years recently,
this increase has only a little influence on the size of solvable
problems [11]. Therefore, efforts to coordinate these algorithms
with HPC accelerators to solve shop scheduling problems
efficiently and effectively are deeply desirable.

III. GENETIC ALGORITHMS WITH SCHEDULING PROBLEMS IN

MANUFACTURING SYSTEMS

A. Simple Genetic Algorithms

A simple GA [1] starts with a randomly generated initial
population consisting of a set of individuals. An individual is
representative by a chromosome. For flow shop problems, a
standard chromosome consists of a string of length n, and the i-
th gene contains the index of the job at position i [6]. An
individual describes a feasible schedule of jobs’ sequence on
target machines. For job shop problems, there are two ways of
chromosome representation: direct way and indirect way. The
direct way is similar with the way for flow shop problems: a

feasible schedule is directly encoded into the chromosome,
whereas the chromosome in the indirect way shows a sequence
of dispatching rules for job assignment [12]. As no imposed
technological routes of the jobs for open shop problems, both
of the encoding approaches for the flow shop and the job shop
can be applied in this case. The fitness value of each individual
is used to evaluate the current population. It is related to the
objective function value of shop scheduling problems at the
point represented by a chromosome. Since most common
optimality criteria of shop scheduling problems are about
minimization. The fitness function FIT(i) of an individual i
usually can be transferred as [6]:

𝐹𝐼𝑇(𝑖) = 𝑚𝑎𝑥(�̅� − 𝐹𝑖(𝑆𝑖),0)

where 𝐹𝑖(𝑆𝑖)denotes the objective function value of a feasible

schedule from individual i and �̅� states the objective function
value of some heuristic solution.

As the value of object function for shop scheduling problems
are generally positive, some papers measure the fitness
function FIT(i) as:

𝐹𝐼𝑇(𝑖) =
1

𝐹𝑖(𝑆𝑖)
 2

Three GA operations: selection, crossover and mutation,
work on these chromosomes to get new search points in a state
of space. Usually, individuals are first selected through a
fitness-based process. For shop scheduling problems, solutions
with larger fitness values are more likely to be selected. Some
well-known methods are implemented in this step: the roulette
wheel selection, the stochastic universal sampling, the
tournament selection and so on [13]. Next, the crossover takes
two random individuals kept after selection and exchanges
random sub-chromosomes. The classic methods are the n-point
crossover and the uniform crossover. Due to particular
requirements of different shop scheduling problems, additional
steps may be required to repair the illegal offspring caused by
the crossover. The mutation then alters some random value
within a chromosome. Different from the binary encoding, the
mutation for shop scheduling problems works often based on
the neighborhoods e.g. shift mutation (insertion neighborhood)
or pairwise interchange mutation (swap neighborhood) to
respect feasible solutions. Population evaluation is executed
after these three steps. Sometimes, an elitist strategy is hired
afterwards to keep limited number of individuals with the best
fitness values to the next generation. This process repeats until
the termination criteria have been satisfied. The full procedure
is stated in Table 2.

TABLE II. PSEUDO-CODE OF THE SIMPLE GA

1: initialize();
2: while (termination criteria are not satisfied) do

3: Generation++

4: Selection();

5: Crossover();

6: Mutation();

7: FitnessValueEvaluation();
8: end while

 3

B. Master-Slave Genetic Algorithms

Master-slave GA is known as global parallel GA as well. It
keeps a single population as a simple GA that is stored at the
master side. In this case, each individual is free to compete and
mate with any other. Since the fitness value calculations of
individuals are independent without any communication with
others, the slaves take care of fitness evaluation in parallel.
Data exchange occurs only when sending and receiving tasks
between the master and slaves. Obviously, frequent
communication overhead offsets some performance gains from
slaves’ computing. However, as master-slave GA is the easiest
parallel model to be implemented and does not assume
underlying architecture, it is still very efficient when the
evaluation is complex and requires considerable computation.
The steps of this parallel model are presented in Table 3.

TABLE III PSEUDO-CODE OF THE MASTER-SLAVE GA

1: Initialize();

2: while (termination criteria are not satisfied) do

3: Generation++
4: Selection();

5: Crossover();

6: Mutation();
7: Parallel_FitnessValueEvaluation_Individuals();

9: end while

1）job shop scheduling problems

AitZai et al. modeled the job shop scheduling problem with
blocking using the alternative graph with conjunctive arcs and
alternative arcs in [14]. In addition to a parallel branch and
bound method, two master-slave GA parallelization methods
were also presented. The first one was based on CPU
networking with a star network of inter-connected computers.
On the opposite, the second one worked on GPU with some
memory management respecting to CUDA (Compute Unified
Device Architecture) framework, which was a NVIDIA’s
parallel computing architecture that increased computing
performance by harnessing the power of GPU. Numerical tests
were performed on a station equipped with CPU×2: Intel Xeon
E5620 and GPU: NVIDIA Quadro 2000 01 Go GPU. With a
population size 1056 and a limited total execution time 300s,
the master-slave GA using GPU could get maximum 15 times
more explored solutions than the GA using CPU. Moreover, a
related earlier work was introduced by AitZai in [15]. In order
to improve the solution of job shop scheduling problems,
Somani et al. [16] imposed a topological sorting step to the GA
before the fitness value calculation, which was used to generate
the topological sequence of directed acyclic graph. The parallel
implementation of the proposed GA in CUDA environment
consisted of two kernels. The former one was used for making
the topological sequences by the help of topological sorting,
while the later one was hired to calculate the makespan from a
longest path algorithm. The crossover and mutation were
performed between two randomly selected schedules on CPU.
Experiments was setup with Intel(R) Xeon(R) E5-2650 @ 2.00
GHz and NVIDA Tesla C2075 (448 cores) and results have
shown the proposed GA performed around 9 times faster for
large-scale problems than the sequential GA.

Another job shop scheduling problem was studied by Mui
et al. [17] where a prior-rule was used to create active

schedules. The selection combined the idea of an elitist strategy
and a roulette wheel selection, whereas the crossover hired a
GT algorithm implemented on three parents and the mutation
used neighborhood searching technique. With this design, the
main part of the GA could be computed independently. In a
parallel environment, the master-slave GA was employed
where the slaves performed the GA evolutionary operators
concurrently and the master searched the global optimum
among optimal results received from slaves. The proposed
method was run on the CSS computer server system with 6
computers, in which each computer had a Pentium-4 CPU with
4GB free of ram. Empirical results have shown the master-
slave GA with 6 processors could save 3 to 4 times the
execution time compared to the sequential version.

2）flow shop scheduling problems

A master-slave GA dealing with a single population and a
group of local subpopulation was presented in [18] for a flow
shop problem. This method involved a master scheduler and a
set of slave processors. The master scheduler ran the GA
operators (partial replacement selection, cycle crossover and
swapping mutation) of all individuals sequentially. When the
evolution of one individual was finished, it was placed in the
unassigned queue from which the master scheduler partitioned
the fitness value calculation to slave processors in batches. The
choice of candidate slave processors was made upon the
involved communication overhead and their computational
potential. The available resources among slave processors in
the distributed system could vary over time. Moreover, all
individuals were maintained in the master scheduler
synchronously. The proposed GA was implemented on a laptop
with Prentium IV core 2 Duo 2.53 GHz CPU. The outputs
showed the new algorithm could be 9 times faster maximally
than the results of serial GA achieved by the Lingo 8 software.

Attentions to use master-slave GA to shop scheduling
problems are increased in the last decade and the work is
carried with various underlying architectures. Since only
independent tasks are executed on slaves without
communication cost among them, both the conventional GA
and any improved GAs can be implemented with it easily.
Although the communication between the master and the
slaves is an impediment in speed, it still performs well to solve
shop scheduling problems whose fitness value calculation is
complex and requires considerable computation.

C. Fine-grained Genetic Algorithms

Fine-grained GA can also be called as neighborhood GA,
diffusion GA or massively parallel GA. The main idea is to
map individuals of a single GA population on a spatial
structure. An individual is limited to compete and mate with its
neighbors, while the neighborhoods overlapping makes good
solutions disseminate through the entire population. This model
obtains good population diversity when dealing with high-
dimensional variable spaces [19]. Meanwhile, it is easy to be
placed in any two dimensional grid, as many massively parallel
machines are designed with this topology. However, we cannot
neglect the great influence from the spatial structure, which
generally has little chance to be modified. The implemented
process of the fine-grained GA is shown in Table 4.

 4

TABLE IV PSEUDO-CODE OF THE FINE-GRAINED GA

1: Initialize();

2: while (termination criteria are not satisfied) do

3: Generation++

4: Parallel_NeighborhoodSelection_Individuals();

5: Parallel_NeighborhoodCrossover_Individuals();
6: Parallel_Mutation_Individuals();

7: Parallel_FitnessValueEvaluation_Individuals();

8: end while

1）job shop scheduling problems

A fine-grained GA solving job shop scheduling problems
was considered by Tamaki et al. [20]. In this paper, the
selection was executed locally in a neighborhood of each
population. The objectives of this neighborhood model were to
improve search in the GA by suppressing favorably the
premature convergence phenomena, and to reduce
computational time by implementing it on a parallel computer
at the same time. The method was then modified as an absolute
neighborhood model and implemented on Transputer.
Transputer was a MIMD (Multi-Instruction Multi-Data)
machine with microprocessors, featuring integrated memory
and serial communication links. Through several
computational experiments for job shop scheduling problems,
the parallel GA with 16 processors could shorten the
calculation time dramatically. However, as Transputer did not
equip with shared memory, the information exchange was
handled through communication operations. Therefore, the
calculation time reduction was not able to reach an ideal level.
Lin et al. [21] investigated parallel GAs on job shop scheduling
problems with a direct solution representation, which encoded
the operation starting times. The GA operators were inspired
by the G&T algorithm with the random selection, the THX
(time horizon exchange) crossover and the THX mutation. Two
hybrid models built up by the fine-grained GA with a two-
dimensional torus topology and the island GA connected in a
ring were discussed in this paper. The first one was an
embedding of the fine-grained GA into the island GA, in which
each subpopulation on the ring was a torus. The migration on
the ring was much less frequent than within the torus. In the
second model, the connection topology used in the island GA
was one which is typically found in the fine-grained GA, and a
relatively large number of nodes were used. The migration
frequency kept the same in the island GA. Those two methods
were carried on a Sun Ultra 1 which was a family of Sun
Microsystems workstations based on the 64-bit Ultra SPARC
microprocessor with a single population GA, two island GAs
of different subpopulation sizes and one torus fine-grained GA.
The execution time comparison was only made between the
single population GA and island GAs with the speedup of 4.7
and 18.5 respectively. Regarding to solutions quality, best
results were obtained by the hybrid model consisting of island
GAs connected in a fine-grained GA style topology by
combing the merits from them.

Compared with other two kinds of parallel GA, it seems the
implementation of fine-grained GA for shop scheduling
problems is rare and outdated, no matter the amount of related
papers or the various types of problems treated. With the
development of modern computing accelerators with two-
dimensional grid environment, like GPU, this implementation
has a lot of potential in the near future. Apart form

manufacturing systems, the fine-grained GA is also hired for
task scheduling problems [22]. It is another type of scheduling
problems that focuses on minimizing makespan as well but for
a set of tasks to be executed in multiprocessor systems. In this
domain, the fine-grained model is treated sometimes as the
parallel cellular GA [23].

D. Island Genetic Algorithms

 The island model is the most famous for the research on
parallel GAs. In some papers, it may be called as coarse-
grained models, multi-deme models, multi-population models,
migration models or distributed models. Unlike previous
parallel GAs, this model divides the population into a few
relatively large subpopulations. Each of them works as an
island and is free to converge towards its own sub-optima. At
some points, a migration operator is used to exchange
individuals among islands. These configurations make the
average population fitness improve faster and mix good local
feature efficiently [5]. The main idea of this parallelization is a
simple extension of the serial GA while the island model based
underlying architecture is easily available. Therefore, the island
GA dominates the work on parallel GA for shop scheduling
problems. A brief outline about this algorithm is illustrated in
Table 5.

TABLE V PSEUDO-CODE OF THE ISLAND GA

1: Initialize();
2: while (termination criteria are not satisfied) do

3: Generation++

4: Parallel_SubSelection_Islands();
5: Parallel_SubCrossover_Islands();

6: Parallel_SubMutation_Individuals ();

7: Parallel_FitnessValueEvaluation_Individuals();
8: if (generation % migration interval==0)

9: Parallel_Migration_Islands();

10: end if
11: end while

1）job shop scheduling problems

Huang et al. [24] discussed flow shop scheduling problems
with fuzzy processing times and fuzzy due dates, where the
possibility and necessity measures with exact formulas were
adopted to maximize the earliness and tardiness
simultaneously. A modified GA was designed to solve the
problems with the random keys, the parameterized uniform
crossover and the immigration. If Pt was the family of
chromosomes in the t-th generation, then |Pt| denoted the
population size of Pt. The next generation was made of a% best
chromosomes from Pt, b% chromosomes for taking crossovers,
and c% chromosomes generated randomly as immigrations,
where a+b+c=100. In order to get more efficient convergence,
an idea of the longest common substring and rearranging of the
chromosomes chosen in the mating pool were also imposed in
the algorithm. The full procedure was coded on CUDA by
separating the whole population into blocks using the block
size of 256 or 128. Circumventing to load the random keys of
all chromosomes to global memory, one chromosome was
distributed to a block so that all random keys could fit in the
shared memory. Although there was no migration among
blocks, the idea was organized based on the island GA. In the
case of 200 jobs, the numerical simulations on a 2.33 GHz Intel

 5

Core2 Quad desktop computer with 2 GB of RAM, and an
NVIDIA GeForce GTX285 graphics card showed that the
proposed GA combining with CUDA parallel computation got
19 times speedup. Similarly, Zajicek et al. [25] proposed a
homogeneous parallel GA model on the CUDA architecture,
where all computations were carried out on the GPU in order to
reduce communication between CPU and GPU. The main idea
was based on an island GA with a tournament selection, an
arithmetic crossover and a Gaussian mutation. Experiments
were carried on a system with AMD Phenom II X4 945 3.0
GHz processor and NVIDIA Tesla C1060 GPU. Some
instances of the flow shop scheduling problem were solved
with speedup from 60 to 120 comparing to the equivalent
sequential CPU version.

Park et al. [26] studied a hybrid GA and its parallel version
for job shop scheduling problems with an operation-based
representation. Concerning the parallel GA, the population was
divided into two or four subpopulations. Each subpopulation
acted as a single-population GA, where some individuals could
migrate from one subpopulation to another at certain intervals.
As four population initialization methods, four crossover
operators and two selection operators were proposed in this
paper, different subpopulations were equipped with different
settings to help them evolve independently. Beside, the
migration was implemented synchronously with a static ring
type connection scheme. Experiments were carried out on a PC
with Pentium II 350 and 64MB main memory with MT, ORB
and ABZ benchmark problems. The outputs confirmed the
island GA improved not only the best solution but also the
average solution from results of single GA. Asadzadeh et al.
addressed a parallel agent-based GA for a job shop scheduling
problem in [27]. Chromosomes of the population, indicating
feasible schedules for problem instances were created by the
management agent and the execute agent. Afterwards, the
management agent divided it into subpopulations with the same
size and sent each of them to processor agents. Each processor
agent located on a distinct host and executed GA with a
roulette wheel selection, a partially matched crossover and a
subsequent gene mutation on its subpopulation independently.
Different subpopulations communicated by exchanging
migrants through the synchronization agent. The number of
processor agents was fixed at eight in the experiments.
Furthermore, those agents formed a virtual cube amongst
themselves and each of them had three neighbors. JADE
middleware was used to implement this method, which was a
software development framework aimed at developing multi-
agent systems. Compared with the serial agent-based GA, the
suggested algorithm not only obtained much short schedule
lengths, but also had higher convergence speed with large size
problems. In [28]. Gu et al. constructed a stochastic job shop
scheduling problem by a stochastic expected value model. It
was solved by a parallel quantum GA organized by the island
model with a hybrid star-shaped topology. The information
communication was performed through a penetration migration
at the upper level and through a quantum crossover at the lower
lever. Besides, the roulette wheel selection, the cycle crossover
and the Not Gate mutation were designed as GA operators.
Computational tests were run on a PC with a Pentium
Processor with clock speed of 1.66 GHZ. On the average, the
advised method had a better performance of generating optimal

or near-optimal solutions with fast convergence speed than a
GA or a quantum GA for large instance problems. Spanous et
al. [29] designed a parallel GA for solving job shop scheduling
problems with an elitist strategy based selection, a path
relinking crossover and a swap mutation. The parallelization
was set following the islands paradigm. However, one
subpopulation merged with another one once the individuals
inside stagnated, where the Hamming distance of more than
half individuals were less than a predefined value. The process
continued until there was only one subpopulation. Experiments
were performed on a commodity workstation with a Pentium
IV CPU running at 2 GHz with 1 GB RAM, The results
indicated the addressed algorithm managed to attain a
comparable performance with five recent approaches.

Regarding to solve shop scheduling problems by the island
GA, various research have been done with different
architectures. We can discover that the works with GPU pay
heavier attention on speedup gained from the island GA. On
the opposite, the others consider more the improvement for
solutions quality and convergence speed. Few implementations
have discussed them simultaneously with a fair comparison.
Besides, the island connection topology is varied from different
papers with different migration strategies. Some of the designs
are carried with respect to the underlying architectures,
whereas the others are proposed from supporting theories.
However, a completely understanding for the effects of
migration is still missing.

2）flow shop scheduling problems

Bożejko et al. proposed a parallel GA for flow shop
scheduling problems in [30]. The algorithm was based on an
island model. To implementations, a Multi-Step Crossover
Fusion was used to construct a new individual using the best
individuals of different subpopulations and worked with the
migration operator to complete the communication between
different islands. Tests were performed on 4-processors Sun
Enterprise 4x400 MHz under the Solaris 7 operating system,
which is a MIMD machine of processors without shared
memory. Four crossover operators and four mutation operators
were considered as GA operators. The efficiency of the island
GA was activated with the combination of three strategies:
with the same or different start subpopulations, as independent
or cooperative search islands and with the same or different
genetic operators. Results turned out the strategy of starting the
computation from different subpopulations on every processor
with different crossover operators and cooperation was
significantly better than others. The improvement of the
distance to reference solutions and the improvement of the
standard deviation were at the level of 7% and 40%
respectively, comparing to the sequential GA. A related work
by the same team to minimize the total weighted completion
time for the flow shop problem with a special case of a single
machine was solved by a similar island GA in [31]. The results
noted the 8-processor implementation performed the best.

3）open shop scheduling problems

Kokosiński et al. [32] studied an open shop scheduling
problem and two greedy heuristics, LPT-Task and LPT-
Machine, were proposed for decoding chromosomes

 6

represented by permutations with repetitions. The GA
operators constituted a 2-elements tournament selection, a
linear order crossover and a swap mutation or an invert
mutation with constant or variable mutation probabilities. An
island GA with migration was applied to the parallel version in
which every island sent its best emigrants to all other islands
and received immigrants from them. Incoming individuals
replaced the chromosomes of host subpopulation randomly.
The experimental platform was a PC with Pentium 4 processor
(3.06 GHz) and 1 GB RAM. Unfortunately, this parallelization
did not reveal obvious advantages in the results. A non-
preemptive open shop scheduling problem was discussed by
Harmanani et al [33]. Except a feasible solution, a chromosome
in this paper included a scratch area through which a
ReduceGap operation communicated to GA operators: the
crossover and the mutation. A hybrid island GA was hired to
organize the parallelization where neighboring islands shared
their best chromosomes every GN generation and all islands

broadcasted their best chromosome to all other islands every

LN generations, where GN ≪ LN. Islands were connected

through an Ethernet network and used the Message Passing
Interface (MPI) on a Beowulf cluster. The experiments were
executed on a cluster of five machines that were running Linux
and MPI. The outputs presented that the proposed method
converged to a good solution quickly before it saturated with a
speedup between 2.28 and 2.89 for large instances. A similar
work was carried by Ghosn et al. in [34] later.

4）flexible shop scheduling problems

Defersha et al. [35] considered an island GA for a flexible
flow shop scheduling problem with lot streaming. In this case,
the batch of each job was split into certain number of unequal
consistent sublots. Each sublot of a job underwent a number of
operations in a fixed sequence where each operation could be
processed by one of several eligible machines. Three
commonly used migration topologies: ring, mesh and fully
connected were discussed in this paper with a k-way
tournament selection, five kinds of crossover and six kinds of
mutation applied by different probabilities. A parallel
computation environment composed more than 250
interconnected workstations each having an 8-core Intel Xeon
2.8GHz processor was used for experiments. Test problems
were run using up to 48 cores and taking MPI for
communication. With all problems considered, there were
makespan reductions through the island GA. Meanwhile,
empirical studies presented the impact from its different
parameters. Regarding to topology, the fully connected one
outperformed other two. Three migration policies: random-
replace-random, best-replace-random and best-replace-worst
were tested. Results showed the island GA was not much
sensitive to the change of migration policy while the best-
replace-random migration policy performed better slightly. The
same authors built a mathematical model for a flexible job shop
scheduling problem incorporating sequence-dependent setup
time, attached or detached setup time, machine release dates,
and time lag requirements in [36]. Like the previous work, the
GA operators constituted a k-way tournament selection, three
assignment operators and two sequencing operators applied by
different probabilities. However, islands were connected with a
randomly topology which employed randomly generated

migration routes for each communication epoch. The method
was tested on a similar experimental platform. Results of
medium size problems showed the island GA helped improve
the solutions quality while it converged to a better solution
within the allowable computational time for large size
problems where the single GA failed.

An island GA for flexible flow shop scheduling problems
was addressed by Belkadi et al. [37] where genome constituted
one assignment chromosome and a sequencing chromosome.
The GA was implemented on a biprocessor architecture with a
roulette wheel selection, a uniform crossover and a mutation
similar to the crossover but operated only on the sequencing
scheduling chromosome. Four combinations from two island
connected typologies (ring and grid with two dimensions) and
two replacement strategies (best and random) were tested. The
results noted those two parameters did not have significant
influence in the variation of makespan. Regarding to the
subpopulation size and its related subpopulation amount, the
quality of the solution decreased progressively at the same time
as the number of subpopulations increased based on the
experiments. However, when the complexity of the problem
rose up, this influence reduced. Finally, outputs stated the
migration interval was the parameter that had the decision
influence to the island GA where the quality of the solution
improved gradually with increasing migration frequency.
Meanwhile, it did not weaken when enlarging the solutions’
searching space. A comparison between the island GA and the
sequential GA was also carried in this paper. According to
empirical results, the island GA always obtained a smaller
makespan while its performance of execution time was only
discussed with theoretical values based on two processors.
Rashidi et al. [38] studied flexible flow shop scheduling
problems with unrelated parallel machines, sequence-
dependent setup times and processor blocking to minimize the
makespan and the maximum tardiness. Different weights were
assigned to two criteria to transform the problem into a single-
objective function. The individuals inside one island sought
for their own single-objective function, and all islands worked
in parallel for Pareto optimal solutions. The paired weights in
different islands are different with a small deviation between
each successive pairs. After executing the conventional GA
operators, a local search step or a Redirect procedure were
implemented to further cover the Pareto solutions. The
comparison was carried between the island GA without or with
a local search step and a Redirect procedure where the later one
indicated better performance.

As a combination of a shop scheduling problem and a
parallel machine scheduling problem, the complexity of
flexible shop scheduling problems is increased. According to
previous work, the implementation of parallel GAs to this kind
of specific problems is only referred by the island GA. In
addition to design the algorithm, some of the papers have
considered the influence from migration by the connection
topology, the migration rate, the migration interval and the
migration strategy. A good cooperation of these parameters
could decentralize the searching space and enlarge the diversity
level to make a GA have better performance while enjoying
accelerations. However, current implementations are still
limited. Moreover, most of the works address only the

 7

improvement to solutions quality. Experimental results to
analyze the speedup gained from the island GA are not
sufficient. As the increased complexity will lead to longer
execution time, it is interesting to consider GPU to solve
related problems whose native topology is suitable for the
island GA with thousands parallel computing threads.

IV. DESIGN OF PARALLEL GA BASED ON HIGH PERFORMANCE

COMPUTING FRAMEWORKS TO SHOP SCHEDULING PROBLEMS

The preliminary work of parallel GAs for shop scheduling
problems is implemented by fine-grained models on distributed
memory machines. Although the results are outdated,
impressive reduction for execution time has been achieved. As
the fine-grained GA is easy to be placed on a spatial structure,
to coordinate this design with some modern HPC accelerators
with two dimensional grid architecture, such as CUDA, should
optimize its performance. Moreover, with new requirements
from manufacturing systems in the real life, the complexity of
shop scheduling problems is increasing. The two dimensional
grid topology could organize a greater amount of threads to
work in parallel which is more efficient to help find optimal
results of strong NP hard problems with large instances. The
other problems from the operation search family solved in this
way [39] could be persuasive evidences.

The MIMD machine also works with the island GA at the
earlier stage. Soon, it is improved to a parallel computation
environment or a computer cluster equipped with multiple
processors or multi-core processors. The commonly used
parallel processing library MPI is generally hired for
information sharing through migration. Meanwhile, GPU is
involved with its special memory management to work with
this design. As there is no strict underlying architecture
limitation to implement the island GA when dealing with shop
scheduling problems, the islands connected topology is varied.
According to the collected papers, the ring topology is used
most frequently. But it is hard to judge which topology
performs the best. Besides, the cooperated influence between
islands connected topology and other migration parameters
cannot be neglected. Fortunately, the average results confirm
the implementations of island GAs for shop scheduling
problems are able to improve solutions quality and gain
speedup with reasonable migration design. As this model
dominates not only the work on parallel GAs for shop
scheduling problems but parallel GAs for other applications, it
still has a lot of potential in the future with the popularity of
computing nodes providing multiple processors or multi-core
processors.

Since the master slave GA does not assume underlying
computer architecture, any parallel computing environment has
the chance to use this design without worrying about sharing
information. The most time consuming part for GAs to shop
scheduling problems is the fitness value calculation that
requires even much longer execution time with large problems.
Therefore, GPU equipped with more parallel threads is
supposed to have better performance among several choices.

V. CONCLUSIONS

As one kind of important problem in combinatorial
optimization problems, applying parallel GAs for solving shop

scheduling problems have caught heavy attentions since the
last few decades. This survey addressed some of the most
representative publications in this domain and the reviews were
classified by the most common parallel GA categories: master-
slave models, fine-grained models and island models. An
independent section for hybrid models combining two of the
above methods was not set, as the related work was few. Those
we have considered in this survey were assigned to one of the
three basic models according to their main designs. Most works
of parallel GAs to search optimal results for scheduling
problems in manufacturing systems are currently managed by
the island GA. However, the future of implementing the other
two parallel models to this field is promising as well by the
development of modern computing accelerators with more
parallel threads.

ACKNOWLEDGMENT

This work was supported by a scholarship from the China
Scholarship Council (CSC).

REFERENCES

[1] Holland J H. Genetic algorithms[J]. Scientific American, 1992, 267(1):
66-73.

[2] Chu P C, Beasley J E. A genetic algorithm for the multidimensional
knapsack problem[J]. Journal of heuristics, 1998, 4(1): 63-86.

[3] Gonçalves J F, de Magalhães Mendes J J, Resende M G C. A hybrid
genetic algorithm for the job shop scheduling problem[J]. European
journal of operational research, 2005, 167(1): 77-95.

[4] Braun H. On solving travelling salesman problems by genetic
algorithms[C]//International Conference on Parallel Problem Solving
from Nature. Springer, Berlin, Heidelberg, 1990: 129-133.

[5] Cantú-Paz E. A survey of parallel genetic algorithms[J]. Calculateurs
paralleles, reseaux et systems repartis, 1998, 10(2): 141-171.

[6] Werner F. Genetic algorithms for shop scheduling problems: a survey[J].
Preprint, 2011, 11: 31.

[7] Graham R L, Lawler E L, Lenstra J K, et al. Optimization and
approximation in deterministic sequencing and scheduling: a survey[J].
Annals of discrete mathematics, 1979, 5: 287-326.

[8] Xu F, Weng W, Fujimura S. Energy-Efficient Scheduling for Flexible
Flow Shops by Using MIP[C]//IIE Annual Conference. Proceedings.
Institute of Industrial and Systems Engineers (IISE), 2014: 1040.

[9] Tang D, Dai M, Salido M A, et al. Energy-efficient dynamic scheduling
for a flexible flow shop using an improved particle swarm
optimization[J]. Computers in Industry, 2016, 81: 82-95.

[10] Ullman J D. NP-complete scheduling problems[J]. Journal of Computer
and System sciences, 1975, 10(3): 384-393.

[11] Wojciech B. A new class of parallel scheduling algorithms[J]. Wrocław.
Oficyna Wydawnicza Politechniki Wrocławskiej, 2010.

[12] Cheng R, Gen M, Tsujimura Y. A tutorial survey of job-shop scheduling
problems using genetic algorithms—I. Representation[J]. Computers &
industrial engineering, 1996, 30(4): 983-997.

[13] Jebari K, Madiafi M. Selection methods for genetic algorithms[J].
International Journal of Emerging Sciences, 2013, 3(4): 333-344.

[14] AitZai A, Boudhar M, Dabah A. Parallel CPU and GPU computations to
solve the job shop scheduling problem with blocking[J]. 2013.

[15] AitZai A, Benmedjdoub B, Boudhar M. A branch and bound and
parallel genetic algorithm for the job shop scheduling problem with
blocking[J]. International Journal of Operational Research, 2012, 14(3):
343-365.

[16] Somani A, Singh D P. Parallel Genetic Algorithm for solving Job-Shop
Scheduling Problem Using Topological sort[C]//Advances in
Engineering and Technology Research (ICAETR), 2014 International
Conference on. IEEE, 2014: 1-8.

 8

[17] Mui N H, Hoa V D, Tuyen L T. A parallel genetic algorithm for the job
shop scheduling problem[C]//Signal Processing and Information
Technology (ISSPIT), 2012 IEEE International Symposium on. IEEE,
2012: 000019-000024.

[18] Akhshabi M, Haddadnia J, Akhshabi M. Solving flow shop scheduling
problem using a parallel genetic algorithm[J]. Procedia Technology,
2012, 1: 351-355.

[19] Kohlmorgen U, Schmeck H, Haase K. Experiences with fine grained
parallel genetic algorithms[J]. Annals of Operations Research, 1999, 90:
203-219.

[20] Tamaki H. A paralleled genetic algorithm based on a neighborhood
model and its application to the jobshop scheduling[J]. Parallel Problem
Solving from Nature 2, 1992: 573-582.

[21] Lin S C, Goodman E D, Punch W F. Investigating parallel genetic
algorithms on job shop scheduling problems[C]//International
Conference on Evolutionary Programming. Springer, Berlin, Heidelberg,
1997: 383-393.

[22] Pinel F D R, Dorronsoro B, Bouvry P. Solving very large instances of
the scheduling of independent tasks problem on the GPU[J]. Journal of
Parallel and Distributed Computing, 2013, 73(1): 101-110.

[23] Alba E, Dorronsoro B. Cellular genetic algorithms[M]. Springer Science
& Business Media, 2009.

[24] Huang C S, Huang Y C, Lai P J. Modified genetic algorithms for solving
fuzzy flow shop scheduling problems and their implementation with
CUDA[J]. Expert Systems with Applications, 2012, 39(5): 4999-5005.

[25] Zajıcek T, Šucha P. Accelerating a Flow Shop Scheduling Algorithm on
the GPU[J]. eraerts, 2011: 143.

[26] Park B J, Choi H R, Kim H S. A hybrid genetic algorithm for the job
shop scheduling problems[J]. Computers & industrial engineering, 2003,
45(4): 597-613.

[27] Asadzadeh L, Zamanifar K. An agent-based parallel approach for the job
shop scheduling problem with genetic algorithms[J]. Mathematical and
Computer Modelling, 2010, 52(11-12): 1957-1965.

[28] Gu J, Gu X, Gu M. A novel parallel quantum genetic algorithm for
stochastic job shop scheduling[J]. Journal of Mathematical Analysis and
Applications, 2009, 355(1): 63-81.

[29] Spanos A C, Ponis S T, Tatsiopoulos I P, et al. A new hybrid parallel
genetic algorithm for the job‐ shop scheduling problem[J]. International
Transactions in Operational Research, 2014, 21(3): 479-499.

[30] Bożejko W, Wodecki M. Parallel genetic algorithm for the flow shop
scheduling problem[C]//International Conference on Parallel Processing
and Applied Mathematics. Springer, Berlin, Heidelberg, 2003: 566-571.

[31] Bożejko W, Wodecki M. Parallel genetic algorithm for minimizing total
weighted completion time[C]//International Conference on Artificial
Intelligence and Soft Computing. Springer, Berlin, Heidelberg, 2004:
400-405.

[32] Kokosiński Z, Studzienny Ł. Hybrid genetic algorithms for the open-
shop scheduling problem[J]. IJCSNS, 2007, 7(9): 136.

[33] Harmanani H M, Drouby F, Ghosn S B. A parallel genetic algorithm for
the open-shop scheduling problem using deterministic and random
moves[C]//Proceedings of the 2009 Spring Simulation Multiconference.
Society for Computer Simulation International, 2009: 30.

[34] Ghosn S B, Drouby F, Harmanani H M. A parallel genetic algorithm for
the open-shop scheduling problem using deterministic and random
moves[J]. Int. J. Artif. Intell, 2016, 14(1): 130-144.

[35] Defersha F M, Chen M. A coarse-grain parallel genetic algorithm for
flexible job-shop scheduling with lot streaming[C]//Computational
Science and Engineering, 2009. CSE'09. International Conference on.
IEEE, 2009, 1: 201-208.

[36] Defersha F M, Chen M. A parallel genetic algorithm for a flexible job-
shop scheduling problem with sequence dependent setups[J]. The
international journal of advanced manufacturing technology, 2010, 49(1-
4): 263-279.

[37] Belkadi K, Gourgand M, Benyettou M. Parallel genetic algorithms with
migration for the hybrid flow shop scheduling problem[J]. Advances in
Decision Sciences, 2006, 2006.

[38] Rashidi E, Jahandar M, Zandieh M. An improved hybrid multi-objective
parallel genetic algorithm for hybrid flow shop scheduling with
unrelated parallel machines[J]. The International Journal of Advanced
Manufacturing Technology, 2010, 49(9-12): 1129-1139.

[39] Boyer V, El Baz D. Recent advances on GPU computing in operations
research[C]//Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE, 2013:
1778-1787.

