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Abstract—There have been extensive works dealing with 

genetic algorithms (GAs) for seeking optimal solutions of shop 

scheduling problems. Due to the NP hardness, the time cost is 

always heavy. With the development of high performance 

computing (HPC) in last decades, the interest has been focused 

on parallel GAs for shop scheduling problems. In this paper, we 

present the state of the art with respect to the recent works on 

solving shop scheduling problems using parallel GAs. It 

showcases the most representative publications in this field by the 

categorization of parallel GAs and analyzes their designs based 

on the frameworks. 
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I.  INTRODUCTION  

The Genetic algorithm (GA) is a stochastic search 
algorithm based on the principle of natural selection and 
recombination [1]. It is a kind of evolutionary algorithm and 
has been successfully applied to solve many optimization 
problems, e.g., knapsack problems, shop scheduling problems 
or travelling salesman problems [2][3][4]. Nevertheless, when 
GAs are applied to more complex and larger problems, the 
required time to find adequate solutions is increased. 
Particularly, repeated fitness function evaluation is often the 
most prohibitive and limiting segment when GAs are hired to 
find an optimal solution for high-dimensional or multimodal 
implementations. Meanwhile, GAs also suffer from the 
problem of a tendency to converge towards local optima rather 
than the global optimum. Previous works in this area suggest to 
enlarge population size, increase mutation rate or hire niche 
penalty in selection to keep the diversity of GAs. However, any 
of them may raise the complexity of the algorithm and lead to 
more time consumption. 

No doubt, parallel implementation is considered as one of 
the most promising choices to make GAs work faster. There 
are different ways of exploiting parallelism in GAs [5]: master-
slave models, fine-grained models, island models and hybrid 
models. The master-slave model is the only one that does not 
affect the behavior of the algorithm by distributing the 
evaluation of fitness function to slaves. The fine-grained model 
works with a large spatially population. The evolution 
operations are restricted to a small neighborhood with some 
interactions by overlap structure. The island model divides 
populations into subpopulations. Subpopulations on the islands 
are free to converge towards different sub-optima and a 
migration operator can help mix good features that emerge 

from the local island. The hybrid model combines any two of 
the above methods. 

The shop scheduling problem is one of the best known 
combinatorial optimization problems where jobs are assigned 
to machines at particular times. The use of evolutionary 
algorithms for shop scheduling problems started around 1980 
[6]. There have been a huge number of publications dealing 
with GAs for shop scheduling problems. Due to the NP 
hardness, the time cost to obtain an adequate solution by the 
serial GA is always heavy. With the development of high 
performance computing (HPC) in last decades, the 
implementation of parallel GAs to shop scheduling problems 
has been extensively studied. The purpose of this paper is to 
give a tutorial survey of recent works on solving scheduling 
problems in manufacturing systems using parallel GAs.  

The rest of this paper is organized as follows. In section 2, a 
brief introduction about shop scheduling problems and their 
new integrated factors are given. Section 3 discusses the typical 
parallel GAs, namely, master-slave models, fine-grained 
models and islands models, developed for the scheduling 
problems in manufacturing systems. Section 4 analyzes the 
frequently used HPC frameworks and their associated parallel 
GAs design in this domain. Finally, conclusions are stated in 
section 5.  

II. SHOP SCHEDULING PROBLEMS 

The shop scheduling problem is a classic optimization 
problem. One instance of the problem consists of a set of n jobs 
J1, J2, …, Ji , ..., Jn  and a set of o machines M1, M2, …, Mm, …, 
Mo. Each job Ji comprises a number of g stages S1, S2, …, Ss, 
…, Sg. The processing time of one step of Ji on a particular 
machine is denoted as an operation and is abbreviated by (j, s, 
m). Usually, it is given in advance as Pjsm with the release time 
Rj and the due time Dj. Additionally, other required conditions 
are shown in Table 1. 

TABLE I. OTHER REQUIRED CONDITIONS FOR SHOP SCHEDULING PROBLEMS  

NO. Description 

1 Each operation of a job must be processed by one and only one 

machine. 
2 Each machine can process no more than one operation at a time. 

3 Each job is available for processing after the release time.  

4 Setup times for job processing and machine assignment times 

between stages are not taken into consideration.  
5 There is infinite intermediate storage between machines. 
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There are three ways to classify the scheduling problem in 
manufacturing systems by the machine environment, the job 
characteristics and the optimization criterion [7]. Most of the 
works concern on the three basic types: a flow-shop, a job-shop 
and an open-shop. In a flow-shop, each job passes through the 
machines with the same order whereas a job-shop enables 
specified jobs have possibly different machine orderings. In an 
open-shop, there is no particular route imposed on jobs. In 
addition to theses three types, flexible shops also catch a lot of 
attentions. It is a combination of a shop scheduling problem 
and a parallel machine scheduling problem, in which at least 
one stage consists of several parallel machines [6]. Most of the 
works considered are the flexible flow shop or the flexible job 
shop.  

When a feasible schedule is given, we can compute for 
each Ji: the completion time Cj, the tardiness Tj = max{0, Cj - 
Dj}, and the unit penalty Uj = 1 if Cj > Dj, otherwise 0. The 
most common optimality criteria are the minimization of the 
makespan Cmax, the minimization of the sum of the weighted 
completion time ∑𝑤𝑗𝐶𝑗 , the minimization of the sum of the 

weighted tardiness ∑𝑤𝑗𝑇𝑗, and the minimization of the sum of 

the weighted unit penalty ∑𝑤𝑗𝑈𝑗 , or any combination among 

them.  

With the development of modern manufacturing, some new 
factors are integrated into the basic shop scheduling problems, 
such as energy controlling, dynamic environment and so on. 
Xu et al. built a discrete-time mixed-integer programming 
model and a slot-based mixed-integer programming model in 
[8] to achieve a global optimal solution between the peak 
power and the traditional production efficiency without any 
compromise on computing efficiency. Tang et al. [9] adopted a 
predictive reactive approach based on an improved particle 
swarm optimization to search for the Pareto optimal solution in 
dynamic flexible flow shop scheduling problems reducing the 
energy consumption and the makespan.  

Most shop scheduling problems are known as strong NP-
hard problems [10]. Many works to solve it by exact methods 
and meta-heuristic methods have been done. However, this 
class of problems requires complex and time-consuming 
solution algorithms. Although the speed of the best 
supercomputer increases 10 times each 3 or 4 years recently, 
this increase has only a little influence on the size of solvable 
problems [11]. Therefore, efforts to coordinate these algorithms 
with HPC accelerators to solve shop scheduling problems 
efficiently and effectively are deeply desirable.   

III. GENETIC ALGORITHMS WITH SCHEDULING PROBLEMS IN 

MANUFACTURING SYSTEMS 

A. Simple Genetic Algorithms 

A simple GA [1] starts with a randomly generated initial 
population consisting of a set of individuals. An individual is 
representative by a chromosome. For flow shop problems, a 
standard chromosome consists of a string of length n, and the i-
th gene contains the index of the job at position i [6]. An 
individual describes a feasible schedule of jobs’ sequence on 
target machines. For job shop problems, there are two ways of 
chromosome representation: direct way and indirect way. The 
direct way is similar with the way for flow shop problems: a 

feasible schedule is directly encoded into the chromosome, 
whereas the chromosome in the indirect way shows a sequence 
of dispatching rules for job assignment [12]. As no imposed 
technological routes of the jobs for open shop problems, both 
of the encoding approaches for the flow shop and the job shop 
can be applied in this case. The fitness value of each individual 
is used to evaluate the current population. It is related to the 
objective function value of shop scheduling problems at the 
point represented by a chromosome. Since most common 
optimality criteria of shop scheduling problems are about 
minimization. The fitness function FIT(i) of an individual i 
usually can be transferred as [6]: 

𝐹𝐼𝑇(𝑖) = 𝑚𝑎𝑥(�̅� − 𝐹𝑖(𝑆𝑖),0)                    

where 𝐹𝑖(𝑆𝑖)denotes the objective function value of a feasible 

schedule from individual i and �̅� states the objective function 
value of some heuristic solution. 

As the value of object function for shop scheduling problems 
are generally positive, some papers measure the fitness 
function FIT(i) as: 

𝐹𝐼𝑇(𝑖) =
1

𝐹𝑖(𝑆𝑖)
                                2  

Three GA operations: selection, crossover and mutation, 
work on these chromosomes to get new search points in a state 
of space. Usually, individuals are first selected through a 
fitness-based process. For shop scheduling problems, solutions 
with larger fitness values are more likely to be selected. Some 
well-known methods are implemented in this step: the roulette 
wheel selection, the stochastic universal sampling, the 
tournament selection and so on [13]. Next, the crossover takes 
two random individuals kept after selection and exchanges 
random sub-chromosomes. The classic methods are the n-point 
crossover and the uniform crossover. Due to particular 
requirements of different shop scheduling problems, additional 
steps may be required to repair the illegal offspring caused by 
the crossover. The mutation then alters some random value 
within a chromosome. Different from the binary encoding, the 
mutation for shop scheduling problems works often based on 
the neighborhoods e.g. shift mutation (insertion neighborhood) 
or pairwise interchange mutation (swap neighborhood) to 
respect feasible solutions. Population evaluation is executed 
after these three steps. Sometimes, an elitist strategy is hired 
afterwards to keep limited number of individuals with the best 
fitness values to the next generation. This process repeats until 
the termination criteria have been satisfied. The full procedure 
is stated in Table 2. 

TABLE II. PSEUDO-CODE OF THE SIMPLE GA 

1: initialize(); 
2: while (termination criteria are not satisfied) do 

3: Generation++ 

4: Selection(); 

5: Crossover(); 

6: Mutation(); 

7: FitnessValueEvaluation(); 
8: end while 
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B. Master-Slave Genetic Algorithms 

Master-slave GA is known as global parallel GA as well. It 
keeps a single population as a simple GA that is stored at the 
master side. In this case, each individual is free to compete and 
mate with any other. Since the fitness value calculations of 
individuals are independent without any communication with 
others, the slaves take care of fitness evaluation in parallel. 
Data exchange occurs only when sending and receiving tasks 
between the master and slaves. Obviously, frequent 
communication overhead offsets some performance gains from 
slaves’ computing. However, as master-slave GA is the easiest 
parallel model to be implemented and does not assume 
underlying architecture, it is still very efficient when the 
evaluation is complex and requires considerable computation. 
The steps of this parallel model are presented in Table 3. 

TABLE III PSEUDO-CODE OF THE MASTER-SLAVE GA 

1: Initialize(); 

2: while (termination criteria are not satisfied) do 

3: Generation++ 
4: Selection(); 

5: Crossover(); 

6: Mutation(); 
7: Parallel_FitnessValueEvaluation_Individuals(); 

9: end while 

1）job shop scheduling problems  

AitZai et al. modeled the job shop scheduling problem with 
blocking using the alternative graph with conjunctive arcs and 
alternative arcs in [14]. In addition to a parallel branch and 
bound method, two master-slave GA parallelization methods 
were also presented. The first one was based on CPU 
networking with a star network of inter-connected computers. 
On the opposite, the second one worked on GPU with some 
memory management respecting to CUDA (Compute Unified 
Device Architecture) framework, which was a NVIDIA’s 
parallel computing architecture that increased computing 
performance by harnessing the power of GPU. Numerical tests 
were performed on a station equipped with CPU×2: Intel Xeon 
E5620 and GPU: NVIDIA Quadro 2000 01 Go GPU. With a 
population size 1056 and a limited total execution time 300s, 
the master-slave GA using GPU could get maximum 15 times 
more explored solutions than the GA using CPU. Moreover, a 
related earlier work was introduced by AitZai in [15]. In order 
to improve the solution of job shop scheduling problems, 
Somani et al. [16] imposed a topological sorting step to the GA 
before the fitness value calculation, which was used to generate 
the topological sequence of directed acyclic graph. The parallel 
implementation of the proposed GA in CUDA environment 
consisted of two kernels. The former one was used for making 
the topological sequences by the help of topological sorting, 
while the later one was hired to calculate the makespan from a 
longest path algorithm. The crossover and mutation were 
performed between two randomly selected schedules on CPU. 
Experiments was setup with Intel(R) Xeon(R) E5-2650 @ 2.00 
GHz and NVIDA Tesla C2075 (448 cores) and results have 
shown the proposed GA performed around 9 times faster for 
large-scale problems than the sequential GA.  

Another job shop scheduling problem was studied by Mui 
et al. [17] where a prior-rule was used to create active 

schedules. The selection combined the idea of an elitist strategy 
and a roulette wheel selection, whereas the crossover hired a 
GT algorithm implemented on three parents and the mutation 
used neighborhood searching technique. With this design, the 
main part of the GA could be computed independently. In a 
parallel environment, the master-slave GA was employed 
where the slaves performed the GA evolutionary operators 
concurrently and the master searched the global optimum 
among optimal results received from slaves. The proposed 
method was run on the CSS computer server system with 6 
computers, in which each computer had a Pentium-4 CPU with 
4GB free of ram. Empirical results have shown the master-
slave GA with 6 processors could save 3 to 4 times the 
execution time compared to the sequential version. 

2）flow shop scheduling problems  

A master-slave GA dealing with a single population and a 
group of local subpopulation was presented in [18] for a flow 
shop problem. This method involved a master scheduler and a 
set of slave processors. The master scheduler ran the GA 
operators (partial replacement selection, cycle crossover and 
swapping mutation) of all individuals sequentially. When the 
evolution of one individual was finished, it was placed in the 
unassigned queue from which the master scheduler partitioned 
the fitness value calculation to slave processors in batches. The 
choice of candidate slave processors was made upon the 
involved communication overhead and their computational 
potential. The available resources among slave processors in 
the distributed system could vary over time. Moreover, all 
individuals were maintained in the master scheduler 
synchronously. The proposed GA was implemented on a laptop 
with Prentium IV core 2 Duo 2.53 GHz CPU. The outputs 
showed the new algorithm could be 9 times faster maximally 
than the results of serial GA achieved by the Lingo 8 software.  

Attentions to use master-slave GA to shop scheduling 
problems are increased in the last decade and the work is 
carried with various underlying architectures. Since only 
independent tasks are executed on slaves without 
communication cost among them, both the conventional GA 
and any improved GAs can be implemented with it easily. 
Although the communication between the master and the 
slaves is an impediment in speed, it still performs well to solve 
shop scheduling problems whose fitness value calculation is 
complex and requires considerable computation. 

C. Fine-grained Genetic Algorithms 

Fine-grained GA can also be called as neighborhood GA, 
diffusion GA or massively parallel GA. The main idea is to 
map individuals of a single GA population on a spatial 
structure. An individual is limited to compete and mate with its 
neighbors, while the neighborhoods overlapping makes good 
solutions disseminate through the entire population. This model 
obtains good population diversity when dealing with high-
dimensional variable spaces [19]. Meanwhile, it is easy to be 
placed in any two dimensional grid, as many massively parallel 
machines are designed with this topology. However, we cannot 
neglect the great influence from the spatial structure, which 
generally has little chance to be modified. The implemented 
process of the fine-grained GA is shown in Table 4. 
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TABLE IV PSEUDO-CODE OF THE FINE-GRAINED GA 

1: Initialize(); 

2: while (termination criteria are not satisfied) do 

3: Generation++ 

4: Parallel_NeighborhoodSelection_Individuals(); 

5: Parallel_NeighborhoodCrossover_Individuals(); 
6: Parallel_Mutation_Individuals(); 

7: Parallel_FitnessValueEvaluation_Individuals(); 

8: end while 

1）job shop scheduling problems  

A fine-grained GA solving job shop scheduling problems 
was considered by Tamaki et al. [20]. In this paper, the 
selection was executed locally in a neighborhood of each 
population. The objectives of this neighborhood model were to 
improve search in the GA by suppressing favorably the 
premature convergence phenomena, and to reduce 
computational time by implementing it on a parallel computer 
at the same time. The method was then modified as an absolute 
neighborhood model and implemented on Transputer. 
Transputer was a MIMD (Multi-Instruction Multi-Data) 
machine with microprocessors, featuring integrated memory 
and serial communication links. Through several 
computational experiments for job shop scheduling problems, 
the parallel GA with 16 processors could shorten the 
calculation time dramatically. However, as Transputer did not 
equip with shared memory, the information exchange was 
handled through communication operations. Therefore, the 
calculation time reduction was not able to reach an ideal level. 
Lin et al. [21] investigated parallel GAs on job shop scheduling 
problems with a direct solution representation, which encoded 
the operation starting times. The GA operators were inspired 
by the G&T algorithm with the random selection, the THX 
(time horizon exchange) crossover and the THX mutation. Two 
hybrid models built up by the fine-grained GA with a two-
dimensional torus topology and the island GA connected in a 
ring were discussed in this paper. The first one was an 
embedding of the fine-grained GA into the island GA, in which 
each subpopulation on the ring was a torus. The migration on 
the ring was much less frequent than within the torus. In the 
second model, the connection topology used in the island GA 
was one which is typically found in the fine-grained GA, and a 
relatively large number of nodes were used. The migration 
frequency kept the same in the island GA. Those two methods 
were carried on a Sun Ultra 1 which was a family of Sun 
Microsystems workstations based on the 64-bit Ultra SPARC 
microprocessor with a single population GA, two island GAs 
of different subpopulation sizes and one torus fine-grained GA. 
The execution time comparison was only made between the 
single population GA and island GAs with the speedup of 4.7 
and 18.5 respectively. Regarding to solutions quality, best 
results were obtained by the hybrid model consisting of island 
GAs connected in a fine-grained GA style topology by 
combing the merits from them. 

Compared with other two kinds of parallel GA, it seems the 
implementation of fine-grained GA for shop scheduling 
problems is rare and outdated, no matter the amount of related 
papers or the various types of problems treated. With the 
development of modern computing accelerators with two-
dimensional grid environment, like GPU, this implementation 
has a lot of potential in the near future. Apart form 

manufacturing systems, the fine-grained GA is also hired for 
task scheduling problems [22]. It is another type of scheduling 
problems that focuses on minimizing makespan as well but for 
a set of tasks to be executed in multiprocessor systems. In this 
domain, the fine-grained model is treated sometimes as the 
parallel cellular GA [23]. 

D. Island Genetic Algorithms 

 The island model is the most famous for the research on 
parallel GAs. In some papers, it may be called as coarse-
grained models, multi-deme models, multi-population models, 
migration models or distributed models. Unlike previous 
parallel GAs, this model divides the population into a few 
relatively large subpopulations. Each of them works as an 
island and is free to converge towards its own sub-optima. At 
some points, a migration operator is used to exchange 
individuals among islands. These configurations make the 
average population fitness improve faster and mix good local 
feature efficiently [5]. The main idea of this parallelization is a 
simple extension of the serial GA while the island model based 
underlying architecture is easily available. Therefore, the island 
GA dominates the work on parallel GA for shop scheduling 
problems. A brief outline about this algorithm is illustrated in 
Table 5. 

TABLE V PSEUDO-CODE OF THE ISLAND GA 

1: Initialize(); 
2: while (termination criteria are not satisfied) do 

3: Generation++ 

4: Parallel_SubSelection_Islands(); 
5: Parallel_SubCrossover_Islands(); 

6: Parallel_SubMutation_Individuals (); 

7: Parallel_FitnessValueEvaluation_Individuals(); 
8: if (generation % migration interval==0)  

9: Parallel_Migration_Islands(); 

10: end if  
11: end while 

1）job shop scheduling problems  

Huang et al. [24] discussed flow shop scheduling problems 
with fuzzy processing times and fuzzy due dates, where the 
possibility and necessity measures with exact formulas were 
adopted to maximize the earliness and tardiness 
simultaneously. A modified GA was designed to solve the 
problems with the random keys, the parameterized uniform 
crossover and the immigration. If Pt was the family of 
chromosomes in the t-th generation, then |Pt| denoted the 
population size of Pt. The next generation was made of a% best 
chromosomes from Pt, b% chromosomes for taking crossovers, 
and c% chromosomes generated randomly as immigrations, 
where a+b+c=100. In order to get more efficient convergence, 
an idea of the longest common substring and rearranging of the 
chromosomes chosen in the mating pool were also imposed in 
the algorithm. The full procedure was coded on CUDA by 
separating the whole population into blocks using the block 
size of 256 or 128. Circumventing to load the random keys of 
all chromosomes to global memory, one chromosome was 
distributed to a block so that all random keys could fit in the 
shared memory. Although there was no migration among 
blocks, the idea was organized based on the island GA. In the 
case of 200 jobs, the numerical simulations on a 2.33 GHz Intel 
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Core2 Quad desktop computer with 2 GB of RAM, and an 
NVIDIA GeForce GTX285 graphics card showed that the 
proposed GA combining with CUDA parallel computation got 
19 times speedup. Similarly, Zajicek et al. [25] proposed a 
homogeneous parallel GA model on the CUDA architecture, 
where all computations were carried out on the GPU in order to 
reduce communication between CPU and GPU. The main idea 
was based on an island GA with a tournament selection, an 
arithmetic crossover and a Gaussian mutation. Experiments 
were carried on a system with AMD Phenom II X4 945 3.0 
GHz processor and NVIDIA Tesla C1060 GPU. Some 
instances of the flow shop scheduling problem were solved 
with speedup from 60 to 120 comparing to the equivalent 
sequential CPU version.  

Park et al. [26] studied a hybrid GA and its parallel version 
for job shop scheduling problems with an operation-based 
representation. Concerning the parallel GA, the population was 
divided into two or four subpopulations. Each subpopulation 
acted as a single-population GA, where some individuals could 
migrate from one subpopulation to another at certain intervals. 
As four population initialization methods, four crossover 
operators and two selection operators were proposed in this 
paper, different subpopulations were equipped with different 
settings to help them evolve independently. Beside, the 
migration was implemented synchronously with a static ring 
type connection scheme. Experiments were carried out on a PC 
with Pentium II 350 and 64MB main memory with MT, ORB 
and ABZ benchmark problems. The outputs confirmed the 
island GA improved not only the best solution but also the 
average solution from results of single GA. Asadzadeh et al. 
addressed a parallel agent-based GA for a job shop scheduling 
problem in [27]. Chromosomes of the population, indicating 
feasible schedules for problem instances were created by the 
management agent and the execute agent. Afterwards, the 
management agent divided it into subpopulations with the same 
size and sent each of them to processor agents. Each processor 
agent located on a distinct host and executed GA with a 
roulette wheel selection, a partially matched crossover and a 
subsequent gene mutation on its subpopulation independently. 
Different subpopulations communicated by exchanging 
migrants through the synchronization agent. The number of 
processor agents was fixed at eight in the experiments. 
Furthermore, those agents formed a virtual cube amongst 
themselves and each of them had three neighbors. JADE 
middleware was used to implement this method, which was a 
software development framework aimed at developing multi-
agent systems. Compared with the serial agent-based GA, the 
suggested algorithm not only obtained much short schedule 
lengths, but also had higher convergence speed with large size 
problems. In [28]. Gu et al. constructed a stochastic job shop 
scheduling problem by a stochastic expected value model. It 
was solved by a parallel quantum GA organized by the island 
model with a hybrid star-shaped topology. The information 
communication was performed through a penetration migration 
at the upper level and through a quantum crossover at the lower 
lever. Besides, the roulette wheel selection, the cycle crossover 
and the Not Gate mutation were designed as GA operators. 
Computational tests were run on a PC with a Pentium 
Processor with clock speed of 1.66 GHZ. On the average, the 
advised method had a better performance of generating optimal 

or near-optimal solutions with fast convergence speed than a 
GA or a quantum GA for large instance problems. Spanous et 
al. [29] designed a parallel GA for solving job shop scheduling 
problems with an elitist strategy based selection, a path 
relinking crossover and a swap mutation. The parallelization 
was set following the islands paradigm. However, one 
subpopulation merged with another one once the individuals 
inside stagnated, where the Hamming distance of more than 
half individuals were less than a predefined value. The process 
continued until there was only one subpopulation. Experiments 
were performed on a commodity workstation with a Pentium 
IV CPU running at 2 GHz with 1 GB RAM, The results 
indicated the addressed algorithm managed to attain a 
comparable performance with five recent approaches.  

Regarding to solve shop scheduling problems by the island 
GA, various research have been done with different 
architectures. We can discover that the works with GPU pay 
heavier attention on speedup gained from the island GA. On 
the opposite, the others consider more the improvement for 
solutions quality and convergence speed. Few implementations 
have discussed them simultaneously with a fair comparison. 
Besides, the island connection topology is varied from different 
papers with different migration strategies. Some of the designs 
are carried with respect to the underlying architectures, 
whereas the others are proposed from supporting theories. 
However, a completely understanding for the effects of 
migration is still missing.  

2）flow shop scheduling problems 

Bożejko et al. proposed a parallel GA for flow shop 
scheduling problems in [30]. The algorithm was based on an 
island model. To implementations, a Multi-Step Crossover 
Fusion was used to construct a new individual using the best 
individuals of different subpopulations and worked with the 
migration operator to complete the communication between 
different islands. Tests were performed on 4-processors Sun 
Enterprise 4x400 MHz under the Solaris 7 operating system, 
which is a MIMD machine of processors without shared 
memory. Four crossover operators and four mutation operators 
were considered as GA operators. The efficiency of the island 
GA was activated with the combination of three strategies: 
with the same or different start subpopulations, as independent 
or cooperative search islands and with the same or different 
genetic operators. Results turned out the strategy of starting the 
computation from different subpopulations on every processor 
with different crossover operators and cooperation was 
significantly better than others. The improvement of the 
distance to reference solutions and the improvement of the 
standard deviation were at the level of 7% and 40% 
respectively, comparing to the sequential GA. A related work 
by the same team to minimize the total weighted completion 
time for the flow shop problem with a special case of a single 
machine was solved by a similar island GA in [31]. The results 
noted the 8-processor implementation performed the best.  

3）open shop scheduling problems 

Kokosiński et al. [32] studied an open shop scheduling 
problem and two greedy heuristics, LPT-Task and LPT-
Machine, were proposed for decoding chromosomes 
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represented by permutations with repetitions. The GA 
operators constituted a 2-elements tournament selection, a 
linear order crossover and a swap mutation or an invert 
mutation with constant or variable mutation probabilities. An 
island GA with migration was applied to the parallel version in 
which every island sent its best emigrants to all other islands 
and received immigrants from them. Incoming individuals 
replaced the chromosomes of host subpopulation randomly. 
The experimental platform was a PC with Pentium 4 processor 
(3.06 GHz) and 1 GB RAM. Unfortunately, this parallelization 
did not reveal obvious advantages in the results. A non-
preemptive open shop scheduling problem was discussed by 
Harmanani et al [33]. Except a feasible solution, a chromosome 
in this paper included a scratch area through which a 
ReduceGap operation communicated to GA operators: the 
crossover and the mutation. A hybrid island GA was hired to 
organize the parallelization where neighboring islands shared 
their best chromosomes every GN generation and all islands 

broadcasted their best chromosome to all other islands every 

LN generations, where GN ≪ LN. Islands were connected 

through an Ethernet network and used the Message Passing 
Interface (MPI) on a Beowulf cluster. The experiments were 
executed on a cluster of five machines that were running Linux 
and MPI. The outputs presented that the proposed method 
converged to a good solution quickly before it saturated with a 
speedup between 2.28 and 2.89 for large instances. A similar 
work was carried by Ghosn et al. in [34] later. 

4）flexible shop scheduling problems 

Defersha et al. [35] considered an island GA for a flexible 
flow shop scheduling problem with lot streaming. In this case, 
the batch of each job was split into certain number of unequal 
consistent sublots. Each sublot of a job underwent a number of 
operations in a fixed sequence where each operation could be 
processed by one of several eligible machines. Three 
commonly used migration topologies: ring, mesh and fully 
connected were discussed in this paper with a k-way 
tournament selection, five kinds of crossover and six kinds of 
mutation applied by different probabilities. A parallel 
computation environment composed more than 250 
interconnected workstations each having an 8-core Intel Xeon 
2.8GHz processor was used for experiments. Test problems 
were run using up to 48 cores and taking MPI for 
communication. With all problems considered, there were 
makespan reductions through the island GA. Meanwhile, 
empirical studies presented the impact from its different 
parameters. Regarding to topology, the fully connected one 
outperformed other two. Three migration policies: random-
replace-random, best-replace-random and best-replace-worst 
were tested. Results showed the island GA was not much 
sensitive to the change of migration policy while the best-
replace-random migration policy performed better slightly. The 
same authors built a mathematical model for a flexible job shop 
scheduling problem incorporating sequence-dependent setup 
time, attached or detached setup time, machine release dates, 
and time lag requirements in [36]. Like the previous work, the 
GA operators constituted a k-way tournament selection, three 
assignment operators and two sequencing operators applied by 
different probabilities. However, islands were connected with a 
randomly topology which employed randomly generated 

migration routes for each communication epoch. The method 
was tested on a similar experimental platform. Results of 
medium size problems showed the island GA helped improve 
the solutions quality while it converged to a better solution 
within the allowable computational time for large size 
problems where the single GA failed.  

An island GA for flexible flow shop scheduling problems 
was addressed by Belkadi et al. [37] where genome constituted 
one assignment chromosome and a sequencing chromosome. 
The GA was implemented on a biprocessor architecture with a 
roulette wheel selection, a uniform crossover and a mutation 
similar to the crossover but operated only on the sequencing 
scheduling chromosome. Four combinations from two island 
connected typologies (ring and grid with two dimensions) and 
two replacement strategies (best and random) were tested. The 
results noted those two parameters did not have significant 
influence in the variation of makespan. Regarding to the 
subpopulation size and its related subpopulation amount, the 
quality of the solution decreased progressively at the same time 
as the number of subpopulations increased based on the 
experiments. However, when the complexity of the problem 
rose up, this influence reduced. Finally, outputs stated the 
migration interval was the parameter that had the decision 
influence to the island GA where the quality of the solution 
improved gradually with increasing migration frequency. 
Meanwhile, it did not weaken when enlarging the solutions’ 
searching space. A comparison between the island GA and the 
sequential GA was also carried in this paper. According to 
empirical results, the island GA always obtained a smaller 
makespan while its performance of execution time was only 
discussed with theoretical values based on two processors. 
Rashidi et al. [38] studied flexible flow shop scheduling 
problems with unrelated parallel machines, sequence-
dependent setup times and processor blocking to minimize the 
makespan and the maximum tardiness. Different weights were 
assigned to two criteria to transform the problem into a single-
objective function. The individuals inside one island sought 
for their own single-objective function, and all islands worked 
in parallel for Pareto optimal solutions. The paired weights in 
different islands are different with a small deviation between 
each successive pairs. After executing the conventional GA 
operators, a local search step or a Redirect procedure were 
implemented to further cover the Pareto solutions. The 
comparison was carried between the island GA without or with 
a local search step and a Redirect procedure where the later one 
indicated better performance.  

As a combination of a shop scheduling problem and a 
parallel machine scheduling problem, the complexity of 
flexible shop scheduling problems is increased. According to 
previous work, the implementation of parallel GAs to this kind 
of specific problems is only referred by the island GA. In 
addition to design the algorithm, some of the papers have 
considered the influence from migration by the connection 
topology, the migration rate, the migration interval and the 
migration strategy. A good cooperation of these parameters 
could decentralize the searching space and enlarge the diversity 
level to make a GA have better performance while enjoying 
accelerations. However, current implementations are still 
limited. Moreover, most of the works address only the 
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improvement to solutions quality. Experimental results to 
analyze the speedup gained from the island GA are not 
sufficient. As the increased complexity will lead to longer 
execution time, it is interesting to consider GPU to solve 
related problems whose native topology is suitable for the 
island GA with thousands parallel computing threads.  

IV. DESIGN OF PARALLEL GA BASED ON HIGH PERFORMANCE 

COMPUTING FRAMEWORKS TO SHOP SCHEDULING PROBLEMS 

The preliminary work of parallel GAs for shop scheduling 
problems is implemented by fine-grained models on distributed 
memory machines. Although the results are outdated, 
impressive reduction for execution time has been achieved. As 
the fine-grained GA is easy to be placed on a spatial structure, 
to coordinate this design with some modern HPC accelerators 
with two dimensional grid architecture, such as CUDA, should 
optimize its performance. Moreover, with new requirements 
from manufacturing systems in the real life, the complexity of 
shop scheduling problems is increasing. The two dimensional 
grid topology could organize a greater amount of threads to 
work in parallel which is more efficient to help find optimal 
results of strong NP hard problems with large instances. The 
other problems from the operation search family solved in this 
way [39] could be persuasive evidences.  

The MIMD machine also works with the island GA at the 
earlier stage. Soon, it is improved to a parallel computation 
environment or a computer cluster equipped with multiple 
processors or multi-core processors. The commonly used 
parallel processing library MPI is generally hired for 
information sharing through migration. Meanwhile, GPU is 
involved with its special memory management to work with 
this design. As there is no strict underlying architecture 
limitation to implement the island GA when dealing with shop 
scheduling problems, the islands connected topology is varied. 
According to the collected papers, the ring topology is used 
most frequently. But it is hard to judge which topology 
performs the best. Besides, the cooperated influence between 
islands connected topology and other migration parameters 
cannot be neglected. Fortunately, the average results confirm 
the implementations of island GAs for shop scheduling 
problems are able to improve solutions quality and gain 
speedup with reasonable migration design. As this model 
dominates not only the work on parallel GAs for shop 
scheduling problems but parallel GAs for other applications, it 
still has a lot of potential in the future with the popularity of 
computing nodes providing multiple processors or multi-core 
processors. 

Since the master slave GA does not assume underlying 
computer architecture, any parallel computing environment has 
the chance to use this design without worrying about sharing 
information. The most time consuming part for GAs to shop 
scheduling problems is the fitness value calculation that 
requires even much longer execution time with large problems. 
Therefore, GPU equipped with more parallel threads is 
supposed to have better performance among several choices.  

V. CONCLUSIONS 

As one kind of important problem in combinatorial 
optimization problems, applying parallel GAs for solving shop 

scheduling problems have caught heavy attentions since the 
last few decades. This survey addressed some of the most 
representative publications in this domain and the reviews were 
classified by the most common parallel GA categories: master-
slave models, fine-grained models and island models. An 
independent section for hybrid models combining two of the 
above methods was not set, as the related work was few. Those 
we have considered in this survey were assigned to one of the 
three basic models according to their main designs. Most works 
of parallel GAs to search optimal results for scheduling 
problems in manufacturing systems are currently managed by 
the island GA. However, the future of implementing the other 
two parallel models to this field is promising as well by the 
development of modern computing accelerators with more 
parallel threads. 
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