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Abstract
This study reviews current understanding of relationship of paraoxonase1 polymorphisms and activity of paraoxonase1 in Parkinson’s Disease (PD). Paraoxonase 1 
(PON1) is involved in the detoxification of insecticides and pesticides and metabolisms of these toxins. Two polymorphisms within the gene affect the activity of 
paraoxonase. In One of them a methionine replaces with leucine at position 54 (M54L) and the other a glutamine change to arginine variant at position 192 (Q192R). 
There are some evidences show the genetic polymorphisms of PON1 can protect against organophosphates such as paraoxon and diazinon. Results of studies that 
investigate these associations are controversial. There was no significant association between PON1-1 92Q/R alleles and risk of developing PD and also there is no 
evidence for an association between PON 1-192 polymorphism and development of PD, however, a study found that the 192R alleles were risk factor for developing 
PD. These polymorphisms explain only some of the variations in serum PON1 activity; thus, the other critical test of the hypothesis is likely to be whether low serum 
PON1 activity is associated with Parkinson disease or not. In this review we summarize current knowledge from PON1 association studies regarding the interaction 
between gene polymorphisms and activity of PON1 with the risk of PD.
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Introduction
Parkinson’s disease was first described in 1817 by an English doctor 

[1], although the reports of possible parkinsonian syndromes dating 
back many years ago [2,3]. PD is the most common neurodegenerative 
disorder just after the Alzheimer disease among the elderly [4,5]. 
Although the median age at onset PD is about 60 years, clinical diagnosis 
may occur after loss of 30 to 50%of substantia nigra dopaminergic 
neurons of PD [6]. The PD phenotype may occur only when 60-70% 
of substantia nigra neurons stop functioning [7]. PD leads to rigidity, 
slowness of voluntary movement and postural instability [4]. in the 
advanced stages, cognitive and mood disorders are also common [8].

Diagnosing of PD is typically done by the presence of some 
intracytoplasmic inclusions, known as ‘‘Lewy bodies’’, which are 
primarily composed of α-synuclein protein aggregates [9]. Parkinson 
disease arise from neuronal loss, which mainly affecting dopaminergic 
neurons of the substantia nigra [10]. with a prevalence of 5 million 
individuals world -wide [11]. The Formation of the Parkinson’s disease is 
arisen from a combination of genetic and environmental factors, which 
likely interact with each other. Epidemiological studies have indicated 
that environmental factors such as pesticides may increase risk of 
idiopathic Parkinson’s disease (PD) [12]. Environmental factors are 
apparent causes of the ‘sporadic’ Parkinson’s disease [13,14]. In addition 
to the environmental factors, sporadic autosomal recessive form of PD 
a candidate gene (Parkin) on human chromosome 6q25.2-q27-has been 
identified [15]. The risk in relatives has been reported to be threefold 
higher than in the general population [16]. In 1985, it was reported that 
familial susceptibility to PD might be mediated by genetic variability of 
enzymes involved in the detoxification of neurotoxins [17]. It has been 
widely believed that polymorphic variations in xenobiotic metabolizing 
enzymes, such as glutathione transferase, CYPs and paraoxonase, may 
affect PD risk by altering the detoxification of pesticides and other 
putative neurotoxins [18-20]. A number of case–control studies and 
prospective studies have shown a significant association between 
pesticide exposure and risk of PD [21,22], whereas other studies have 
failed to demonstrate such association [23,24].

Paraoxonase1
The Paraoxonase (PON) gene family contains three different 

members (PON1, PON2 and PON3), and exhibits anti-oxidative 
characters principally in the blood circulation [25]. Human PON 
genes share approximately 70% identity at the nucleotide level and 
approximately 60% identity at the amino acid level [26]. Human PON2 
and PON3 lack or have very limited paraoxonase and arylesterase 
activities, but they are similar to PON1 in that both hydrolyze aromatic 
and long-chain aliphatic lactones, e.g. [27,28]. PON1 is not found in the 
blood of fishes, birds and most reptiles. The enzymes also classified by 
Norman Aldridge [29]. Paraoxonase (PON1; EC 3.1.8.1; formerly EC 
3.1.1.2) is a calcium-dependent serum enzyme belonging to the class 
of A-esterases [29], this enzyme is a protein of 354 amino acids with a 
molecular mass of 43 kDa [30, 31]. It is a glycoprotein synthesized in 
the liver and secreted into the blood [32]. Paraoxonase1 in the plasma 
associated with High-Density Lipoproteins (HDL) [33-35]. 

The gen of this protein is collocated on the long arm of chromosome 
7 between q21.3 and q22.1 with other members of its family [36,37]. 
Regarding the roles of organophosphates in etiology of PD, PON1 
is the main means of protection of the nervous system against the 
neurotoxicity of organophosphates [38,39]. PON1 has two activities; 
one paraoxonase activity that breakdown paraoxon, a toxic metabolite 
of the parathion and the other activity is arylesterase that breakdown 
phenyl acetate to phenyl lactate [32]. Mammal serum paraoxonase 
is also hydrolyze the active metabolite of other OPs insecticides, 
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Paraoxonase1 polymorphism
Studies have shown PON1 polymorphisms generated variable 

susceptibility to different diseases. As mentioned earlier PON1 have 
Two common coding polymorphisms, a leucine to methionine 
substitution at position 54 (L54M, rs854560) and a glutamine to 
arginine substitution at position 192 (Q192R, rs662), which influence 
the PON1 activity [44-46]. The PON 1 L55M polymorphism has 
been associated with variability in PON1 concentration and PON1 
activity in plasma [46-48]. whereas the PON1 Q 192 R polymorphism 
has been shown to affect only the activity of PON1 [49]. The PON1 
polymorphisms affect the catalytic abilities of this enzyme. The R 
allele at position 192 hydrolyzes paraoxon faster than the Q allele but 
hydrolyzes diazoxon slowly. Then, homozygotes for the B allele are poor 
metabolizer of organophosphate such as diazoxon, soman and sarin. 

such as chlorpyrifos, diazinon, and of nerve toxins such as sarin and 
soman [40]. Lactone-containing drugs-spironolactone, mevastatin, 
simvastatin, and lovastatin have been identified as substrates for PON1 
[41]. Such aldehydes can also be hydrolyzed by PON1. Figure 1 point 
to the metabolisms of the some organophosphate by PON1. On the 
other hand this enzyme contain a histidine aminoacid at position (115, 
134, 155 and 243) and cysteine at the (42, 248 and 353) position, in 
active site. This histidine is essential for esterase activity and cysteine 
is essential for hydrolase activity, thus zinc or nickel may bind to 
histidine. Other metals (e.g. mercury) or smoking extract constituents 
may interact with Cysteine (Cys) [42]. PON1 variants may represent a 
biomarker for identifying individuals susceptible to organophosphorus 
neurotoxicity leading to neurodegeneration and PD [43]. On the other 
hand this enzyme has been shown to be inactivated by oxidative stress 
and many antioxidative nutrients [25].
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Figure 1. Metabolisms of the organophosphate by paraoxonase1
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The plasma concentration of the enzyme in M allele at position 54 is 
lower from L54 allele. Thus, R192 and L54 might be markers of higher 
activity of PON1 [46,50-54]. In other words, plasma of homozygous 
individuals for the wild-type Leu-allele of the rs854560 polymorphism 
has higher PON1 mRNA, protein and higher PON1 activity than 
homozygous for Met-allele carriers, while heterozygous carriers have 
intermediate mRNA, protein levels [48,55]. Several previous studies 
showed the association of one or both of these polymorphisms with PD. 
Akhmedova et al. reported that the M54 allele increase susceptibility to 
PD in a Russian population [56]. A further evidence for this association 
was shown in a Swedish case–control study. Kondo and Yamamoto 
described a significant increase of the R192 allele in PD patients from 
Japan in comparison to healthy controls [15]. However, some studies 
indicated there is no an association between PON1 polymorphisms 
an Parkinson’s disease [57]. The aim of the present study includes 
investigation of both the M54L and the R192Q allele, genotype and 
haplotype distribution in PD patients and healthy subjects. In addition 
to these polymorphisms, some investigators have recently detected 
polymorphic mutations in the promoter region of PON1 gene, in 
particular, the T(107)C promoter polymorphism has been shown 
to affect PON1 gene expression and enzymatic activity [58]. Table 1 
summarizes the evidence for an association between PON1 L55M and 
Parkinson’s disease. Moreover, another study showed the association of 
R192Q allele with PD.

Sources of variation in PON1 activity
PON1 activity has been shown to be regulated both genetically 

and by post translational modifications [59,60]. PON1 diurnal activity 
is quite constant. Serum paraoxonase activity significantly decreased 
with age (r ¼ 2 0:38; p, 0:0001); however, its arylesterase activity and 
its concentration in the serum did not change significantly by aging. 
Thus, the decrease in PON1 activity may contribute to the increased 
susceptibility of HDL to oxidation; decreased in detoxification 
of organophosphates because of aging and oxidative damage. In 
newborns, PON1 activity until 6 months age is very low, suggesting that 
newborns can be significantly more sensitive to poisoning by pesticide 
than adults [50]. In rats, no differences were found in plasma and liver 
PON1 activity between 3- and 24-month-old animals [61]. Recent 
investigations have reported a progressive decrease in PON1 activity 
in elderly humans. More over many other factors can affect the PON1 
activity and concentration. Some factors such as Dietary cholesterol, 
alcohol use, and vitamin C associate with an increase in AREase activity. 
And others like iron and folic acid can decrease AREase activity [62]. 
Triolein supplementation maybe increase the serum PON1 activity; 
whereas fish oil reduce this enzyme and tripalmitin not affect it [63]. 
The effects of various dietary fats on PON1 status have been evaluated 
in rats. Interestingly, PON1 activity in mice and humans can be 
increases with feed Oleic acid [64,65], others studies shows that Aspirin 

use associated with high serum levels of paraoxonase activity [66] and 
synthesis of the PON1 protein as well as activity reduced by glycation 
of this enzyme [60].

In addition to PON activity, PON1 concentration change with 
genetic polymorphisms. Experimental evidence showed that serum 
activity in healthy subjects is directly related to protein concentration. 
Homozygous BB individuals have higher PON1 concentrations than 
homozygous AA. Moreover, heterozygous AB individuals have an 
intermediate level. It was shown the 55 polymorphism also affected 
the PON1 concentration. However it could not be found such effects 
in healthy population [67]. Considering the role of PON1 in PD, the 
concentration and activity of this enzyme can be different in Parkinson’s 
patients and healthy subjects. Serum PON1 activity were significantly 
lower in patients than in healthy individuals and this different would 
be expected based on age alone [7]. Aryl esterase activity of the PON1 
protein was significantly higher in PD. healthy subjects suggesting that 
paraoxonase activity of PON1, but not aryl esterase activity of PON1, is 
causally involved in the progression of PD [7].

Other disease association with PON 1
PON1 activity can be regulated genetically and environmentally 

[60]. One of the most important roles of the PON1 is protection of 
LDL and HDL against oxidation induced by copper ions as well as 
by other free radicals [68]. This protection of PON1 is most probably 
related to the hydrolyzing of some activated lipids [69] and other lipid 
peroxide products [68] which are produced during the acute phase 
response. PON1 activity has been demonstrated decrease by LPS 
(lipopolysacaride) [70] or TNF α /IL -1B explosion but increase with 
IL-6 [71]. Regarding the roles of these factors, activity of PON1 can 
be changed in different inflammatory and infectious diseases. PON1 
activity has been observed decrease in the serum of patients diagnosed 
with chronic hepatitis [72], rheumatoid arthritis [73], multiple sclerosis 
[74], diabetes mellitus [75], atherosclerosis, Alzheimer dementia and 
cancers [76-79]. Also decrease in PON1 activity levels were reported in 
radiology workers exposed to long-term (>5 years) ionizing radiation [80].

Prostate and ovarian cancers

These types are the most common cancers in developed countries. 
The serum paraoxonase eliminates carcinogenic radicals [81,82]. A 
study in Finnish man found a new common mutation in the coding 
region of the PON1 gene, termed I102V, that was strongly associated 
with an increased risk of prostate cancer also PON1 polymorphism 
were significantly associated with epithelial ovarian cancer [83,84].

Myocardial infarction

PON1 activity in patients who have survived a myocardial infarction 
was reported to be lower [85,86].

Diabetes

Presence of PON1-55 MM and PON1-192 QQ genotypes related 
with weaker diabetes control than RR genotypes. other studies like this 
emphasized above findings [87,88].

Lung cancer

It has been emerged the serum PON1 activity in patients with LC 
compared to healthy individuals is found to be significantly lower [89].

Breast cancer

The L55M polymorphism, make lowers paraoxonase activity by 
decreasing the amount of this enzyme present in blood. women with 

Study PD Patients Controls PD Susceptibility
Kondo et al. [15] 166 252 Increased risk for MM
Akhmedova et al. [56] 117 207 Increased risk for MM
Carmine et al. [102] 114 127 Increased risk for MM
Clarimon et al. [5] 144 135 No influence
Fong et al. [57] 125 162 No influence
Đurić et al. [103] 106 7 Increased risk for MM
Dick et al. [104] 767 1989 No influence
Manthripragada et al. [20] 351 363 Increased risk for MM
Wingo et al. [105] 566 719 No influence

Table 1. Genetic association studies about the co-relation of PON1 polymorphism and 
PD risk 
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the MM genotype for this polymorphisms had a 57% higher incidence of 
breast cancer and an 85% higher incidence of invasive breast cancer [90].

Rheumatoid Arthritis (RA)

It was shown that increased amount of ROS in plasma may be a sign 
of rheumatoid arthritis. Baskol et al. reported that increased ROS levels 
in RA might result in decreased antioxidant PON1 activity [91].

Cirrhosis

Studies found that PON1 activity was lower in patients with 
cirrhosis than in those with hepatitis. This reduction in activity of 
PON1 was considered as a consequence of an altered synthesis and/or 
secretion of HDL. Alterations of the structure and circulatory levels of 
HDL was attributed to the hepatic LCAT activity which is frequently 
affect by chronic liver diseases [92,93].

Atherosclerosis

Animal models demonstrated that PON1 deficiency was related 
to a susceptibility of LDL and HDL to oxidation and atherosclerosis 
development [94,95].

Coronary artery disease

Studies indicate that PON1 in human is significantly associated 
with CAD risk [96,97] and its activity is lower among individuals and 
populations with CAD.

Depression

A study of the association of paraoxonase1 Q192R polymorphism 
with depression among a random sample of 3266 British women, 
suggested that there was an association of PON1 Q192R polymorphism 
with symptoms of depression [98].

Other disease

The studies of PON1 polymorphism, activity or levels found a 
relationship between PON1 with Age-Related Macular Degeneration 
(AMD). The mechanism(s) for PON1-mediated protection against 
AMD remains to be determined. A study supported a role for the 
Q192R polymorphism in decreasing susceptibility to AMD [99]. Saeed 
et al. found a significant association of variants in the Paraoxonase 
gene cluster and sporadic ALS in Gulf War veterans [100]. Finally, 
Paraoxonase activity showed an inverse association only with sperm 
concentration, and arylesterase activity was not associated with any 
semen quality parameter [101].

Conclusion
Multiple genetic and environmental risk factors are known to 

increase susceptibility to the development of PD. Each factor individually 
may have a minor effect however their interaction may prove sufficient 
to cause PD. Over the past few years, an increasing number of studies 
have attempted to identify paraoxonase1 relationship with PD. 
Our analysis shows that people work with organophosphates are at 
significantly increased risk of PD. The association of organophosphates 
with PD may be related to PON1. PON1 would thus seem worthy 
of further study as an etiologic factor in the development of PD and 
perhaps other diseases. To date, accepted that both PON1 L55M and 
PON1 Q192R polymorphisms have been unequivocally associated with 
PD. Our review of the results of former studies shows that paraoxonase1 
polymorphism may have influence on PD development. And also, it 
suggests that paraoxonase activity but not aryl esterase activity of PON1 

is causally involved in the progression of PD. The authors of this review 
concluded that there was a significant association of the PON1-55 MM 
+ LM genotype with the risk of PD than the LL genotype and there was 
only a study for association between the polymorphism of PON1-192 
and PD. However, some studies suggested that the M54L and Q192R 
polymorphisms were not major risk factors for PD. Also, we found that 
factors which increase paraoxonase activity; such as aspirin and oleic 
acid may reduce risk of PD. The roles of PON1 in PD is controversial, 
there is an essential need of future studies which provide a better 
understanding of roles of the PON1 in PD and pathogenic mechanisms 
of this disease. 
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