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The interaction between spinors and gravity is the most complicated and subtle interac-

tion in the universe, which involves the basic problem to unified quantum theory and general

relativity. By means of Clifford Algebra, a unified language and tool to describe the rules

of nature, this paper systematically discusses the dynamics and properties of spinor fields in

curved space-time, such as the decomposition of the spinor connection, the classical approxi-

mation of Dirac equation, the energy momentum tensor of spinors and so on. To split spinor

connection into Keller connection Υµ ∈ Λ1 and pseudo-vector potential Ωµ ∈ Λ3 by Clifford

algebra not only makes the calculation simpler, but also highlights their different physical

meanings. The representation of the new spinor connection is dependent only on the metric,

but not on the Dirac matrix. Keller connection only corresponds to geometric calculations,

but the potential Ωµ has dynamical effects, which couples with the spin of a spinor and may

be the origin of the celestial magnetic field. Only in the new form of connection can we

clearly define the classical concepts for the spinor field and then derive its complete classi-

cal dynamics, that is, Newton’s second law of particles. To study the interaction between

space-time and fermion, we need an explicit form of the energy-momentum tensor of spinor

fields. However, the energy-momentum tensor is closely related to the tetrad, and the tetrad

cannot be uniquely determined by the metric. This uncertainty increases the difficulty of

deriving rigorous expression. In this paper, through a specific representation of tetrad, we

derive the concrete energy-momentum tensor and its classical approximation. In the deriva-

tion of energy-momentum tensor, we obtain a spinor coefficient table Sµνab , which plays an

important role in the interaction between spinor and gravity. From this paper we find that,

Clifford algebra has irreplaceable advantages in the study of geometry and physics.
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I. INTRODUCTION

Dirac equation for spinor is a magic equation, which includes many secrets of Nature. The

interaction between spinors and gravity is the most complicated and subtle interaction in the

universe, which involves the basic problem to unified quantum theory and general relativity. The

spinor connection has been constructed and researched in many literatures[1–6]. The spinor field is

used to explain the accelerating expansion of the universe and dark matter and dark energy[7–12].

In the previous works, we usually used spinor covariant derivative directly, in which the spinor

connection takes a compact form and its physical meaning becomes ambiguous. In this paper,

by means of Clifford algebra, we split the spinor connection into geometrical and dynamical parts

(Υµ,Ωµ) respectively. This form of connection is determined only by metric but independent

of Dirac matrices. Only in this representation, we can clearly define classical concepts such as

coordinate, speed, momentum and spin for a spinor, and then derive the classical mechanics in

detail. Υµ ∈ Λ1 only corresponds to the geometrical calculations, but Ωµ ∈ Λ3 leads to dynamical

effects. Ωµ couples with the spin Sµ of a spinor, which provides location and navigation functions

for a spinor with little energy. This term is also related with the origin of magnetic field of a

celestial body[13]. So this form of connection is much helpful to understand the subtle relation

between spinor and space-time.
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The classical theory for a spinor moving in gravitational field is firstly studied by Mathisson[14],

and then developed by Papapetrou[15] and Dixon[16]. A detailed derivation can be found in [17].

By the commutator of the covariant derivative of the spinor [∇α,∇β], we get an extra approximate

acceleration of the spinor as follows

aα(xµ) = − ~
4m

Rαβγδ(x
µ)uβ(xµ)Sγδ(xµ), (1.1)

where Rαβγδ is the Riemann curvature, uα 4-vector speed and Sγδ the half commutator of the

Dirac matrices.

(1.1) leads to the violation of Einstein’s equivalence principle. This problem was discussed

by many authors[17–24]. In [18], the exact Cini-Touschek transformation and the ultra-relativistic

limit of the fermion theory were derived, but the Foldy-Wouthuysen transformation is not uniquely

defined. The following calculations also show that, the usual covariant derivative ∇µ includes cross

terms, which is not parallel to the speed uµ of the spinor.

To study the coupling effect of spinor and space-time, we need the energy-momentum ten-

sor(EMT) of spinor in curved space-time. The interaction of spinor and gravity is considered by

H. Weyl as early as in 1929[25]. There are some approaches to the general expression of EMT

of spinors in curved space-time[4, 9, 26, 27]. But the formalisms are usually quite complicated

for practical calculation and different from each other. In [7–10, 12], the space-time is usually

Friedmann-Lemaitre-Robertson-Walker type with diagonal metric. The energy-momentum tensor

Tµν of spinors can be directly derived from Lagrangian of the spinor field in this case. In [4, 26],

according to the Pauli’s theorem

δγα =
1

2
γβδg

αβ + [γα,M ], (1.2)

where M is a traceless matrix related to the frame transformation, the EMT for Dirac spinor φ

was derived as follows,

Tµν =
1

2
<〈φ† (γµi∇ν + γνi∇µ)φ〉, (1.3)

where φ† = φ+γ is the Dirac conjugation, ∇µ is the usual covariant derivatives for spinor. A

detailed calculation for variation of action was performed in [9], and the results were a little

different from (1.2) and (1.3).

The following calculation shows that, M is still related with δgµν , and provides nonzero con-

tribution to Tµν in general cases. The exact form of EMT is much more complex than (1.3),

which includes some important effects overlooked previously. The covariant derivatives operator
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i∇µ for spinor includes components in grade-3 Clifford algebra Λ3 which is not parallel to the clas-

sical momentum pµ ∈ Λ1. The derivation of rigorous Tµν is quite difficult due to non-uniqueness

representation and complicated formalism of vierbein or tetrad frames. In this paper, we give a

systematical and detailed calculation for EMT of spinors. We clearly establish the relations be-

tween tetrad and metric at first, and then solve the Euler derivatives with respect to gµν to get

explicit and rigorous form of Tµν .

From the results we find some new and interesting conclusions. Besides the usual kinetic energy

momentum term, we find three kinds of other additional terms in EMT of bispinor. One is the

self interactive potential, which acts like negative pressure. The other reflects the interaction of

momentum pµ with tetrad, which vanishes in classical approximation. The third is the spin-gravity

coupling term ΩαS
α, which is a higher order infinitesimal in weak field, but becomes important in a

neutron star. All these results are based on Clifford algebra decomposition of usual spin connection

Γµ into geometrical part Υµ and dynamical part Ωµ, which not only makes calculation simpler,

but also highlights their different physical meanings. In the calculation of tetrad formalism we find

a new spinor coefficient table Sµνab , which plays an important role in the interaction of spinor with

gravity and appears in many places.

This paper is an improvement and synthesis of the previous works arXiv:gr-qc/0610001 and

arXiv:gr-qc/0612106, which were repeatedly rejected by the professional journals due to non-

academic reasons in physical society. The materials in this paper are organized as follows: In

the next section, we specify notations and conventions used in the paper, and derive the spinor

connections in form of Clifford algebra. In the third section, we set up the relations between tetrad

and metric, which is the technical foundations of classical approximation of Dirac equation and

EMT of spinor. We derive the classical approximation of spinor theory in section IV, and then

calculate the EMT in section V. We give some simple discussions in the last section.

II. SIMPLIFICATION OF THE SPINOR CONNECTION

Clifford algebra is a unified language and efficient tool for physics. The variables and equations

expressed by Clifford algebra have a neat and elegant form, and the calculation has a standard but

simple procedure. At first we introduce some notations and conventions used in this paper. We

take ~ = c = 1 as units. The element of space-time is described by

dx = γµdx
µ = γµdxµ = γaδX

a = γaδXa, (2.1)
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in which γa stands for tetrad, and γa for co-frame, which satisfy the following C`1,3 Clifford algebra,

γaγb + γbγa = 2ηab, γµγν + γνγµ = 2gµν , (2.2)

γµ = f a
µ γa, γµ = fµaγa, ηab = diag(1,−1,−1,−1). (2.3)

The relation between the local frame coefficient (fµa, f a
µ ) and metric is given by

f a
µ f

µ
b = δab , f a

µ f
ν
a = δνµ, fµaf

ν
bη
ab = gµν , f a

µ f
b
ν ηab = gµν . (2.4)

We use the Latin characters (a, b ∈ {0, 1, 2, 3}) for the Minkowski indices, Greek characters (µ, ν ∈

{0, 1, 2, 3}) for the curvilinear indices, and (j, k, l,m, n ∈ {1, 2, 3}) for spatial indices. The Pauli

and Dirac matrices in Minkowski space-time are given by

σa ≡


 1 0

0 1

 ,

 0 1

1 0

 ,

 0 −i

i 0

 ,

 1 0

0 −1

 , (2.5)

σ̃a ≡ (σ0,−~σ), ~σ = (σ1, σ2, σ3), (2.6)

γa ≡

 0 σ̃a

σa 0

 , γ5 =

 I 0

0 −I

 . (2.7)

Since the Clifford algebra is isomorphic to the matrix algebra, we need not distinguish tetrad γa

and matrix γa in calculation.

There are several definitions for Clifford algebra[28, 29]. Clifford algebra is also called geometric

algebra. If the definition is directly related to geometric concepts, it will bring great convenience

to the study and research of geometry[30, 31].

Definition 1 Assume the element of an n = p+ q dimensional space-time Mp,q over R is given by

(2.1). The space-time is endowed with distance ds = |dx| and oriented volumes dVk calculated by

dx2 =
1

2
(γµγν + γνγµ)dxµdxν = gµνdx

µdxν = ηabδX
aδXb, (2.8)

dVk = dx1 ∧ dx2 ∧ · · · ∧ dxk = γµν···ωdx
µ
1dx

ν
2 · · · dxωk , (1 ≤ k ≤ n), (2.9)

in which the Minkowski metric (ηab) = diag(Ip,−Iq), and Grassmann basis γµν···ω = γµ ∧ γν ∧ · · · ∧

γω ∈ ΛkMp,q. Then the following number with basis

C = c0I + cµγ
µ + cµνγ

µν + · · ·+ c12···nγ
12···n, (∀ck ∈ R) (2.10)

together with multiplication rule of basis given in (2.8) and associativity define the 2n-dimensional

real universal Clifford algebra C`p,q.

By straightforward calculation we have[6, 30, 31]
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Theorem 1 For C`1,3, we have the following useful relations

I, γa, γab = i
2ε
abcdγcdγ

5, γabc = iεabcdγdγ
5, γ0123 = −iγ5. (2.11)

γµγν = gµν + γµν , γµνγω = γµgνω − γνgµω + γµνω. (2.12)

For Dirac equation in curved space-time without torsion, we have[1–5, 32],

γµ(i∇µ − eAµ)φ = mφ, ∇µφ = (∂µ + Γµ)φ, (2.13)

in which the spinor connection is given by

Γµ ≡
1

4
γνγ

ν
;µ =

1

4
γνγν;µ =

1

4
γν(∂µγν − Γαµνγα). (2.14)

The total spinor connection γµΓµ ∈ Λ1 ∪ Λ3.

Theorem 2 Dirac equation (2.13) can be rewritten in the following Hermitian form

(αµp̂µ − SµΩµ)φ = mγ0φ, (2.15)

in which αµ is current operator, p̂µ momentum and Sµ spin operator,

αµ = diag(σµ, σ̃µ), p̂µ = i(∂µ + Υµ)− eAµ, Sµ =
1

2
diag(σµ,−σ̃µ), (2.16)

where Υµ is Keller connection and Ωµ Gu-Nester potential, they are respectively defined as

Υν ≡
1

2
fµa(∂νf

a
µ − ∂µf a

ν ) =
1

2
[∂ν(ln

√
g)− fµa∂µf a

ν ] , (2.17)

Ωα ≡ 1

2
fαdf

µ
af

ν
b∂µf

e
ν ε

abcdηce =
1

4
√
g
εαµνωηabf

a
ω (∂µf

b
ν − ∂νf b

µ ). (2.18)

Proof. By (2.11) and (2.12), we have following Clifford calculus

γµΓµ =
1

4
γµγν(∂µγν − Γαµνγα) =

1

4
(gµν + γµν)(∂µγν − Γαµνγα)

=
1

4
(γµ;µ + γµν∂µγν) =

1

4
(∂µγ

µ + ∂µ ln(
√
g)γµ) +

1

4
fµaf

ν
b∂µf

c
ν γ

abγc

=
1

4
[γa∂µf

µ
a + (fνa∂µf

a
ν )γµ] +

1

4
fµaf

ν
b∂µf

d
ν γ

abγcηcd

=
1

4
fµaγ

ν(−∂µf a
ν + ∂νf

a
µ ) +

1

4
fµaf

ν
b∂µf

d
ν (ηbcγa − ηacγb + γabc)ηcd

=
1

2
fµaγ

ν(∂νf
a
µ − ∂µf a

ν ) +
1

4
fµaf

ν
b∂µf

e
ν γ

abcηce

= Υµγ
µ +

i

2
Ωαγαγ

5. (2.19)

Substituting it into (2.13) and multiplying the equation by γ0, we prove the theorem.
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The following discussion shows that, Υµ and Ωµ have different physical meanings. ∂µ + Υµ as a

whole operator is similar to the covariant derivatives ∇µ for vector, it only has geometrical effect.

But Ωµ couples with the spin of a particle and leads to the magnetic field of celestial body[13].

Ωµ ≡ 0 is a necessary condition for the metric can be diagonalized. If the gravitational field is

generated by a rotating ball, the corresponding metric, like the Kerr one, cannot be diagonalized.

In this case, the spin-gravity coupling term has non-zero coupling effect. In axisymmetric and

asymptotically flat space-time we have the line element in quasi-spherical coordinate system[33]

dx = γ0
√
U(dt+Wdϕ) +

√
V (γ1dr + γ2rdθ) + γ3

√
U−1r sin θdϕ, (2.20)

dx2 = U(dt+Wdϕ) 2 − V (dr2 + r2dθ2)− U−1r2 sin2 θdϕ2, (2.21)

in which (U, V,W ) is just functions of (r, θ). As r →∞ we have

U → 1− 2m

r
, W → 4L

r
sin2 θ, V → 1 +

2m

r
, (2.22)

where (m,L) are mass and angular momentum of the star respectively. For common stars and

planets we always have r � m � L. For example, we have m=̇3km for the sun. The nonzero

tetrad coefficients of metric (2.20) are given by f 0
t =

√
U, f 1

r =
√
V , f 2

θ = r
√
V , f 3

ϕ = r sin θ√
U
, f 0

ϕ =
√
UW,

f t0 = 1√
U
, f r1 = 1√

V
, fθ2 = 1

r
√
V
, fϕ3 =

√
U

r sin θ , f
t
3 = −

√
UW

r sin θ .
(2.23)

Substituting it into (2.19) we get

Ωα = f t0f
r
1f

θ
2f

ϕ
3(0, ∂θgtϕ,−∂rgtϕ, 0)

=
(
V r2 sin θ

)−1
(0, ∂θ(UW ),−∂r(UW ), 0)

→ 4L

r4
(0, 2r cos θ, sin θ, 0). (2.24)

By (2.24) we find that, the intensity of Ωα is proportional to the angular momentum of the star,

and its force line is given by

dxµ

ds
= Ωµ ⇒ dr

dθ
=

2r cos θ

sin θ
⇔ r = R sin2 θ. (2.25)

(2.25) shows that, the force lines of Ωα is just the magnetic lines of a magnetic dipole. According

to the above results, we know that the spin-gravity coupling potential of charged particles will

certainly induce a macroscopic dipolar magnetic field for a star, and it should be approximately in

accordance with the Schuster-Wilson-Blackett relation[13].
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For diagonal metric, the metric is given by

gµν = diag(N2
0 ,−N2

1 ,−N2
2 ,−N2

3 ),
√
g = N0N1N2N3, (2.26)

where Nµ = Nµ(xα). In this case we have Ωµ ≡ 0 and

γµ =

(
γ0

N0
,
γ1

N1
,
γ2

N2
,
γ3

N3

)
, Υµ =

1

2
∂µ ln

(√
g

Nµ

)
. (2.27)

For Dirac equation in Schwarzschild metric,

gµν = diag(B(r),−A(r),−r2,−r2 sin2 θ), (2.28)

we have

γµ =

(
γ0√
B
,
γ1√
A
,
γ2

r
,

γ3

r sin θ

)
, Υµ =

(
1,

1

r
+
B′

4B
,
1

2
cot θ, 0

)
. (2.29)

The Dirac equation for free spinor is given by

i

(
γ0√
B
∂t +

γ1√
A

(∂r +
1

r
+
B′

4B
) +

γ2

r
(∂θ +

1

2
cot θ) +

γ3

r sin θ
∂ϕ

)
φ = mφ. (2.30)

Set A = B = 1, we get Dirac equation in spherical coordinate system. In contrast with the

spinor in the Cartesian coordinate system, the spinor in the (2.30) includes an implicit rotational

transformation.

III. RELATIONS BETWEEN TETRAD AND METRIC

Different from the cases of vector and tensor, in general relativity the equation of spinor fields

depends on the local tetrad frame. The tetrad γα can be only determined by metric to an arbitrary

Lorentz transformation. This situation makes the derivation of EMT quite complicated. In this

section, we give an explicit representation of tetrad and derive the EMT of spinor based on this

representation. For convenience to check the results by computer, we denote the element by

dxµ = (dx, dy, dz, cdt) and δXa = (δX, δY, δZ, cδT ).

For metric gµν , not losing generality we assume that, in the neighborhood of xµ, dx0 is time-like

and (dx1, dx2, dx3) are space-like. This means g00 ≥ 0, gkk ≤ 0(k 6= 0), and the following definitions

of Jk are real numbers

J1 =
√
−g11, J2 =

√√√√√
∣∣∣∣∣∣ g11 g12

g21 g22

∣∣∣∣∣∣, J3 =

√√√√√√√√−
∣∣∣∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣∣∣∣, J0 =
√
−det(g). (3.1)

u1 =

∣∣∣∣∣∣ g11 g12

g31 g32

∣∣∣∣∣∣ , u2 =

∣∣∣∣∣∣ g11 g12

g01 g02

∣∣∣∣∣∣ , u3 =

∣∣∣∣∣∣ g21 g22

g31 g32

∣∣∣∣∣∣ , (3.2)
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v1 =

∣∣∣∣∣∣∣∣∣
g12 g13 g10

g22 g23 g20

g32 g33 g30

∣∣∣∣∣∣∣∣∣ , v2 =

∣∣∣∣∣∣∣∣∣
g11 g13 g10

g21 g23 g20

g31 g33 g30

∣∣∣∣∣∣∣∣∣ , v3 =

∣∣∣∣∣∣∣∣∣
g11 g12 g10

g21 g22 g20

g31 g32 g30

∣∣∣∣∣∣∣∣∣ . (3.3)

The following conclusions can be checked by computer program.

Theorem 3 For LU decomposition of matrix (gµν)

(gµν) = L(ηab)L
+, (gµν) = U(ηab)U

+, U = L∗ = (L+)−1, (3.4)

with positive diagonal elements, we have the following unique solution

L = (L a
µ ) =


−g11

J1
0 0 0

−g21
J1

J2
J1

0 0

−g31
J1

u1
J1 J2

J3
J2

0

−g01
J1

u2
J1 J2

− v3
J2 J3

J0
J3

 , (3.5)

U = (Uµa) =


1
J1

g21
J1 J2

u3
J2 J3

v1
J3 J0

0 J1
J2
− u1
J2 J3

− v2
J3 J0

0 0 J2
J3

v3
J3 J0

0 0 0 J3
J0

 . (3.6)

Theorem 4 For any solution of tetrad (2.4) in matrix form (f a
µ ) and (fµa), there exists a local

Lorentz transformation δX ′a = ΛabδX
b independent of gµν , such that

(f a
µ ) = LΛ+, (fµa) = UΛ−1, (3.7)

where Λ = (Λab) stands for the matrix of Lorentz transformation.

Proof. For any solution (2.4) we have

(gµν) = L(ηab)L
+ = (f a

µ )(ηab)(f
a
µ )+ ⇔ L−1(f a

µ )(ηab)(L
−1(f a

µ ))+ = (ηab). (3.8)

So we have a Lorentz transformation matrix Λ = (Λab), such that

L−1(f a
µ ) = Λ+ ⇔ (f a

µ ) = LΛ+, or f a
µ = L b

µ Λab. (3.9)

Similarly we have (fµa) = UΛ−1. The proof is finished.
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The decomposition (3.4) is the Gram-Schmidt orthogonalization for vectors dxµ in the order

dt→ dz → dy → dx. In matrix form, by (3.4) we have δX = L+dx and

ds2 = gµνdx
µdxν = ηabδX

aδXb

= (L T
t dt)

2 − (L X
x dx+ L X

y dy + L X
z dz + L X

t dt)2

−(L Y
y dy + L Y

z dz + L Y
t dt)2 − (L Z

z dz + L Z
t dt)2. (3.10)

(3.10) is a direct result of (3.5), but (3.10) manifestly shows the geometrical meanings of the tetrad

components L a
µ . Obviously, (3.10) is also the method of completing the square to calculate the

tetrad coefficients f a
µ .

For LU decomposition (3.6), we define a spinor coefficient table by

Sµνab ≡


0 −U{µ1 U

ν}
2 −U

{µ
1 U

ν}
3 −U

{µ
1 U

ν}
0

U
{µ
2 U

ν}
1 0 −U{µ2 U

ν}
3 −U

{µ
2 U

ν}
0

U
{µ
3 U

ν}
1 U

{µ
3 U

ν}
2 0 −U{µ3 U

ν}
0

U
{µ
0 U

ν}
1 U

{µ
0 U

ν}
2 U

{µ
0 U

ν}
3 0

 = −Sµνba , (3.11)

in which

U{µa U
ν}
b =

1

2
(UµaU

ν
b + UνbU

µ
a) = U

{µ
b U

ν}
a . (3.12)

Sµνab is not a tensor for indices (a, b), it is symmetrical for Riemann indices (µ, ν) but anti-

symmetrical for Minkowski indices (a, b). By representation of (3.5), (3.6) and relation (3.7),

we can check the following results by straightforward calculation.

Theorem 5 For tetrad (3.7), we have

∂f n
α

∂gµν
=

1

4
(δµαf

ν
m + δναf

µ
m)ηnm +

1

2
Sµνab f

a
α η

nb. (3.13)

∂fαa
∂gµν

= −1

4
(fµag

αν + fνag
µα)− 1

2
Sµνab f

α
nη

nb. (3.14)

Or equivalently,

∂γα
∂gµν

=
1

4
(δµαγ

ν + δναγ
µ) +

1

2
Sµνab f

a
α γ

b. (3.15)

∂γα

∂gµν
= −1

4
(gµαγν + gναγµ)− 1

2
Sµνab f

α
nγ

aηnb. (3.16)

Or equivalently,

δγα =
1

2
γβ(δgαβ + Sµνab f

a
α f

b
β δgµν), (3.17)

δγλ = −1

2
gλβγα(δgαβ + Sµνab f

a
α f

b
β δgµν) = −gλαδγα. (3.18)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2020                   doi:10.20944/preprints202003.0453.v1

https://doi.org/10.20944/preprints202003.0453.v1


11

For any given vector Aµ, we have

Aα
∂γα
∂gµν

=
1

4
(Aµγν +Aνγµ) +

1

4
Sµνab (Aaγb −Abγa), (3.19)

Aα
∂γα

∂gµν
= −1

4
(Aµγν +Aνγµ) +

1

4
Sµνab (Aaγb −Abγa). (3.20)

In (3.13) − (3.20), we set ∂γα

∂gµν
= ∂γα

∂gνµ
= 1

2
dγα

dgµν
for µ 6= ν to get the tensor form. d

dgµν
is the total

derivative for gµν and gνµ. Sµνab is transformed from (3.11).

It should be stressed again, Sµνab is not a tensor for indices (a, b), the following derivation only

use the property Sµνab = −Sµνba . For concrete calculations, we should use (3.11). For Ωα, we have

Ωd =
1

4
εabcdfαaS

µν
bc ∂αgµν , Ωα = −1

4
εdabcfαdf

β
aS

µν
bc ∂βgµν . (3.21)

IV. THE CLASSICAL APPROXIMATION OF DIRAC EQUATION

In this section, we derive the classical mechanics for a charged spinor moving in gravity, and

disclose the physical meaning of connections Υµ and Ωµ. In the Hamiltonian system of quantum

mechanics, we need the coordinate system of global realistic simultaneity, that is, the Gu’s natural

coordinate system(NCS)[34]

ds2 = gttdt
2 − ḡkldxkdxl, dτ =

√
gttdt = f 0

t dt, dV =
√
ḡd3x. (4.1)

In which ds is the proper time element, dτ the Newton’s absolute cosmic time element and dV the

absolute volume element of the space at time t. NCS generally exists and the global simultaneity is

unique. Only in NCS we can clearly establish the Hamiltonian formalism and calculate the Nöther

charges. In NCS, we have

f 0
t =

√
gtt, f t0 =

1
√
gtt
, γt =

√
gttγ0, γt =

1
√
gtt
γ0. (4.2)

Then by (2.17) we get

Υµ =
1

2

(
∂t ln

√
ḡ, f a

k ∂jf
j
a + ∂k ln

√
g
)
, Υt = gttΥt, Υk = −ḡklΥl. (4.3)

In NCS, to lift and lower the index of a vector means Ωt = gttΩt, Ωk = −ḡklΩl.

More generally, we consider Dirac equation with electromagnetic potential eAµ and nonlinear

potential N(γ̌) = 1
2wγ̌

2, where γ̌ = φ+γ0φ. Then (2.15) can be rewritten in Hamiltonian formalism

iαt∇tφ = Hφ, H = −αkp̂k + eαtAt + SµΩµ + (m−N ′)γ0, (4.4)
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where H is the Hamiltonian or energy of the spinor, αt = f t0α
0 = (

√
gtt)
−1 and ∇µ = ∂µ + Υµ.

In traditional quantum theory, we simultaneously take coordinate, speed, momentum and wave

function of a particle as original concepts. This situation is the origin of logical confusion. As

a matter of fact, only wave function φ is independent concept and dynamical equation (4.4) is

fundamental in logic. Other concepts of the particle should be defined by φ and (4.4). Similarly

to the case in flat space-time[35, 36], we define some classical concepts for the spinor.

Definition 2 the coordinate ~X and speed ~v of the spinor is defined as

Xk(t) ≡
∫
R3

xk|φ|2
√
ḡd3x =

∫
R3

xkqt
√
gd3x, vk ≡ d

dτ
Xk = f t0

d

dt
Xk, (4.5)

where R3 stands for the total simultaneous hypersurface, qµ = φ+αµφ = α̌µ is the current.

By definition (4.5) and current conservation law qµ;µ = (
√
g)−1∂µ(qµ

√
g) = 0, we have

vj = f t0

∫
R3

xj∂t(q
t√g)d3x = −f t0

∫
R3

xj∂k(q
k√g)d3x

= f t0

∫
R3

qj
√
gd3x→

∫
R3

qj
√
ḡd3x. (4.6)

Since a spinor has only a very tiny structure, together with normalizing condition
∫
R3 q

t√gd3x = 1,

we get the classical point-particle model for the spinor as[36]

qµ → uµ
√

1− v2δ3(~x− ~X), v2 = ḡklv
kvl, uµ =

dXµ

ds
=

vµ√
1− v2

, (4.7)

where the Dirac-δ means
∫
R3 δ

3(~x− ~X)
√
ḡd3x = 1.

Theorem 6 For any Hermitian operator P̂ , P ≡
∫
R3

√
ḡφ+P̂ φd3x is real for any φ. We have the

following generalized Ehrenfest theorem,

dP

dt
= <

∫
R3

√
gφ+

(
αt∂tP̂ − if t0[P̂ , f 0

t ]H + i[H, P̂ ]
)
φd3x, (4.8)

where < means taking the real part.

Proof. By (4.3) and (4.4), we have

dP

dt
=

d

dt

∫
R3

√
ḡφ+P̂ φd3x

= <
∫
R3

√
ḡ
(
φ+(∂tP̂ )φ+ i(i∂tφ)+P̂ φ− iφ+P̂ (i∂tφ) + φ+P̂ φ∂t ln

√
ḡ
)
d3x

= <
∫
R3

√
ḡ
(
φ+(∂tP̂ )φ+ if 0

t (Hφ)+P̂ φ− iφ+P̂ (f 0
t Hφ)

)
d3x

= <
∫
R3

√
gφ+

(
αt∂tP̂ − if t0[P̂ , f 0

t ]H + i[H, P̂ ]
)
φd3x

+<
∫
R3

√
gφ+(∂kα

k + αk∂k ln
√
g − 2αkΥk)P̂ φd

3x

= <
∫
R3

√
gφ+

(
αt∂tP̂ − if t0[P̂ , f 0

t ]H + i[H, P̂ ]
)
φd3x. (4.9)
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Then we prove (4.8). The proof clearly shows the connection Υµ has only geometrical effect, which

cancels the derivatives of
√
g. Obviously, we cannot get (4.8) from conventional definition of spinor

connection Γµ.

Definition 3 The 4-dimensional momentum of the spinor is defined by

pµ = <
∫
R3

(φ+p̂µφ)
√
ḡd3x. (4.10)

For a spinor at energy eigenstate, we have classical approximation pµ = muµ, where m defines the

classical inertial mass of the spinor.

Theorem 7 For momentum of the spinor pµ = <
∫
R3

√
ḡφ+p̂µφd

3x, we have

d

dτ
pµ = f t0<

∫
R3

√
g
(
eFµνq

ν + Ša∂µΩa − ∂µN − φ+(∂µα
ν)p̂νφ

)
d3x, (4.11)

in which

Fµν = ∂µAν − ∂νAµ, Ša = φ+Saφ. (4.12)

Proof. Substituting P̂ = p̂µ and Hφ = αti∇tφ into (4.8), by straightforward calculation we get

d

dτ
pµ = f t0<

∫
R3

√
gφ+

(
−eαt∂tAµ − (∂µα

t)i∇t + αk∂kp̂µ

)
φd3x

+f t0<
∫
R3

√
gφ+

(
∂µ(−αkp̂k + eαtAt + SνΩν −N ′γ0)

)
φd3x

= f t0<
∫
R3

√
g
(
eFµνq

ν + φ+∂µ(SνΩν)φ− ∂µN
)
d3x−Kµ, (4.13)

in which

Kµ = f t0<
∫
R3

√
gφ+(∂µα

ν)p̂νφd
3x. (4.14)

By SµΩµ = SaΩa, we prove the theorem.

For a spinor at particle state[36], by classical approximation qµ → vµδ3(~x− ~X) and local Lorentz

transformation, we have respectively∫
R3

eFµνq
ν√gd3x → f 0

t eFµνu
ν
√

1− v2, (4.15)∫
R3

φ+Saφ(∂µΩa)
√
gd3x → f 0

t S̄
a∂µΩa

√
1− v2 = f 0

t ∂µ(S̄aΩa)
√

1− v2, (4.16)∫
R3

∂µN
√
gd3x =

∫
R3

∂µ(N
√
g)d3x−

∫
R3

NΓνµν
√
gd3x

→ δtµ
d

dt
(f 0
t w̄

√
1− v2)− f 0

t Γνµνw̄
√

1− v2, (4.17)
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in which the proper parameters S̄a =
∫
R3 φ

+Saφd3X is almost a constant, S̄a equals to ±1
2~ in one

direction but vanishes in other directions. w̄ =
∫
R3 Nd

3X is scale dependent. Then (4.11) becomes

d

ds
pµ → eFµνu

ν + ∂µ(S̄νΩν) + w̄

(
Γαµα − δtµ

d

dt
ζ

)
− Kµ√

1− v2
, (4.18)

where ζ = ln(f 0
t w̄
√

1− v2).

Now we prove the following classical approximation of Kµ,

Kµ → −
1

2
(∂µgαβ)muαuβ

√
1− v2. (4.19)

For LU decomposition of metric, by (3.14) we have

∂fνa
∂gαβ

= −1

4
(fαag

νβ + fβag
αν)− 1

2
Sαβab f

ν
nη

nb, (4.20)

where Sµνab = −Sµνba is anti-symmetrical for indices (a, b). Thus we have

(∂µα
ν)p̂ν = ∂µgαβ

∂fνa
∂gαβ

αap̂ν = ∂µgαβ

(
−1

4
(ααp̂β + αβ p̂α)− 1

2
Sαβab f

ν
nη

nbαap̂ν

)
= −1

4
∂µgαβ

(
(ααp̂β + αβ p̂α) + 2Sαβab α

ap̂b
)
. (4.21)

For classical approximation we have

α̌a = φ+αaφ→ vaδ3(~x− ~X), p̂bφ→ mubφ, Sαβab = −Sαβba . (4.22)

Substituting (4.22) into (4.21), we get∫
R3

√
gφ+(∂µα

ν)p̂νφd
3x→ −1

2
f 0
t (∂µgαβ)pαuβ

√
1− v2. (4.23)

So (4.19) holds.

In the central coordinate system of the spinor, by relations

Γναβ =
1

2
gµν(∂αgµβ + ∂βgµα − ∂µgαβ),

d

dτ
gµν =

√
1− v2uα∂αgµν , (4.24)

it is easy to check

gµνΓναβp
αuβ

√
1− v2 − pν dgµν

dτ
= −1

2
(∂µgαβ)pαuβ

√
1− v2. (4.25)

Substituting (4.25) into (4.19) we get

Kµ → gµνΓναβp
αuβ

√
1− v2 − pν dgµν

dτ
. (4.26)

Substituting (4.26) and ds =
√

1− v2dτ into (4.18), we get Newton’s second law for the spinor

d

ds
pµ + Γµαβp

αuβ = gαµ
(
eFαβu

β + w̄(Γβαβ − δ
t
α

d

dt
ln ζ) + ∂α(S̄νΩν)

)
. (4.27)
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The classical mass m weakly depends on speed v if w̄ 6= 0.

By the above derivation we find that, Newton’s second law is not as simple as it looks like,

because its universal validity depends on many subtle and compatible relations of the spinor equa-

tion. A complicated partial differential equation system (4.4) can be reduced to a 6-dimensional

dynamics (4.5) and (4.27), the world is a miracle designed elaborately. If the spin-gravity coupling

potential SµΩµ and nonlinear potential w̄ can be ignored, (4.27) satisfies ‘mass shell constraint’

d
dt(p

µpµ) = 0[35–37]. In this case, the classical mass of the spinor is a constant and the free spinor

moves along geodesic. In some sense, only vector potential is strictly compatible with Newtonian

mechanics and Einstein’s principle of equivalence.

Clearly, the additional acceleration in (4.27) Ωµ ∈ Λ3 is different from that in (1.1), which is

in Λ2. The approximation to derive (1.1) ~ → 0 may be inadequate, because ~ is a universal

constant acting as unit of physical variables. If w̄ = 0, (4.27) obviously holds in all coordinate

system due to the covariant form, although we derive (4.27) in NCS. However, if w̄ > 0 is large

enough for dark spinor, its trajectories will manifestly deviate from geodesics, so the dark halo in

a galaxy is automatically separated from ordinary matter. Besides, the nonlinear potential is scale

dependent[38].

For many body problem, dynamics of the system should be juxtaposed (4.4) due to the super-

position of Lagrangian,

iαt(∂t + Υt)φn = Hnφn, Hn = −αkp̂k + eαtAt + (mn −N ′n)γ0 + ΩµS
µ. (4.28)

The coordinate, speed and momentum of n-th spinor are defined by

~Xn(t) =

∫
R3

~xqtn
√
gd3x, ~vn =

d

dτ
~Xn, pµn = <

∫
R3

φ+n p̂
µφn
√
ḡd3x. (4.29)

The classical approximation condition for point-particle model reads,

qµn → uµn
√

1− v2nδ3(~x− ~Xn), uµn ≡
dXµ

n

dsn
= (1, ~vn)/

√
1− v2n. (4.30)

Repeating the derivation from (4.18) to (4.22), we get classical dynamics for each spinor,

d

dsn
pµn + Γµαβp

α
nu

β
n = gαµ

(
enFαβu

β
n + w̄n(Γβαβ − δ

t
α

d

dt
ln ζn) + ∂α(S̄νΩν)

)
. (4.31)

V. ENERGY-MOMENTUM TENSOR OF SPINORS

Similarly to the case of metric gµν , the definition of Ricci tensor can also differ by a negative

sign. We take the definition as follows

Rµν ≡ ∂αΓαµν − ∂µΓανα − ΓαµβΓβνα + ΓαµνΓβαβ, R = gµνRµν . (5.1)
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For a spinor in gravity, the Lagrangian of the coupling system is given by

L =
1

2κ
(R− 2Λ) + Lm, Lm = <〈φ+αµp̂µφ〉 − φ+ΩµS

µφ−mφ+γ0φ+N, (5.2)

in which κ = 8πG, Λ is the cosmological constant, andN = 1
2wγ̌

2 the nonlinear potential. Variation

of the Lagrangian (5.2) with respect to gµν , we get Einstein’s field equation

Gµν + Λgµν + κTµν = 0, Gµν ≡ Rµν − 1

2
gµνR = −

δ(R
√
g)

√
gδgµν

. (5.3)

where δ
δgµν

is the Euler derivatives, and Tµν is EMT of the spinor defined by

Tµν = −2
δ(Lm

√
g)

√
gδgµν

= −2
∂Lm
∂gµν

+ 2(∂α + Γγαγ)
∂Lm

∂(∂αgµν)
− gµνLm. (5.4)

By detailed calculation we have

Theorem 8 For the spinor φ with nonlinear potential N(γ̌), the total EMT is given by

Tµν =
1

2
<〈φ+(αµp̂ν + αν p̂µ + 2Sµνab α

ap̂b)φ〉+ gµν(N ′γ̌ −N) +Kµν + K̃µν , (5.5)

Kµν =
1

2
εabcdŠd

(
1

2
fβaS

µν
bc g

λκ +
∂(fβaS

µν
bc )

∂gλκ
−
∂(fβaSλκbc )

∂gµν

)
∂βgλκ, (5.6)

K̃µν =
1

4
εabcdSµνcd (∂aŠb − ∂bŠa), Šµ ≡ φ+Sµφ. (5.7)

Proof. The Keller connection iΥα is anti-Hermitian and actually vanishes in <〈φ+ααp̂αφ〉. By

(5.4) and (3.20), we get the component of EMT related to the kinematic energy as

Tµνp ≡ −2
δ

δgµν
<〈φ+ααp̂αφ〉 = −2<〈φ+

(
∂αα

∂gµν

)
(i∂α − eAα)φ〉

=
1

2
<〈φ+(αµp̂ν + αν p̂µ + 2Sµνab α

ap̂b)φ〉, (5.8)

where we take Aµ as independent variable. By (3.21) we get the variation related with spin-gravity

coupling potential as

∂(φ+ΩdSdφ)

∂gµν
=

1

4
εabcdŠd

∂(fαaS
λκ
bc )

∂gµν
∂αgλκ, (5.9)

(∂α + Γβαβ)
∂(φ+ΩdSdφ)

∂(∂αgµν)
=

1

4
εabcd(∂α + Γβαβ)(fαaS

µν
bc Šd)

=
1

4
εabcd

[
Sµνbc ∂aŠd + Šd

(
∂(fαaS

µν
bc )

∂gλκ
+

1

2
fαaS

µν
bc g

λκ

)
∂αgλκ

]
. (5.10)

Then we have the EMT for term ΩµŠµ as

Tµνs = −2
∂(ΩdŠd)

∂gµν
+ 2(∂α + Γβαβ)

∂(ΩdŠd)

∂(∂αgµν)
= Kµν + K̃µν . (5.11)
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Substituting Dirac equation (2.15) into (5.2), we get Lm = N − N ′γ̌. For nonlinear potential

N = 1
2wγ̌

2, we have Lm = −N . Substituting all the results into (5.4), we prove the theorem.

For EMT of compound systems, we have the following useful theorem[39].

Theorem 9 Assume matter consists of two subsystems I and II, namely Lm = LI(φ) + LII(ψ),

then we have

Tµν = TµνI + TµνII . (5.12)

If the subsystems I and II have not interaction with each other, namely,

δ

δψ
LI(φ) =

δ

δφ
LII(ψ) = 0, (5.13)

then the two subsystems have independent energy-momentum conservation laws respectively,

TµνI;ν = 0, TµνII;ν = 0. (5.14)

For classical approximation of EMT, we have φ+Sµνab α
ap̂bφ → Sµνab u

apb = 0. By the symmetry

of the spinor, the proper value
∫
R3 K̃

µνd3X = 0. By the structure and covariance, it seems that

Kµν = k1ŠαΩαgµν + k2(Ω
µŠν + Ων Šµ), (5.15)

where k1, k2 are constants to be determined. Noticing that the energy of spin-gravity interaction

is just ŠµΩµ. Besides, if Aµ = 0, the spinor is an independent system and its energy-momentum

conservation law Tµν;ν = 0 holds, so its classical approximation should give (4.27) as Fµν = 0.

This means we should have k1 = 1, k2 = 0 or Kt
t = ŠµΩµ. How to strictly prove this result is

still a problem. However, for the classical approximation of (5.5), by the summation of energy we

certainly have the total EMT as

Tµν →
[
muµuν + (S̄αΩα + w̄)gµν

]√
1− v2δ3(~x− ~X). (5.16)

w̄ > 0 acts like negative pressure, which is scale dependent.

Some previous works usually use one spinor to represent matter field. This may be not the case,

because spinor fields only has a very tiny structure. Only to represent one particle by one spinor

field, the matter model can be comparable with general relativity, classical mechanics and quantum

mechanics[12, 35, 40]. By the superposable property of Lagrangian, the many body system should

be described by the following Lagrangian

Lm =
∑
n

(
<〈φ+nαµp̂µφn〉 − ŠµnΩµ −mnγ̌n +Nn

)
. (5.17)
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The classical approximation of EMT becomes

Tµν →
∑
n

[
mnu

µ
nu

ν
n + (w̄n + ŠαnΩα)gµν

]√
1− v2nδ3(~x− ~Xn), (5.18)

which leads to the EMT for average field of spinor fluid as follows

Tµν = (ρ+ P )UµUν + (W − P )gµν . (5.19)

The self potential becomes negative pressure W , which takes the place of cosmological constant Λ

in Einstein’s field equation. W has very important effects in astrophysics[39–41].

VI. DISCUSSION AND CONCLUSION

From the calculation of this paper, we can find that Clifford algebra is indeed a unified language

and efficient tool to describe the laws of Nature. To represent the physical and geometric quantities

by Clifford algebra, the formalism is neat and elegant, and the calculation and derivation are simple

and standard. The decomposition of spinor connection into Υµ and Ωµ by Clifford algebra, not only

makes the calculation simpler, but also highlights their different physical meanings. Υµ ∈ Λ1 only

corresponds to geometric calculations simlilar to Levi-Civita connection, but Ωµ ∈ Λ3 results in

physical effects. Ωµ is coupled with the spin of spinor field, which provides position and navigation

functions for the spinor, and is the origin of the celestial magnetic field. Ωµ ≡ 0 is a necessary

condition of the diagonalizablity of metric, which seems to be also sufficient.

In the theoretical analysis of the spinor equation and its classical approximation, we must use

Gu’s natural coordinate system with realistic cosmic time. This is a coordinate system with univer-

sal applicability and profound philosophical significance, which can clarify many misunderstandings

about the concept of space-time. The energy-momentum tensor of the spinor field involves the spe-

cific representation of the tetrad. Through the LU decomposition of metric, we set up the clear

relationship between the frame and metric, and then derive the exact EMT of spinor. In the

derivation, we discover a new non-tensor spinor coefficient table Sµνab , which has some wonderful

properties and appears in many places in the spinor theory, but the specific physical significance

needs to be further studied.

We usually use limits such as ~→ 0 and c→∞ in classical approximation of quantum mechan-

ics. In some cases, such treatment is inappropriate. (~, c) are constant units for physical variables,

how can they take limits. In the natural unit system used in this paper or the dimensionless

equations, we even do not know where the constants are. We can only make approximations such
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as |v| � c or (4.7) while the average radius of the spinor is much smaller than its moving scale.

Most paradoxes and puzzles in physics are caused by such ambiguous statements or overlapping

concepts in different logical systems. A detailed discussion of these issues is given in [36, 42].

This paper clearly shows how general relativity, quantum mechanics and classical mechanics

are all compatible. Newton’s second law is not as simple as it looks like, its universal validity

depends on many subtle and compatible relations of the spinor equation as shown in section IV.

A complicated Dirac equation of spinor can be reduced to a 6-dimensional ordinary differential

dynamics is not a trivial event, which implies that the world is a miracle designed elaborately. In

fact, all the fundamental physical theories can be unified in the following framework expressed by

the Clifford algebra[36, 38]:

A1. The element of space-time is described by

dx = γµdx
µ = γaδX

a, (6.1)

in which γa and γµ satisfy the C`1,3 Clifford algebra (2.2).

A2. The dynamics for a definite physical system takes the form as

γµ∂µΨ = F(Ψ), (6.2)

in which Ψ = (ψ1, ψ2, · · · , ψn)T , and F(Ψ) consists of some Clifford numbers of Ψ, so that the

total equation is covariant.

A3. Nature is consistent, i.e., for all solutions to (6.2) we always have ∀ψk ∈ L∞.
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