

ASPLe: A Methodology to Develop Self-Adaptive Software Systems with Systematic Reuse

Journal Pre-proof

ASPLe: A Methodology to Develop Self-Adaptive Software Systems
with Systematic Reuse

Nadeem Abbas, Jesper Andersson, Danny Weyns

PII: S0164-1212(20)30104-7
DOI: https://doi.org/10.1016/j.jss.2020.110626
Reference: JSS 110626

To appear in: The Journal of Systems & Software

Received date: 5 November 2019
Revised date: 24 March 2020
Accepted date: 1 May 2020

Please cite this article as: Nadeem Abbas, Jesper Andersson, Danny Weyns, ASPLe: A Methodol-
ogy to Develop Self-Adaptive Software Systems with Systematic Reuse, The Journal of Systems &
Software (2020), doi: https://doi.org/10.1016/j.jss.2020.110626

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2020.110626
https://doi.org/10.1016/j.jss.2020.110626

Highlights

• Design and develop product lines of self-adaptive software systems with

reuse.

• Self-adaptive software systems share adaptation logic that can be exploited

for reuse.

• Methodology (process support) to develop self-adaptive systems with reuse.

• Variability management and uncertainties in the development of self-adaptive

systems.

• Reasoning frameworks are helpful to mitigate uncertainties in design de-

cisions.

1

ASPLe: A Methodology to Develop Self-Adaptive
Software Systems with Systematic Reuse

Nadeem Abbasa,∗, Jesper Anderssona, Danny Weynsb

aLinnaeus University, Sweden
bLinnaeus University, Sweden and KU Leuven, Belgium

Abstract

More than two decades of research have demonstrated an increasing need for

software systems to be self-adaptive. Self-adaptation manages runtime dynam-

ics, which are difficult to predict before deployment. A vast body of knowledge

to develop Self-Adaptive Software Systems (SASS) has been established. How-

ever, we discovered a lack of process support to develop self-adaptive systems

with reuse. The lack of process support may hinder knowledge transfer and

quality design. To that end, we propose a domain-engineering based methodol-

ogy, Autonomic Software Product Lines engineering (ASPLe), which provides

step-by-step guidelines for developing families of SASS with systematic reuse.

The evaluation results from a case study show positive effects on quality and

reuse for self-adaptive systems designed using the ASPLe compared to state-of-

the-art engineering practices.

Keywords: Software Reuse, Domain Engineering, Self-Adaptation,

Uncertainty, Variability, Software Design

1. Introduction

Advances in technology trigger market changes that increase the importance

of software as a value enabler. The ubiquity and connectivity of software sys-

tems cause context variability that introduces additional complexity on systems

∗Corresponding author
Email address: nadeem.abbas@lnu.se (Nadeem Abbas)

Preprint submitted to Journal of Systems and Software May 4, 2020

during their life-cycles. Software systems are consequently required to be more

open and flexible concerning a system’s environment and its goals, which affect

the system’s design. Lack of knowledge and so-called known-unknowns [1] on a

system’s goals, behavior, and environment are root-causes for uncertainty in the

design process. The design time uncertainty can sometimes only be mitigated

at runtime when all goals and environment characteristics are discernible [2, 3].

Self-adaptation [4, 3] is a risk mitigation strategy for uncertainties induced by

runtime changes. The basic idea of self-adaptation is to let a system gather new

knowledge at runtime to resolve uncertainties, reason about itself, its context

and goals, and adapt to realize its goals, or gracefully degrade if necessary.

From an architectural point of view, a self-adaptive system is composed of two

subsystems; the managed subsystem, which is responsible for a system’s core

functionality, and the managing subsystem, which is responsible for managing

the managed system by adapting it. Research and practice have established a

large body of knowledge for how to engineer self-adaptive software systems [5].

However, to the best of our knowledge, no work in this field has defined a

methodology1 that systematically reuses this knowledge.

Hence, the research problem we address in this paper is the design and devel-

opment of self-adaptive software systems with systematic reuse. Software reuse

is a long acclaimed method to build systems efficiently and cost-effectively [6].

It enables developers to resolve complexity and improve quality and produc-

tivity at reduced cost and shorter time-to-market [7]. The development costs

are amortized on several application projects, and the widespread usage helps

to test artifacts and improve quality. The proven benefits of development with

reuse motivated us to investigate a reuse-based methodology for self-adaptive

systems. The specifics of self-adaptation in combination with systematic reuse,

however, require changed perspectives and modified reuse strategies.

We analyzed the specifics of SASS and reuse in the previous work [8] and pro-

1With methodology, we mean the methods and processes that are required to engineer
self-adaptive systems.

3

posed an Autonomic Software Product Lines (ASPL) strategy. ASPL is a multi-

product lines strategy that exploits a disciplined split between the managed and

managing subsystems. It consists of three steps. The first step establishes an

application domain-independent ASPL platform that provides reusable artifacts

for managing systems. The second step derives an application domain-specific

managing system platform from the ASPL platform. The third step integrates

the managing system platform with a separately developed managed system

platform. Practical experiences with applying ASPL strategy showed a lack of

dedicated processes to support software engineers in applying the strategy when

developing self-adaptive systems.

To that end, this work contributes an engineering methodology called Au-

tonomic Software Product Lines engineering (ASPLe in short). ASPLe pro-

vides developers with process support to implement ASPL strategy, i.e., develop

product lines of self-adaptive systems with reuse at the managing system level.

ASPLe is composed of three processes: 1) ASPL Domain Engineering, 2) Spe-

cialization, and 3) Integration. These processes describe roles, work-product,

activities, and workflows to realize ASPL strategy. Each of the three processes

covers requirements, design, implementation, and testing subprocesses. The

focus of this paper, however, is the design subprocesses.

We evaluated ASPLe’s design processes in a case study. The case study re-

sults show that ASPLe is an improvement compared to current design practices.

In particular, the results show that the engineering methodology helps develop-

ers to reduce fault-density and increase reuse. We link the improvements to the

structured management of variability for different sub-domains, which simplifies

and thus increases the quality of developers’ activities.

The remainder of this paper is organized as follows. Section 2 positions our

research to related work. We describe the study’s context, identify a research

gap, and specify objectives to address the gap in Section 3. Section 4 introduces

an example application that we use to illustrate ASPLe. Section 5 describes

ASPLe focusing on design processes. Section 6 reports a case study conducted

to evaluate the ASPLe. We conclude and outline future work in Section 7.

4

2. Related Work

Research in self-adaptive systems distinguishes between internal and exter-

nal adaptation mechanisms [9, 10, 11]. Internal adaptation mechanisms rely

on programming language constructs, such as exceptions, reflection, dynamic

linking, and conditional expressions, to realize self-adaptation. Here, applica-

tion logic and adaptation logic are mixed. Due to tight coupling between the

two logics, internal adaptation leads to poor maintainability and reusability for

development artifacts. ASPLe methodology enforces a clear separation of appli-

cation and adaptation logic with reusable process support to model an external

adaptation mechanism. In this context, [12] refers to a disciplined split between

application and adaptation logic.

External adaptation mechanisms rely on the principles of feedback loop con-

trol, such as the managing system shown in Figure 1. External adaptation sep-

arates application and adaptation logic; thus, adaptation logic may be reused

across self-adaptive systems [9]. Examples of approaches that apply external

adaptation include Rainbow [9], StarMX [13], MADAM [14], MUSIC [15], and

ENTRUST [16].

Rainbow framework [9] provides architecture based reusable infrastructure

for developing SASS. It is similar in infrastructure to ASPLe. The two ap-

proaches are also identical in the use of architectural styles and patterns to

encapsulate and reuse architectural knowledge. However, ASPLe supports both

vertical and horizontal reuse, whereas Rainbow’s primary target is vertical reuse.

Furthermore, Rainbow does not provide process support, which is a primary

facet of ASPLe.

Other frameworks, including StarMX [13], MADAM [14], and MUSIC [15]

are similar to ASPLe in the use of patterns and tactics. However, none of these

frameworks provide any process support.

ENTRUST [16] uses a combination of 1) design-time and runtime model-

ing and verification, and 2) industry-adopted assurance processes to develop

trustworthy self-adaptive software and assurance cases arguing the suitability

5

of the software for its intended application. It exploits reusable artifacts, such

as model templates, an assurance argument pattern, and an execution platform.

However, compared to ASPLe, ENTRUST was not devised driven by systematic

reuse.

A related research theme that studies the development of dynamically re-

configurable software systems is Dynamic Software Product Lines (DSPLs) [17].

A DSPL uses principles and mechanisms from software product lines, such as

variability management, to model dynamic adaptive behaviors as runtime vari-

ability. In contrast, ASPLe offers process support to engineers emphasizing

systematic reuse. ASPLe can, in fact, be used to develop DSPLs.

Garlan [2] examined uncertainty from a general software engineering per-

spective and proposed self-adaptive systems as a solution. However, an imped-

iment to efficient self-adaptive systems development is the poor understanding

of uncertainty [18, 19], and lack of explicit process support to analyze, reason,

and decide with uncertainty as a factor. ASPLe focuses on supporting design

with uncertainty, offering a reasoning framework that focusses on variability

and runtime adaptations, providing a mindset that actively guides designers to

work with and mitigate risks that arise from uncertainties.

Krupitzer et al. [20] presented reusable templates based approach to support

the development of self-adaptive systems with reuse. Their approach is similar

to ASPLe in the separation of adaptation logic and application logic and the

use of the MAPE-K loop to realize adaptation logic. However, they did not

consider uncertainty, which is a principal challenge to realize the development

of the self-adaptive systems with reuse. Furthermore, their work lacks process

support, which is a key characteristic of the ASPLe methodology.

In summary, a vast body of research on engineering self-adaptive systems ex-

ists. However, state of the art falls short in two important aspects: 1) existing

work offers limited support for dedicated processes to engineer self-adaptive sys-

tems, and 2) existing work has not paid sufficient attention to systematic reuse.

Both these aspects are crucial to facilitate knowledge transfer and enhance the

quality design of self-adaptive systems.

6

Managing Systemmonitor

Self-adaptive software system

Managed System

Environment
Non-controllable software hardware,

network, physical context

monitor

monitor adapt

effect

Figure 1: SASS - Conceptual Architecture

Horizontal Platform

(Application Domain Independent)

V
er

ti
ca

l
P

la
tf

o
rm

 1

 f
o

r
A

u
to

m
o

b
il

es

V
er

ti
ca

l
P

la
tf

o
rm

 2

 f
o

r
G

am
in

g

V
er

ti
ca

l
P

la
tf

o
rm

 n

 f
o

r
H

ea
lt

h
-c

ar
e

Horizontal Reuse

V
er

ti
ca

l
R

eu
se

.

App1 App2 App3 Appn
. . .

Applications

Figure 2: Horizontal and Vertical Reuse

3. Context and Motivation

The research context for this work is twofold: self-adaptive software systems

and software reuse. We have conducted an in-depth analysis of how these could

be combined, presented critical challenges that arise, and a strategy called ASPL

to address the challenges in previous work [8]. We expand on this work below,

reiterating the context, identify challenges that define a research gap, and specify

a set of objectives for the proposed solution.

3.1. Self-adaptive Software Systems

A Self-Adaptive Software System (SASS) is a software system that adapts

its behavior and structure in response to changes [4, 3]. There are two common

ways to look at self-adaptive systems [5]. The first is to view them as systems

with the ability to adapt their structure or adjust their behavior in response to

the perception of the environment, systems themselves, and their goals. The

self prefix indicates that a system adapts autonomously without or with min-

imal interference of humans. The second is to view self-adaptive systems as a

mechanism used to realize adaptation logic typically by means of a closed feed-

back loop. This way of looking at self-adaptive systems separates a part of the

system that deals with domain concerns (goals for which the system is built)

and a part that deals with adaptation concerns.

Figure 1 shows the conceptual architecture of a self-adaptive system. The

managed subsystem represents core application functionality. The managing

7

subsystem comprises adaptation logic, which identifies changes that require

adaptations to maintain the managed system’s goals. The managing subsystem

observes changes in the managed subsystem or the environment and performs

adaptive actions on the managed subsystem via effectors.

Self-adaptation is a common concern for several systems [4, 3]. Supporting

development of self-adaptation by generic reusable development artifacts would

be a big step to improve quality, affordability, and productivity of software sys-

tems [21, 22]. Research has established a vast body of knowledge on engineering

self-adaptive systems over the years. However, to the best of our knowledge,

there is no or only a little work available that has considered systematic reuse

of this knowledge. The benefits of development with reuse motivated us to in-

vestigate the design and development of self-adaptive systems with systematic

reuse.

3.2. Software Reuse

Krueger [6] defines software reuse as a “process of creating software systems

from existing software rather than building software systems from scratch”. He

enumerates abstraction, selection, specialization, and integration as essential

activities for any reuse technique. Developing strategies and techniques that

consider and support these activities is key to successful software reuse. Prieto-

Diaz [23] distinguishes vertical and horizontal reuse. As shown in Figure 2,

vertical reuse is reuse within the same application domain and is supported by

a vertical platform. Horizontal reuse refers to reuse across several domains and

is supported by a horizontal platform.

Frakes and Kang [24] state that domain engineering is an optimal choice

for reuse as it improves both quality and productivity. Domain engineering

develops domain-specific reusable artifacts. These artifacts are then reused by

application engineering processes [25] to produce individual applications.

Software Product Lines (SPL) is a widely adopted systematic reuse strategy.

A software product line is a set of software systems that share common features,

developed with platform reuse and mass-customization [25]. It defines a plat-

8

form that provides artifacts for reuse across multiple products in a domain. The

platform artifacts are then customized for individual applications needs. The

fundamental difference between traditional software development and SPL is

the shift of focus from a single system to domain engineering.

We have seen some examples of reuse strategies in self-adaptive software re-

search projects, such as the Rainbow [9] and MADAM/MUSIC frameworks [14,

15], and ENTRUST [16]. A particularly relevant line of research in this context

is dynamic software product lines (DSPL). DSPL [17] leverages concepts from

software product lines to establish a runtime variability mechanism, which has

capabilities similar to that of a self-adaptive software system. However, nei-

ther the framework approaches nor work on DSPL has contributed with process

support to design and develop self-adaptive systems with systematic reuse [26].

3.3. Research Gap

The combination of software reuse and runtime variability for self-adapta-

tion creates a complex landscape. A significant cause for this complexity is

uncertainty. Uncertainty refers to things that are not known or known impre-

cisely, such as requirements and operating environments, at a specific point in

time [1]. It is an inherent property of complex systems with effects on system

design and other development activities. Existing reuse research and practices

address uncertainty in reuse, primarily with domain modeling that reduces the

scope for reuse, thus the uncertainty. Extensive work in the self-adaptive sys-

tems domain has characterized uncertainty and proposed specific methods and

techniques that mitigate risks associated with uncertainty [27, 18, 28, 19].

Separation of Concerns (SoC) is a fundamental design principle to reduce

complexity and improve reusability [29]. The separation of managing and man-

aged subsystems, as depicted in Figure 1, implies that we may develop the

subsystems independently, and establish two separate platforms, one for each

subsystem. Moreover, managing systems have adaptation-functionality that is

often common across several application domains [8]. For instance, applications

that want to optimize their performance through resource management or arbi-

9

tration tactics [8] share a self-optimization property at some level of abstraction.

The commonality among managing systems suggests that a horizontal platform

can be established and reused to derive managing system platforms for several

application domains.

However, the development of managed and managing systems through sepa-

rate platforms injects uncertainty into several development activities. There are

two primary uncertainty sources when we develop the managed and managing

systems as separate platforms. The first source is lack of knowledge. Devel-

opers of a horizontal platform for managing systems have generic application

domain-independent requirements. At this level, knowledge about target appli-

cations and application domains is either not available or available only partially.

Thus, developers are uncertain about stakeholders’ goals and deployment envi-

ronments. Both goals and environments may also change during development

and further after deployment. All these unknowns about the target application

domains introduce uncertainty to horizontal platform development.

The second source of uncertainty is the runtime variability in managed sys-

tems and their environment. Full knowledge about runtime variations in a

system’s requirements, environment, and the system itself is often not available

at design time. Due to this lack of knowledge, system analysts and designers

face uncertainty in requirements and design specifications. Moreover, the run-

time variations are hard to anticipate at design time, and even if anticipated,

there are no guarantees that the variations are characterized accurately.

Autonomic Software Product Lines strategy [8] addresses variability, reuse,

and uncertainty challenges. Two fundamental principles of ASPL are 1) strict

separation of managed and managing system concerns and 2) stepwise special-

ization of reusable assets into product-specific assets. These principles help re-

ducing complexity and mitigating uncertainty. As shown in Figure 4(a), ASPL

strategy is composed of the following three steps:

Step 1. Establish a Horizontal ASPL Platform

The first step of ASPL is to establish a horizontal platform that provides

10

application domain-independent artifacts for reuse in several managing

subsystems. The artifacts span the range from requirements engineering

to testing and are developed on purpose for reuse across several domains.

Step 2. Derive a Vertical Managing System Platform

The second step transforms the horizontal ASPL platform into a vertical

managing system platform. As depicted in Figure 4(a), n number of ap-

plication domain-specific managing system platforms can be derived with

reuse from a single ASPL platform, where each derived platform targets

adaptation logic for a specific application domain.

Step 3. Integrate Platforms

The third step integrates a managing system platform derived in the sec-

ond step with a separately developed managed system platform. The

managed system platform includes development artifacts for application

logic. The managed system platform is developed using a software product

line engineering approach, such as SPLE [25].

While instrumental for the development of self-adaptive systems, a funda-

mental research gap needs to be tackled for a successful and repeatable applica-

tion of the ASPL strategy. In particular, the strategy needs to be complemented

with a software development methodology. The methodology is needed to pro-

vide engineers with process support in the form of well-defined roles, activities,

and work-products.

3.4. Research Objectives

To bridge the above described research gap, this article presents Autonomic

Software Product Lines engineering methodology (ASPLe). We set the following

three objectives to steer and direct our research effort to formulate the ASPLe

methodology.

O1. Define process support to establish a horizontal ASPL platform.

11

Figure 3: Distributed Game Environment

O2. Define a stepwise refinement process for selection, specialization, and inte-

gration of managing system artifacts from the ASPL platform with sepa-

rately developed managed system artifacts.

O3. Provide explicit support for architectural analysis, reasoning, and decision

making, which is needed to harness variability and mitigate uncertainty

in the design of self-adaptive systems with reuse.

4. Distributed Game Environment – Running Example

Distributed Game Environment (DGE) is a prototype software product line

that we developed for research and educational purposes [30]. The DGE prod-

ucts are multi-player board games deployed in a distributed setting. As shown

in Figure 3, each DGE product consists of two subsystems: Operator Center

(OC) and Player Environment (PE). A PE represents a client-side used by a

human player to play games. An OC represents a server-side operated by a hu-

man operator to perform administrative tasks such as add, remove, and update

games.

PEs’ updates are triggered and controlled by a human operator. The oper-

ator uses the OC to push updates to PEs. Alternatively, a PE can request an

update from the OC. All such requests need to be handled by an operator and

may take more time than expected to respond. The DGE management wants

12

to introduce a self-upgradability property to improve the upgrade process by

enabling a PE to update itself at runtime with minimal human intervention.

The DGE requirements for self-upgradability are:

1. New updates should be introduced through an updates repository, a di-

rectory or a folder in a file system that stores updates.

2. The OC should get a notification as soon as a new update appears in the

repository.

3. The OC should analyze new updates and push them to target PEs. Such

updates are called push-type updates.

4. When a new update appears, a PE gets an update notification from the

OC within 5 to 60 seconds.

5. A PE may accept or ignore push-type updates. If accepted, an update

delivery and execution should not take more than 10 minutes.

6. The vital updates called critical push-type cannot be ignored by PEs.

Such updates must be executed within 120 seconds.

7. PEs can view available updates and request the OC for an update. The

updates requested by a PE are called pull-type updates.

8. The OC responds an update request within 5 to 60 seconds.

The DGE domain is currently composed of four products: P1, P2, P3, and

P4. The products differ in requirements for self-upgradability. Product P1

requires only push-type updates, which can be either accepted or postponed

by PEs. P2 should support both push-type and critical push-type updates. P3

should provide for all three update types, i.e., push, critical push, and pull-type.

Finally, P4 only supports pull-type updates.

13

Reuse Reuse Reuse. . .

Requirements Design Model Components Test Model

ASPL Platform for Managing Systems

. . .

Step 1

Step 2

Managing System

Platform2

Managing System

Platformn

Step 3

Managing System

Platform1

Managed System

Platform2

Managed System

Platform1

Managed System

Platformn

Integrate IntegrateIntegrate

Product Line1 Product Line2 Product Linen

(a) ASPL Strategy

<
<

 i
n

st
a

n
c
e
o

f
>

>

ASPL platform

Managed System
Platformn

Managing System
Platformn

Managed System
Platform2

Managing System
Platform2

Managed System
Platform1

Managing System
Platform1

Distributed Game Robotics Automotive

Specialization

Integration

ASPL Domain
Engineering

Feature ModelProduct Line Architecture Variants

(b) ASPLe Methodology

Figure 4: ASPL Strategy and ASPLe Methodology

5. ASPLe Methodology

We now present ASPLe methodology that provides process support to design

and develop product lines of self-adaptive systems with systematic reuse at the

managing system level. As depicted in Figure 4(b), ASPLe is aligned with

ASPL strategy and comprises three processes: 1) ASPL Domain Engineering,

2) Specialization, and 3) Integration. A difference between ASPL and ASPLe

is that the ASPL is a strategy that outlines an overall plan of developing self-

adaptive systems with reuse. It envisions a plan of actions in the form of three

steps, described in Section 3.3, but does not provide process support to realize

these steps. The process support is provided by the ASPLe methodology. By

process support, we mean documented and repeatable guidelines and assistance

in the form of design and development activities, roles, and work-products.

The work presented in this article targets design processes highlighted in Fig-

ure 5. We use process modeling concepts and notations from Software Process

Engineering Meta-model (SPEM) [31] to describe the processes.

We start by introducing an extended reasoning framework that is pivotal

in each design process of ASPLe. Then, we present ASPLe processes starting

with the ASPL Domain Engineering followed by the Specialization process, and

finally, the Integration process.

14

ASPL
Requirements

Engineering

ASPL
Design

ASPL
Implementation

ASPL
Testing

ASPL Domain Engineering

Requirements
Specialization

Design
Specialization

Implementation
Specialization

Tests
Specialization

Specialization

Requirements
Integration

Design
Integration

Implementation
Integration

Tests
Integration

 Integration
Application

Domain Scope

ASPL Scope

Feedback

Figure 5: ASPLe Processes

5.1. extended Architectural Reasoning Framework (eARF)

A reasoning framework (RF) encapsulates architectural knowledge and meth-

ods to realize quality attributes [32]. Existing RFs do not provide support for

self-adaptation properties, such as self-healing and self-optimization [33]. To

that end, we enhanced a reasoning framework presented by Diaz-Pace et al. [34].

The enhancement resulted in the extended Architectural Reasoning Frame-

work (eARF) [35]. The primary enhancements include requirements and design

work-products with explicit support for variability specification and modeling,

and self-adaptive systems specific architectural patterns, tactics, and evaluation

methods.

Figure 6 shows eARF’s roles, activities, work-products, and workflow. The

eARF is used by domain analysts and designers to analyze requirements and

map them to design decisions. Its workflow involves four work-products: i)

dQAS, ii) dRS, iii) Architectural Tactics, and iv) Patterns. The dQAS and

dRS are respectively described in Sections 5.1.1 and 5.1.2. The architectural

tactics and patterns [36] encapsulate proven design decisions to realize qual-

ity attributes with self-adaptation. Both these work-products provide reusable

knowledge to domain analysts and designers, which assist them with identify-

ing requirements and design alternatives, reasoning about the alternatives, and

eventually making and modeling design decisions..

eARF supports a stepwise mapping of self-adaptation requirements to design

15

Work-products Workflow

Architectural

Tactics

Architectural

Patterns

dQASs

dRSs

Scoping Define dQASs

1 2̀

Reason about

Design Alternatives

Model Best-fit

Design Decisions

ASPL Scope

56̀

Extract Responsibilities

with Variability

3

dQASs

Map Responsibilities to

Design Alternatives

4

Responsibilities

dRSs

Architectural

Tactics

Architectural

Patterns

Analyze

Refine

Integrate

extended Architectural

Reasoning Framework

(eARF)

+ Identify in-scope self-management

properties

+ Define a general or specialized dQAS

for each in-scope self-management

property

+ Extract responsibilities, with

variability, for each dQAS

+ Map responsibilities to design

alternatives

+ Use architectural tactics and patterns

to reason about the design alternatives

+ Model best-fit design alternatives as

design decisions in the form of a

general or a specialized dRS

· Domain Analyst

· Domain Designer

Figure 6: extended Architectural Reasoning Framework

decisions. The first part of the eARF’s workflow, activities j1 and j2 , specifies

requirements in two steps. In activity j1 , a domain analyst identifies the scope,

i.e., which self-adaptation requirements and their variants should be specified

and realized. A domain analyst consults tactics from eARF’s knowledge base to

determine and specify requirements with variability. Requirements are specified

in activity j2 by defining domain Quality Attribute Scenarios (dQASs). The

scenarios describe how system may react (adapt) to internal or external stimuli.

Activities j3 and j4 map requirements to design alternatives. A domain

designer applies responsibility-driven design [37] approach, in activity j3 , to

extract responsibilities from scenarios. It is important to note that respon-

sibilities are extracted with variants to support several adaptation scenarios.

Responsibilities and variants are modeled as architectural elements in activ-

ity j4 . Tactics and patterns from the knowledge base are important inputs to

the activities j3 and j4 . Tactics provide knowledge to identify design alterna-

tives (responsibilities), and patterns are used to structure architecture elements

in activity j4 . The current design decisions are evaluated for fitness concern-

ing quality attribute values in a separate activity j5 . eARF provides informal

and formal techniques to reason about and verify design decisions [38]. In the

final activity j6 , best-fit decisions are modeled as responsibility structures with

variation points and variants in the form of a domain Responsibility Structure

(dRS).

16

eARF is used iteratively in subsequent iterations, which is difficult to illus-

trate in the sequential workflow in Figure 6. In particular, domain analysts

and designers use eARF incrementally and iteratively. In each iteration, new

quality attributes, scenarios, and dRSs are added and integrated with exist-

ing work-products, the work-products are analyzed until all requirements are

specified, and resulting dRSs include sufficient responsibilities to provide for all

requirements.

5.1.1. domain Quality Attribute Scenario (dQAS)

Specifying requirements is a prerequisite for architectural analysis and de-

sign. eARF provides a template, dQAS [35, 39], to specify a domain’s re-

quirements for self-adaptation with variability. The dQAS extends a quality

attribute scenario (QAS) [36] with three elements: Variants, Valid Configu-

rations, and Fragment Constraints. Table 1 lists and briefly describe all the

dQAS elements. Domain analysts may specify fragments in the first six ele-

ments. Fragments serve as variation points and are used to specify variability.

A dQAS specifies domain requirements with variability and can be specialized

to derive multiple product-specific scenarios. Derivation of product-specific sce-

narios is constrained using the Valid Configurations and Fragment Constraints

elements.

dQAS Elements

Source the origin of a Stimulus.

Stimulus a condition that triggers self-adaptation.

Artifact the affected parts of a system.

Environment operating environment under which a Stimulus arrives.

Response how does a system respond to the Stimulus.

Response Measure how the Response is monitored and measured

Variants different forms of a self-adaption property

Valid Configurations how the Variants can be combined.

Fragment Constraints constraints on the selection of fragments of a standard QAS elements

Table 1: dQAS

17

VP
Fault

Detector Monitor & Report
Faults

Fault Detector

HeartbeatPing-Echo
V V

Key

Responsibility
Component

Artifact Dependency

Optional Variant

V

[name][responsibility]

[name]

[name]
VP

Variant Variation Point

Figure 7: An excerpt from a dRS for Self-Healing

5.1.2. domain Responsibility Structure (dRS)

A dRS is an architectural representation of design decisions. It is modeled by

translating requirements into responsibilities and representing them as respon-

sibility components. The responsibility components use provided and required

interfaces for orchestration. Each responsibility component has two compart-

ments; the upper compartment specifies a unique identifier, and the bottom

compartment specifies one or more responsibilities. Figure 7 shows a fault de-

tector responsibility component extracted from a dRS for Self-Healing. The

fault detector component is responsible for monitoring, detecting, and report-

ing silent node failures.

The dRS models variability separately from the responsibility components

in an Orthogonal Variability Model (OVM) [25]. The OVM provides separa-

tion of concerns and reduces complexity; it captures domain and cross-domain

variability [35, 8] for responsibility components by defining variation points and

variants. A variation point represents a design decision that may vary from

one domain to another, or one product to another product, either at design or

runtime. The OVM in Figure 7 models a fault detector variation point with two

variants, illustrating an open design decision. At some point in time, one of the

variants is selected and bound to the responsibility component.

5.2. ASPL Domain Engineering (ADE)

ASPL domain engineering defines roles, activities, and work-products to es-

tablish a horizontal ASPL platform. As shown in Figure 5, ADE is composed

18

Self-upgradability

IntroductionDetection Delivery

Preparation Return to
Operation

Polling Push

Quiescence Tranquility

On-demandPublish-
Subscribe

Push
Critical

Pull Update

ASPL
Scope

eARF
Tactics

Self-property
Feature
Variant

Key mandatory

alternative

or

Figure 8: ASPL Scope Definition - Feature Model

of four subprocesses. The first subprocess is requirements engineering. Its pur-

pose is to scope the ASPL platform and specify application domain-independent

requirements for self-adaptation in the form of general dQASs. The general

dQASs are input work-products to design subprocess, which defines a set of

application domain-independent general dRSs. The implementation subprocess

describes activities to develop reusable code components or libraries to realize

self-adaptation properties. The testing subprocess defines reusable test artifacts

for the platform.

Defining boundaries is critical to the success of any project. ASPL scope

definition specifies in-scope self-adaptation properties and tactics supported by

the ASPL platform. A domain analyst defines the scope as a part of the ASPL

requirements subprocess. The analyst consults tactics from eARF to get ad-

ditional scope details such as variants, dependencies, and constraints. An in-

scope property and associated tactics together form a structure which, in many

ways, is similar to a feature model [40]. Figure 8 shows a feature model for

self-upgradability. The feature model scopes an example ASPL platform that

supports only one adaptation property, self-upgradability. The features are de-

rived based on self-upgradability tactics [41, 42] and organized into three groups:

1) update detection, 2) update delivery, and 3) update introduction. These fea-

tures group variants to find, deliver, and execute new updates.

ASPL design subprocess provides guidelines for developing architectural ar-

tifacts to realize requirements specified as general dQASs. Its objective is to

define an application domain-independent reference architecture. The archi-

19

ASPL Design

General

dQAS

General

dRS

eARF

Reason about and

verify design options

Work-products

Extract

responsibilities

with variability

Responsibilties

1 2

Identify

design options

3

General

dRSs

Map design decisions to

responsibility components

4

Workflow

Analyze

Refine

Integrate

General

dQASs

eARF

<<uses>>

<<uses>>
<<uses>>

+ Extract the ASPL domain

responsibilities with

variability from general

dQASs

+ Analyze and reason about

extracted responsibilities

and design options

+ Map responsibilities to

verified design options

Domain Designer

Figure 9: ASPL Design Process Package

tecture is reused and specialized to support domain-specific product lines of

self-adaptive systems. Designing an application domain-independent architec-

ture presents designers with uncertainties due to the lack of concrete knowledge

about target application domains and their runtime environments. An example

is trade-offs, where the goal is to balance the design and satisfy two or more self-

adaptation properties that designers typically cannot resolve before they have

domain-specific or even application-specific knowledge at hand. eARF assists

designers to mitigate this and other uncertainties.

Figure 9 shows ASPL design process roles, work-products, activities, and

workflow. A domain designer models general dRSs, reference architectures,

in four activities performed for each in-scope self-adaptation property. The de-

signer selects a general dQAS for a property and identifies a set of responsibilities

and variants using responsibility-driven design approach [37] in activity j1 .

Responsibilities identified in activity j1 can be realized through several de-

sign options. Activity j2 identifies design options with the help of tactics from

eARF. A domain designer identifies suitable tactics for a responsibility where

each tactic presents design options. In this activity, the designer may also

define alternative design strategies that are new or derived from one or more

tactics. The options are further analyzed and integrated with existing design

decisions in activity j3 . The integrate-analyze-refine cycle is repeated for each

responsibility-variant to provide guarantees for all combinations.

20

Design options are evaluated using the eARF analytical framework [38].

Domain designers choose an architectural analysis method and perform analysis

to identify design options that best match the desired quality attribute level for

in-scope self-adaptation properties.

The verified design options are modeled as responsibility components in a

general dRS in activity j4 . Defining a dRS requires domain designers to further

reason about the architectural structure and responsibility components’ inter-

faces. eARF provides patterns such as the MAPE-K feedback loop [33] and

others [11, 43] for responsibility components organization.

To exemplify the ASPL design subprocess, the following is a description of

how we performed this process for an example ASPL platform that supports self-

dQAS
Elements

Responsibilities and Design Choices

Source

1. Updates Provider: serves as a source for the updates; may have the following variants:
i) software (sub)system
ii) system administrators
iii) software developers

2. Update Consumer: requests for updates with the following variants:
i) software (sub)system
ii) end-user

Stimulus
1. Update Provider: (same as in the source element)
2. Update Consumer: (same as in the source element)

Artifact

1. Following responsibilities were identified for the Updates Manager Artifact:
a) Monitor Updates: monitor updates provider for new updates

i) Periodic polling
ii) Event-based
iii) On-demand

b) Analyze: analyze new updates
c) Plan: plan delivery and execution of the new updates

i) Push-type
ii) Critical Push-type

d) Execute: execute the updates
i) Quiescence
ii) Rewriting Binary Code
iii) Use of Proxies
iv) Intrusion and Cooperation

2. The Update Manager cab be realized in two different ways:
i) Centralized Control: a central component is responsible for all responsibilities.
ii) Distributed Control: responsibilities are distributed among several components

3. Target System: uses updates, i.e., a software system on which updates are performed.

Environ-
ment

Runtime operating environment with normal work-load

Response

1. Updates Monitor: monitors the source variants for new updates; may have the following
variants:

i) Periodic polling
ii) Event-based
iii) On-demand

2. Analyzer: analyzes new updates
3. Update Manager: notifies updates to Target Systems. The notification leads to the following
two response variants:

i) Target Systems may accept and performs updates
ii) Target Systems may postpone updates

4. Target System has the following two responsibilities
i) request Update Manager for updates
ii) download updates from the Update Manager and execute them

Response
Measure

No new responsibility identified in this element.

Variants
No responsibilities but three variants for how an update is planned and performed are identified
in this element: 1) Push, 2) Critical Push, and 3) Pull

Table 2: Responsibilities extracted from the General dQAS for Self-Upgradability

21

upgradability. Beginning with activity j1 , we analyzed an ASPL requirement

artifact, a general dQAS for self-upgradability, which was defined using the

ASPL requirements engineering subprocess. Each element of the general dQAS

was analyzed, and a set of responsibilities and their variants were identified.

Table 2 lists al the identified responsibilities and variants. For instance, in the

Source element, we identified two responsibilities, 1) updates provider and 2)

updates consumer. The updates provider serves as a source of new updates.

An update is introduced by a system administrator, developer, or the system

itself. Thus, three variants, i) system administrator, ii) system developers, and

iii) software (sub)system, of the updates provider were identified. In the second

activity j2 , we identified design options for all responsibilities and their variants.

Next, we verified the design options in activity j3 , and modeled best-fit

options in a dRS in activity j4 . Figure 10 shows the resulting application

domain-independent dRS for self-upgradability. We zoom in on the Updates

Provider element and the three variants discussed above. We can also see how

designers have used the MAPE-K feedback loop pattern [33] to structure the

dRS with the monitor, analyze, plan, and execute elements.

The ASPL platform produced by ADE is application domain-independent.

Reusing it requires further specialization to adapt assets for a specific application

domain. We describe the specialization process below.

Updates Monitor
<<managing>>

Monitors and reports
updates

Updates Manager
<<managing>>

1Coordinates updates
(i) detects and notify
updates
(ii) handles update requests

Analyzer
<<managing>>

Analyzes updates
and user requests
for updates

Notification

Analysis
Results

Planner
<<managing>>

Plans a response
based on type of the
update and request
from the Update
Consumer component

Analysis
Results

Plan

Plan

OVM General dRS for Self-Upgradability OVM

Update

Update

Repo.
Monitor

VP

Periodic
Polling

V
On-

Demand

V
Event
Based

V

Analyzer

VP

Updates
Analyzer

V
Requests
Analyzer

V

requires vp_vp

Updates
Manager

VP

Centralized
V

Distributed
V

Updates Provider

Stores and
Provides updates

Updates Consumer
<<managed>>

Requests and
Consumes updates

Updates
Consumer

VP

Software
System

V
End
User

V

Key
[name]

[responsibility] [name]

VP

Responsibility
Component

[name]
V

Variant Variation Point

Artifact DependencyOptional Variant

Variation Point
Constraint Dependency

requires vp_vpprovides

requires

Executor
<<managing>>

Executes the Plan

Plan

Target System
<<managed>>

Software System on
which updates are
applied.

Executor

VP

Quies

cence

V

Proxies
V

Rewrite
Binary code

V
Intrusion &
Cooperation

V

Updates
Provider

VP

Software
System

V
System

Developer

V
System

Administrator

V

Planner

VP

Push
V

Critical
Push

V

Updates Monitor
<<managing>>

Monitors and reports
updates

OVM

Update

Repo.
Monitor

VP

Periodic
Polling

V
On-

Demand

V
Event
Based

V

Updates Provider

Stores and
Provides updates

Updates
Provider

VP

Software
System

V
System

Developer

V
System

Administrator

V

Figure 10: A General dRS for Self-Upgradability

22

5.3. Specialization Process

The second step of the ASPL strategy is to specialize a domain-independent

ASPL platform for a specific domain, i.e., transform a horizontal ASPL platform

into a vertical platform. Below we give an overview of the specialization process

with a focus on the design specialization process.

The starting point for the specialization process is the analysis of the ASPL

scope and an application domain scope. The analysis is performed to iden-

tify self-adaptation properties supported by the ASPL platform. For supported

properties, requirements specialization subprocess provides a workflow to iden-

tify and specialize (reuse) general dQASs that are available in the ASPL plat-

form. If a general dQAS is identified, it is further analyzed and either con-

strained, for instance, by removing fragment variants or extended by adding

fragment variants. The domain requirements for unsupported properties are

specified by defining new dQASs.

The specialization process has a feedback mechanism that considers new

and modified artifacts produced by the specialization process for inclusion in

the ASPL platform. For example, assume that an application domain requires

parallel processing support for self-optimization, which is unsupported in the

current ASPL platform. In this case, the specialization process develops artifacts

for parallel processing and considers them for inclusion in the ASPL platform

so that these artifacts can be reused in other fitness domains.

Requirements specialization is followed by design specialization. Figure 11

depicts roles, work-products, and workflow of the design specialization process.

Design specialization is in many aspects similar to the ASPL design process

besides the parallel paths for reused and new design artifacts. The process

begins by analyzing a set of specialized dQASs for self-adaptation properties

required by an application domain. A domain designer analyzes the specialized

dQASs and searches the ASPL platform for corresponding general dRSs, in

activity j1 .

If a general dRS is found, a designer analyzes it for missing responsibili-

ties or responsibilities that require modifications. The analysis takes place in

23

W
o
rk

fl
o
w

Design

Specialization

+ Analyze Specialized

dQASs to find design

candidates, i.e., General

dRSs for reuse

+ If found, analyze the

General dRSs and

specialize them for reuse

in a specific application

domain.

+ If not found, define new

application domain

specific dRSs.

+ Verify the Specialized or

newly defined dRSs

Domain Designer

Specialized

dQASs

General

dRSs

eARF

Specialized

dRSs

Work-products

Define Application

Domain Specific dRSs

2a

3

1

<<uses>>

Newly

Defined dRSs

Analyze dQASs General

dRSs

Analyze

General dRSs

eARF

<
<

u
se

s>
>

Specialized

dQASs

Analyze

Refine

Integrate

<<uses>>

2b Specialize the

General dRSs

4

Verify the domain

specific dRSs
Application Domain

Specific dRSs

5

Feedback

Specialized

dRSs

Figure 11: Design Specialization Process Package

activity k2a, and the designer modifies the general dRS in activity k2b.

If a designer cannot find a general dRS, the alternative workflow-path creates

a new application domain-specific dRS in activity j3 . The new dRS is defined

in a similar fashion as a general dRS is defined in the ADE. eARF supports

activities k2a, k2b and j3 with architectural knowledge.

All new and specialized elements in dRSs are integrated, analyzed, and re-

fined to form a coherent design in j4 . Modified and new dRSs defined in the

activity j3 are considered for inclusion in the ASPL platform in activity j5 .

To exemplify the design specialization process, the following is a description

of how we performed this process to derive a vertical managing system platform

for the DGE. The vertical platform was derived from the example ASPL plat-

form that we developed earlier using the ASPL design process. Beginning with

activity j1 , we analyzed reusable requirements and design artifacts provided by

the example ASPL platform. The ASPL platform supported self-upgradability;

thus, a general dRS for self-upgradability was found. We analyzed the general

dRS in activity k2a and identified some gaps, mainly in the OVM part of the

dRS. We addressed the gaps in activity k2b to match the DGE’s self-upgradability

requirements. For example, there were three optional variants defined for the

“updates provider” component in the general dRS. However, the DGE required

24

Operator Center

<<managing>>

1Coordinates updates

(i) detects and notify

updates

(ii) handles update requests

Notification

Analysis

Results

Planner

<<managing>>

Plans a response

based on update types,

and update requests

from Player

Environment

Analysis

Results

Plan

Plan

OVM

Update

Analyzer

VP

Updates

Analyzer

V

Requests

Analyzer

V

requires vp_vp

Updates

Manager

VP

Centralized

V

Distributed

V

Player Environment

<<managed>>

Player uses PE to

request an update

Updates

Consumer

VP

Player

V

Software

System

V

Executor

<<managing>>

Executes the Plan

Plan

Player Environment

<<managed>>

Software System on

which updates are

applied.

Executor

V

P

Quiescence

V

Proxies

V
Rewrite

Binary code

V
Intrusion &

Cooperation

V

Analyzer

<<managing>>

Analyzes the

detected updates

and user requests

for updates

[1..1]

[1..2]

[1..2]

Key

[name]

[responsibility]
[name]

VP

Responsibility

Component

[name]

V

Variant Variation Point

[min..max

]

Alternative

Choice

Artifact DependencyMandatory Variant

Optional Variant

Variation Point

Constraint Dependency

requires vp_vp

provides

requires

Planner

VP

Push

V
Critical

Push

V

Repository Monitor

<<managing>>

Monitors and reports

updates

OVM

Update

Repo.

Monitor

VP

Periodic

Polling

V
On-

Demand

V
Event

Based

V

Updates Repository

Stores and

Provides updates

Updates

Provider

VP

Software

System

V
System

Developer

V
System

Administrator

V

[1..2]

Monitors and reports

updates

Update

Updates Repository

Stores and

Provides updates

Repository Monitor

<<managing>>

Periodic

Polling

V

Software

System

V

OVM

Repo.

Monitor

VP

On-

Demand

V
Event

Based

V

Updates

Provider

VP

System

Developer

V
System

Administrator

V

[1..2]

Figure 12: The DGE Domain-Specific Specialized dRS for Self-Upgradability

only one of these variants; thus, we removed the other two variants. Figure 12

depicts the resulting specialized dRS produced as a result of the activity k2b.

The specialized dRS does not require further verification, activity j4 , as no new

elements were added to the dRS. Since no additions were made, thus nothing

needs to be considered for inclusion in the ASPL platform as activity j5 .

The specialization process corresponds to the ASPL strategy’s second step

and defines a vertical managing system platform. Following the ASPL strategy’s

third step, the managing system platform needs to be aligned and integrated

with a separately developed managed system platform. To that end, ASPLe

defines an integration process.

5.4. Integration Process

The integration process defines activities, work-products, and roles to align

and integrate separately developed managing and managed system platforms

and establish a product line of self-adaptive systems. Developers use integrated

platforms to derive self-adaptive systems using an application engineering pro-

cess, such as the one described by Pohl et al. [25].

The integration process analyzes managed and managing system platforms

for data and behavioral mismatches. Most mismatches are found in artifacts

containing elements that cross platform boundaries, such as monitor and adapt

interfaces. The integration process begins with the requirements integration

subprocess. The requirements integration subprocess analyzes requirement spec-

25

Design

Integration

+ Analyze Design

Artifacts in the

Managing and Managed

System Platforms

+ Identify mismatches

among the design

artifacts

+ Address the mismatches;
analyze and refine the

Design artifacts until the

artifacts are well aligned

and integrated

Domain Designer

Managing System

Requirements and

Design Artifacts

Managing System

Integrated Design

Artifacts

Managed System

Integrated Design

Artifacts

Work-products

Managed System

Requirements and

Design Artifacts

Workflow

Requirements and Design Artifacts

from Managing and Managed

System Platforms

Analyze

Refine

Integrate

Analyze

design artifacts

1

Address the

mismatches

Identified

mismatches

2

Integrated

design artifacts

Figure 13: Design Integration Process Package

ification artifacts in a managed system platform and connects them to special-

ized dQASs in a managing system platform. It results in integrated requirement

artifacts that are used as key input by design integration process to analyze and

address design mismatches.

Figure 13 shows roles, work-products, activities, and workflow of the design

integration process. The process begins with activity j1 that analyzes design

artifacts in managing and managed system platforms. The analysis pinpoints

gaps in design artifacts. It also identifies architectural mismatches [44], for

example, interface incompatibilities.

Next, activity j2 addresses mismatches by iteratively integrating, analyzing,

and refining design artifacts. Refinement examples include the reconsideration

of design decisions, for example, adding, removing, and changing components,

their interfaces, variation points, and variants. The activity j2 produces a set

of adapted design artifacts that can be reused to design self-adaptive systems

comprising both managed and managing subsystems.

To exemplify the design integration process, the following is a description of

how we performed this process to integrate design artifacts of the separately de-

veloped managed and managing system platforms for our running example, the

DGE. Beginning with activity j1 , we analyzed design artifacts in both man-

aging and managed system platforms. In the managing system platform, we

analyzed the self-upgradability dRS shown in Figure 12 and identified only one

gap, a missing interface. The operator center requires a probe interface with

26

	

Update	Management
se.lnu.dfm.dge.oc.ui.update

Bundle	Storage

Operator	Center

Update	Handler
se.lnu.dfm.dge.pe.ui

Bundle	Storage

Player	Environment

Fileinstall
org.apache.felix.fileinstall

Key

Subsystem

Local	storage	folder

Write	to	storage

Component

Read	from	storage

Storage	read	&	write

Update

(a) Before Integration

Update

Management
se.lnu.dfm.dge.oc.ui.update

Operator Center
<<managing>>

Notify and

Deliver Updates

Request Updates

Run-time

Information

Monitor

Update Handler
se.lnu.dfm.dge.pe.ui

Fileinstall
org.apache.felix.fileinstall

Player Environment

<<managed>>

Bundle Storage

<<data store>>

Write

Read

Package

Provide Interface

Required Interface

Key

Component

<<annotation>>

Updates

Repository

<<data store>>

(b) After Integration

Figure 14: DGE Managed System - Self-Upgradability Architectural View

PEs to retrieve runtime information. We addressed the gap in activity j2 by

adding the missing interface.

The managed system platform for the DGE was developed separately [30].

In this platform, we analyzed the “player environment update” architectural

view, depicted in Figure 14(a). The OC and PE subsystems were connected

by “data flows” without explicit interfaces. We accounted the lack of explicit

interface as an architectural mismatch and addressed it in activity j2 by adding

interfaces to the OC and PE subsystems. Further, we annotated the OC as

managing, the PE as managed subsystem components, and “Bundle Storage”

as a data store component. Figure 14(b) depicts the updated architectural view

with the integration activity changes in focus.

6. Evaluation

Evaluating ASPLe methodology as a whole is challenging, in fact, it must

be evaluated in parts. Hence, for this work, we limited evaluation to ASPLe’s

design subprocesses. We extended a pilot case study [35] to do the evaluation.

The extension was done to address the limitations we observed in the pilot

study. While extending the study, we did not change its design and activities.

27

We simply added more subjects, in total 22, and did rigorous hypotheses testing

to strengthen the findings.

Both the pilot study and its extended version were done for the same purpose

using the same design, activities, and data collection methods. Thus, from this

point onward, we report both studies as a single integrated case study.

6.1. Design and Planning

The case study was done as a part of a nine-week course. The course was

aimed to provide theoretical knowledge of self-adaptive software systems and

practical hands-on experience to design and implement such systems. The sub-

jects were students of a final-year master’s program in software engineering. The

subjects had a solid knowledge of software design and implementation obtained

from a mix of courses (15 ECTS on average) and practical experience between

0 and 5 years (1 year on average).

We designed and planned the case study activities using a template for the

organization of case studies provided by Wohlin et al. [45]. As an essential

part of the study, we planned the evaluation as a paired comparison of a refer-

ence approach and a treatment. We used ASPLe methodology as a treatment,

and Monitor-Analyze-Plan-Execute-Knowledge feedback loop, or MAPE-K in

short [33], as a reference approach. MAPE-K is a widely used model to design

managing subsystems for self-adaptive software systems. From our experience

of teaching self-adaptation, MAPE-K is an intuitive and straightforward ap-

proach to apply [11, 46]. It defines four activities with clear responsibilities and

a supporting knowledge component.

We divided the case study activities into two parts, one for the ASPLe and

one for the reference approach. Figure 15 provides an overview of the case

study activities. We structured both parts in the same way. We began with

introductory lectures, did preparatory workshops, and asked subjects to do test

assignments. The lectures introduced the cases, while the workshops prepared

subjects for the assignments. In the end, we interviewed subjects and asked

them to answer a questionnaire.

28

Introductory Lecture (2 hours) & Distribution of
Home Assignment

Introductory Lecture on Service Reusability
(2 hours)

Assignment A3 (3 hours)
Assignment A4 (3 hours)

Assignment A1 (3 hours)
Assignment A2 (3 hours)

Data Analysis

Week
1

Home Assignment Discussion (2 hours)
2 Introduction to the Reference Approach and an

Example SPL (2hours)3

First Preparatory Workshop (3 hours)4

5

Plan, Design and Prepare

Part I: Reference Approach Part II: ASPLe Approach

Week
6 Introduction to the ASPLe, eARF, and

an Example SPL (2 hours)7

Second Preparatory Workshop (3 hours)8

9 Final Questionnaire (30 minutes) and
Interviews (≈ 20 - 30 minutes per interview)

Figure 15: An Overview of the Case Study

6.2. Hypothesis Formulation

The main objective of the case study was to compare ASPLe with the MAPE-

K reference approach for design support to maximize software reuse and mitigate

uncertainties. Uncertainties often lead to subpar design decisions that in turn

introduce faults to a system [47]. This is a well-known cause and effect rela-

tionship. Thus, we used fault density as a measure of uncertainty mitigation in

hypothesis formulation and testing.

The main objective was split into two sub-objectives that we formulated as

hypotheses H01 and H02. For the formulation of the hypothesis, we follow the

guidelines of Wohlin et al. [45], and Juristo and Moreno [48]. In particular,

we mapped each sub-objective to a null hypothesis (H0) that should be tested,

and an alternative hypothesis (Ha) that should be accepted if and only if the

null hypothesis is rejected. In the hypotheses, we use µ to denote average,

while total reuse(input: approach) and fault density(input: approach) represent

functions to compute “total reuse” and “fault density”, respectively.

• H01: There is no difference in total reuse achieved for a self-adaptive sys-

tem design produced using the reference approach, and a design produced

using ASPLe.

H01 : µ total reuse(Reference) = µ total reuse(ASPLe) (1)

29

Ha1 : µ total reuse(Reference) < µ total reuse(ASPLe) (2)

• H02: There is no difference in fault density for a self-adaptive system

design produced using the reference approach, and a design produced using

ASPLe.

H02 : µ fault density(Reference) = µ fault density(ASPLe) (3)

Ha2 : µ fault density(Reference) > µ fault density(ASPLe) (4)

6.3. Independent and Dependent Variables

Hypothesis testing requires that we define independent and dependent vari-

ables, and select appropriate metrics to measure treatments’ effects on depen-

dent variables [45].

6.3.1. Independent Variables

Independent variables are the variables that are controlled and manipulated

to study treatments’ effects. We identified two independent variables:

a) Test Assignment: The first independent variable we used is the “Test

Assignment”. It has four instances, A1, A2, A3, and A4; see section

6.4.1 for details.

b) Approach: The second independent variable is the “Approach” to solve

the assignments. It has two instances, ASPLe, and the MAPE-K ref-

erence approach. We controlled this variable to study the effect on the

dependent variables.

6.3.2. Dependent Variables

Dependent variables are variables studied to understand treatments’ effects

on a subject’s performance. These are often derived directly from hypothe-

ses [45]. We derived two dependent variables total-reuse and fault-density from

the hypotheses H01 and H02, respectively, and selected appropriate metrics to

measure treatments’ effect.

30

a) Total-Reuse: This variable was used to study and compare software reuse

support provided by ASPLe and the reference approach. We used the Total

Reuse Level (TRL) metric [49] to measure the total-reuse variable. The

rationale for this decision is that the TRL is the best match for reuse aspects

we want to study, that is, design with and design for reuse.

Total Reuse Level (TRL) = External Reuse Level + Internal Reuse Level (5)

External Reuse Level = E/L (6)

Internal Reuse Level = M/L (7)

L – the number of lower-level items in a higher-level item.

E – the number of lower-level items reused from an external repository.

M – the number of lower-level items not from an external repository but used more than once.

The reuse level variables may take values in a range from 0 (no reuse) to

1 (maximum reuse). In line with [49], we consider products (self-adaptive

systems) designed in the case study as higher-level items and artifacts that

compose a product, such as design components, as lower-level items. Thus,

we computed L by counting a product’s components. We counted correctly

reused components from an external repository to compute E. We labeled

components suggested by ASPLe or the MAPE-K reference approach, such

as monitor and analyze components, as external repository artifacts. We

used a checklist to determine if an artifact was reused correctly. M was

computed by counting internally developed lower-level artifacts (not belong-

ing to an external repository) that were used more than once.

b) Fault-Density: We used fault-density as an indirect measure of uncertainty

mitigation. Fault density, defined in equation 8, is the number of faults

divided by the size of a software system [50]. A fault is the manifestation

of errors in a software system [51]. We compared subjects’ solutions with a

reference solution to identify and count faults. We labeled an incorrect step

or missing element as a fault.

31

We used a high-level function point analysis method described by Peeters

et al. [52] to calculate a system size. We computed three scores for the size in

function points, minimum, expected, and maximum, and took their average

as an estimate.

Fault Density = Faults / Size (8)

6.4. Data Collection Methods

Data in the case study were collected using three methods: test assignments,

questionnaires, and interviews. All material of the study, including test assign-

ments, questionnaires, and interviews data, can be downloaded from the study

homepage2.

6.4.1. Test Assignments

We designed four test assignments, which were labeled as A1, A2, A3, and

A4, for the case study. The assignments A1 and A2 were performed using

MAPE-K [33] as a reference approach, whereas the assignments A3 and A4

were performed using ASPLe as a treatment.

Each assignment contained three tasks. The focus of all tasks was on ac-

tivities in the design phase. In Task 1, subjects were requested to extend two

products with reuse from a set of core assets to realize a self-adaptation prop-

erty. Task 2 requested subjects to extend core assets with reuse candidates

developed in Task 1. Task 3 challenged subjects to design a new self-adaptive

product with reuse from the extended set of core assets.

From ASPLe perspective, Tasks 1 and 3 covered the design specialization

activities j3 and j4 , eARF activities j3 – j6 , and partially covered ASPL design

activities j1 – j4 and the design specialization activity j1 . Task 2 covered the

feedback to ASPL platform activity j5 in the design specialization process.

To do the assignments, we divided subjects into two groups according to the

block subject-object study classification setup [45]. The block subject-object

2https://people.cs.kuleuven.be/~danny.weyns/material/2020JSS/index.htm

32

SSPL
+

Self-Upgradability-1

SSPL
+

Self-Healing-1

PSPL
+

Self-Healing-2

PSPL
+

Self-Upgradability-2

Group 1 Group 2

5
8

Reference
Approach

ASPLe
Approach

w
ee

k

A1 A2

A3A4

Figure 16: Test Assignments - Design

classification ensures that each subject receives both the treatment and the

reference approach, which enables a paired comparison of the two approaches.

Two example product lines, Soft-Phones Software Product Line (SSPL) and

PhotoShare Software Product Line (PSPL), were used as example application

domains for the assignments. Both SSPL and PSPL required self-healing and

self-upgradability properties. For each assignment, Figure 16 depicts a combi-

nation of an example SPL and a self-management property, for example, assign-

ment A2 uses SSPL with self-healing as a problem domain.

6.4.2. Questionnaires and Interviews

Besides test assignments, we collected data using two questionnaires and

additional semi-structured interviews. The first questionnaire has two variants,

1) pre-test and 2) post-test. Both variants have a mix of open and closed type

questions [53], and each has six questions in total. We used the two variants to

identify false positives and false negatives in the assignment data. The identifi-

cation was done by requiring subjects to answer the pre-test variant before, and

the post-test variant after each test assignment, and then by comparing and

analyzing responses for the two variants.

The second “final questionnaire”, appended as Appendix A, was used for

cross verification of assignment data after subjects completed their assignments.

It was designed as a self-completing questionnaire with closed type questions

structured in four parts: A, B, C, and D. Parts A and B collected subjects

background data and data focusing on their understanding of ASPLe. Part C

33

required respondents to compare and rate approaches on Likert scales accord-

ing to comparison criteria listed in Table 4. The first three criteria, knowledge,

comprehension, and application, were derived from Bloom’s taxonomy of learn-

ing [54]. These are used to compare ASPLe and the MAPE-K reference approach

with respect to challenges in understanding and learning. The fourth criterion

focuses on the separation of concerns, which Tarr et al. [29] pin-point as a key

design principle to resolve complexity. The final criterion, “being more intu-

itive and helpful”, targets respondents’ subjective opinions on design support

provided by ASPLe and the reference approach.

Part D included four statements that asked respondents to compare the

two approaches on a scale with five options spanning a range from “strongly

disagree” to “strongly agree” and a sixth “don’t know” option.

At the end of the case study, we interviewed subjects to clarify question-

naire responses and collect additional details. Interviews were done in a semi-

structured way. Twenty-one out of the twenty-two subjects participated in the

interviews. The interviews were recorded and transcribed before the analysis.

6.5. Data Analysis

We analyzed the case study data in two parts. As described below, first, we

analyzed assignments data, and then we analyzed questionnaires and interviews

data.

6.5.1. Assignments Data Analysis

We analyzed the data of the assignments to test the hypotheses. For each

assignment, we analyzed task 1(a), task 1(b), and task 3. We excluded task

2 as it did not involve a design effort. The analysis focused on the dependent

variables, total-reuse, and fault-density. Table 3 summarizes statistical tests

results for both variables.

A hypothesis can be tested using statistical tests such as t-test, paired t-

test, and ANOVA [45, 53]. Statistical tests differ in statistical power, which

is a probability of a test to find an effect if there is an effect to be found.

34

Variable Task ID Approach

Shapiro-Wilk

(Normality Test)

p-value

Test Selected for

Hypothesis Testing

Selected Tests

p-value

Total Reuse

Level

(TRL)

Task 1(a)
Reference 0.573 Paired-samples

t-test
0.000

ASPLe/eARF 0.467

Task 1(b)
Reference 0.706 Paired-samples

t-test
0.000

ASPLe/eARF 0.924

Task 3
Reference 0.845

Wilcoxon test 0.002
ASPLe/eARF 0.009

Fault Density

(FD)

Task 1(a)
Reference 0.010

Wilcoxon test 0.000
ASPLe/eARF 0.039

Task 1(b)
Reference 0.017

Wilcoxon test 0.000
ASPLe/eARF 0.492

Task 3
Reference 0.098 Paired-samples

t-test
0.000

ASPLe/eARF 0.042

Table 3: Statistical Tests Results

Paired-samples t-test and Wilcoxon tests are recommended for studies where

two approaches, such as ASPLe and the MAPE-K, are compared, and every

subject has used both approaches [45]. The choice of selecting a test mainly

depends on the distribution of data. Thus, to choose an appropriate test, we

first determined the distribution of the assignments data. To that end, we

used a commonly used normality test, Shapiro-Wilk [55, 56], with a significance

level (α) of 0.05. Then, based on the results of the Shapiro-Wilk test, we

selected Paired-samples t-test for normally distributed data and Wilcoxon test

for other distributions. This makes the selected tests best match to the design

and objective of our case study.

For all tasks, both the tests rejected both the null hypotheses, H01 for total

reuse and H02 for fault density, with a significance level α of 0.05. Thus, we

may accept the alternative hypotheses. This is a strong indication that the ar-

chitectural analysis and reasoning support provided by ASPLe helps improving

total reuse and lowering fault density compared to the reference approach. The

box-plots in Figure 17 provide a visual representation of the hypotheses testing

results.

The box-plots labeled as “paired-diff” plot paired differences between ASPLe

35

●

treatment

To
ta

l r
eu

se
 le

ve
l

Reference dRS/ASPLe

0.2

0.4

0.6

0.8

1.0

paired diff.
(M−R)

−1.0

−0.5

0.0

0.5

1.0

(a) Task 1(a)

●

treatment

Fa
ul

t d
en

sit
y

Reference dRS/ASPLe

0.05

0.10

0.15

●

paired diff.
(M−R)

−0.4

−0.2

0.0

0.2

0.4

(b) Task 1(a)

●

treatment

To
ta

l r
eu

se
 le

ve
l

Reference dRS/ASPLe

0.4

0.5

0.6

0.7

0.8

0.9

1.0

paired diff.
(M−R)

−1.0

−0.5

0.0

0.5

1.0

(c) Task 1(b)

treatment

Fa
ul

t d
en

sit
y

Reference dRS/ASPLe

0.00

0.05

0.10

0.15

0.20

0.25

0.30

paired diff.
(M−R)

−0.4

−0.2

0.0

0.2

0.4

(d) Task 1(b)

●

●

●

treatment

To
ta

l r
eu

se
 le

ve
l

Reference dRS/ASPLe

0.2

0.4

0.6

0.8

paired diff.
(M−R)

−1.0

−0.5

0.0

0.5

1.0

(e) Task 3

●

●

treatment

Fa
ul

t d
en

sit
y

Reference dRS/ASPLe

0.0

0.1

0.2

0.3

0.4

●

paired diff.
(M−R)

−0.4

−0.2

0.0

0.2

0.4

(f) Task 3

outlier

upper quartile + 1.5 x IQR

upper quartile

median

lower quartile

lower quartile - 1.5 x IQR

mean

upper quartile = cuts off highest 25% of data
median = cuts data set in half
lower quartile = cuts off lowest 25% of data
IQR = upper quartile - lower quartile

outlier

Q3 + 1.5 x IQR

Q3

median

Q1

Q1 - 1.5 x IQR

mean

Q1
median

Q3
IQR

= cuts off lowest 25% of data
= cuts data set in half
= cuts off highest 25% of data
= Q3 - Q1

(g) Key

Figure 17: Box Plots for Total Reuse Levels and Fault Density

and the reference approach. A paired difference Zi is defined as Zi = Ti−Ri for

i = 1, ..., n. Ti and Ri represent measurements of subject i for ASPLe and the

36

Comparison Criteria ASPLe is Better Reference is Better Both are Equal

Knowledge 36.36% 36.36% 27.27%

Comprehension 18.18% 18.18% 63.64%

Application 22.73% 22.73% 54.55%

Separation of Concerns 45.45% 4.55% 50%

Being Intuitive and Helpful 54.55% 22.73% 22.73%

Table 4: Descriptive Statistics for Part-C of Final Questionnaire

reference approach, respectively, where n is the number of subjects. Subjects

differ less in their values for fault density than their values for TRL, for all

the three tasks. The variance measures a treatment’s relative contribution. A

small variance indicates that a treatment contributed uniformly to all subjects’

performance.

6.5.2. Questionnaires and Interviews Data Analysis

Questionnaires and interviews data were analyzed for triangulation [53]. We

analyzed parts C and D of the final questionnaire. Parts A and B collected

subjects’ specific data and thus did not directly contribute to the evaluation.

Table 4 specifies descriptive statistics for the part C. Subjects rated the two ap-

proaches as equal for knowledge, comprehension, and application criteria. About

45% of the subjects rated ASPLe as a better approach for the separation of con-

cerns criterion compared to the only 5% who favored the reference approach.

The respondents also ranked ASPLe as more intuitive and helpful.

Pie charts in Figure 18 depict questionnaire data for the first two statements

in part D.

Statement 1: “As compare to the reference approach, the dRS approach pro-

vides more intuitive approach to transform quality attribute (self-management

properties) requirements into responsibilities and components designed to

fulfill these responsibilities?”

Statement 2: “As compare to the reference approach, the dRS approach pro-

vides better over-all support to realize domain quality attributes with

37

13.64%

18.18%

4.55%

63.64%Neutral

Agree

Disagree

Strongly

Agree

Page 1

(a) Statement 1

4.55%

9.09%

18.18%

68.18%
Agree

Strongly Agree

Neutral

D
is

ag
re

e

Page 1

(b) Statement 2

Figure 18: Pie charts for questionnaire data

self-adaptive characteristics, such as self-healing, self-optimization, self-

upgradability, etc.”

For both statements, a majority of the respondents, 68% and 86% respectively,

either agreed or strongly agreed in favor of the dRS. dRS, described in Sec-

tion 5.1.2, is a core component of the reasoning framework, eARF, provided

by ASPLe. For the third statement, which compares the support for design-

ing quality attributes with runtime changes, 50% agreed or strongly agreed in

favor of ASPLe, 31% remained neutral, and 18% disagreed. For the fourth

statement, which compares architectural analysis and reasoning support, 80%

favored ASPLe.

Statistics we derived from the final questionnaire’s parts C and D indicated

which approach is favored by subjects, but the questionnaire data did not pro-

vide any rationale. For example, why subjects ranked one approach as better

or equal for a particular criterion. We analyzed interview data to find rationale

for subjects’ decisions.

The interview data were qualitative, thus, we used a qualitative content

analysis approach [53] to analyze it. We defined a set of keywords and phrases

(Table 5) and used them as selection criteria to code and categorize the data.

The keywords in italics were identified and added to the list during the coding

38

Categories Sub-categories Keywords/Phrases

1. ASPLe

2. Reference

a) Learning
knowledge, comprehension, understanding, application, use,

difficult/difficulties, confusion

b) Analysis and

Reasoning Support

tactics, patterns, separation of concerns, (functional) requirements,

quality attributes, responsibilities, analysis, design, components,

variability, intuitive, helpful, architecture, design decisions, reasoning

Table 5: Code Categories and Keywords for Qualitative Content Analysis

activity.

We read all interview transcripts and marked words, phrases, and sentences

having one or more keywords. We classified the marked data, first, into ASPLe

and Reference categories to support a paired comparison, and then into one

subcategory for learning, and one for analysis and reasoning support.

We examined the learning subcategory to understand why subjects rated the

two approaches equally for the knowledge, comprehension, and application cri-

teria. Examination revealed that ASPLe uses MAPE-K loop [33], the reference

approach, as a principal architectural pattern. Thus, the subjects did not see

additional contributions from ASPLe as significant and rated two approaches

on equal scales.

We used the “analysis and reasoning support” subcategory to analyze the

subjects’ responses for parts C and D of the final questionnaire. For part C,

we used it to analyze statistics for the “separation of concerns” and “being

intuitive and helpful” criteria items. For part D, we used it to understand the

statements data, for instance, “what made subjects to agree, disagree, or stay

neutral for the given statements. The analysis highlights the following four key

characteristics of ASPLe, which motivated a majority of the subjects, see Table

4 and Figure 18, in favor of ASPLe.

i) Step-by-step and well-defined processes.

ii) A disciplined split between managed and managing subsystems, and a

clear separation of responsibilities, i.e., concerns.

39

iii) Provisioning of self-management property specific architectural patterns

and tactics that serve as a reusable design library.

iv) Explicit support to identify, model, constrain, and manage variability.

6.6. Threats to Validity

Various factors, such as design, plan, investigated variables, and metrics,

may cause threats to the validity of a study. We use a scheme suggested by

Runeson et al. [57] to discuss threats and measures we took to mitigate these

threats.

6.6.1. Construct Validity

Construct validity considers a case study’s design, plan, and execution [53,

57]. If one aligns a case study’s elements, such as objectives, data collection

and analysis methods, and metrics, with the investigated research problem, the

threat to construct validity is smaller.

Our case study was designed and executed by researchers who contributed

ASPLe parts under evaluation. There is a threat that the researchers design a

case study that favors ASPLe. We addressed this threat by inviting an inde-

pendent senior researcher who reviewed and approved the case study’s design

and execution plan.

The case study extends a previous evaluation [35]. The variations in the two

evaluations’ elements and activities may put the validity at risk. To mitigate the

risk, we used the same activities and data collection methods for the extension.

Moreover, we combined data from the two studies and re-analyzed the combined

data using the same analysis methods.

Another threat is that subjects may guess which answers researchers are

looking for and adapt their responses accordingly. We mitigated this threat by

presenting the case study as regular coursework. Moreover, we informed the

subjects that the case study results will not affect their grades.

40

6.6.2. Internal Validity

Internal validity refers to threats caused by causal relations among investi-

gated factors. While investigating two factors with a cause-effect relationship,

for instance, horizontal reuse and uncertainty, researchers may ignore the third

factor, for instance, runtime variability. To mitigate such threats, we did not

weigh the effect of the reuse and runtime variability factors separately or differ-

ently. This is because the case study objective was to evaluate the uncertainty

mitigation support provided by ASPLe, and not which factor causes more un-

certainty. To further improve the internal validity, we applied data triangulation

[53]. We collected both qualitative and quantitative data from multiple sources,

including test assignments, questionnaires, and interviews, and analyzed the

data using multiple analysis methods such as hypothesis testing, graphs, and

qualitative content analysis.

6.6.3. External Validity

External validity refers to what extent the case study findings are generaliz-

able. We mitigated this threat by involving a larger number of subjects in the

evaluation. Furthermore, we strengthened the external validity through trian-

gulation by collecting data from multiple sources. Nevertheless, since ASPLe is

only evaluated for two cases, additional studies will be required to strengthen its

generality. To support such studies, we have documented the case study objec-

tive and other details at the study homepage https://people.cs.kuleuven.

be/~danny.weyns/material/2020JSS/index.htm. Additional context and ex-

tended viewpoint descriptions help readers to understand the study, which is a

support when transferring the findings to other settings [57].

6.6.4. Reliability

Reliability threats refer to conditions that may impede achieving the same

results if another researcher replicates the study. One such threat is shallow

and incomplete case study documentation. To that end, we have documented

design, planning, data collection and analysis methods, and the data of our

41

study that can be downloaded from the study homepage.

6.7. Discussion

The evaluation focuses on the three objectives specified in Section 3.4. The

first and second objectives specify that ASPLe should provide systematic pro-

cess support for the development of self-adaptive systems with reuse. The third

objective specifies that ASPLe should provide architectural analysis and reason-

ing support to manage uncertainty and variability in the design of self-adaptive

systems with reuse.

A comprehensive assessment of a complex process like ASPLe is not feasi-

ble. Our evaluation focuses on the design subprocesses and, more specifically,

the eARF core component, its activities, and work-products. The results of

the evaluation support our claim that ASPLe satisfies all its objectives. The

evaluation primarily evaluates the design processes and not the whole ASPLe.

However, the design processes involve activities, such as decision making and

trade-offs, which are the most affected activities by uncertainty and variability.

The first objective for ASPLe, O1, is concerned with the separation of con-

cerns (SoC), a design property that reduces design complexity and increases

reusability. The results indicate that ASPLe leverages separation of concerns

between managed and managing systems. About 95% of subjects, according to

the data in Table 4, rated ASPLe as better or equal to the reference approach

for SoC. It is essential to keep in mind that the MAPE-K reference approach

centers around monitoring, analysis, planning, execution, and knowledge. Still,

only 5% ranked it as better than eARF. The subjects argued that they found

the reference approach very abstract, and it was difficult to distinguish between

concerns such as analysis and planning.

The second objective, O2, focuses on improving reuse and product quality

with a process. Based on statistical analysis, we claim that ASPLe provides

process support for reuse and product quality. The analysis shows that ASPLe

delivers self-adaptive systems designed with a higher degree of total reuse and

with reduced fault density. We find additional support for our claim in ques-

42

tionnaire data (Table 4) where a majority, 54 % of the subjects, rated ASPLe

as more intuitive and helpful than the reference approach.

We have statistically significant results in favor of ASPLe for the third ob-

jective, O3, which is concerned with architectural reasoning and decision sup-

port. ASPLe provides improved reasoning and decision support in the form of

eARF, which reduces design faults with statistical significance. eARF’s addi-

tional architectural knowledge and explicit support for variability modeling help

mitigating uncertainties in reasoning and decision making.

The questionnaires and interviews provide additional results regarding the

comprehension and application of ASPLe. The data in Table 4 rates both

approaches as equal. An analysis of the interview data shows that subjects who

rated ASPLe as difficult argued that ASPLe requires more descriptive material,

while the reference approach was self-descriptive.

7. Conclusion

The primary goal of this work is to provide support for software engineers to

design and develop self-adaptive systems with reuse and to mitigate uncertain-

ties. To that end, we present and evaluate a novel methodology called ASPLe.

ASPLe defines roles, activities, work-products, and workflows to repeatedly sup-

port the development of self-adaptive software systems with improved quality

and enhanced reuse. It exploits a strict separation of concerns, which makes

assets more reusable and reduces impediments to reuse self-adaptation assets.

Furthermore, ASPLe contributes a stepwise approach to select, specialize, and

integrate reusable artifacts to develop self-adaptive software systems. More-

over, ASPLe includes support for architectural analysis, reasoning, and decision

making to reduce the impact of design time and runtime uncertainties.

We have conducted a case study that combines quantitative and qualita-

tive methods to evaluate a critical path through ASPLe with a focus on design

activities. The quantitative evaluation based on data from a controlled experi-

ment shows a statistically significant increase in software reuse and a decrease

43

in uncertainty in systems designed using ASPLe. We conducted a series of ques-

tionnaires and interviews to provide additional data for triangulation. The data

further supports our claim that the ASPLe design support is better than the

MAPE-K reference approach.

Although the evaluation indicates that the design support improves on the

existing state of practice, several challenging tasks remain before ASPLe is a

complete methodology. Currently, ASPLe supports requirements and design

activities, and we plan to extend this with support for implementation and test-

ing, where we conjecture that the testing support will be the most challenging.

The methodology will also require more evaluation both in controlled environ-

ments and in real-world settings. The evaluation also indicates that ASPLe and

its process components will benefit from improved descriptions, more examples,

and tutorials, which we also put on our roadmap.

ASPLe methodology is defined on purpose to support the development of

self-adaptive software systems with reuse. However, we believe that it can be

adopted to develop other systems with similar needs such as Dynamic Software

Product Lines [17], Self-Managing Internet of Things [58], and Cloud-Native

Applications [59]. Thus, we plan and invite others to investigate and extend,

if needed, the ASPLe process support for the development of other related

systems.

References

[1] H. McManus, D. Hastings, A framework for understanding uncertainty

and its mitigation and exploitation in complex systems, INCOSE Inter-

national Symposium 15 (1) (2005) 484–503. doi:10.1002/j.2334-5837.

2005.tb00685.x.

[2] D. Garlan, Software engineering in an uncertain world, in: Proceedings

of the FSE/SDP Workshop on Future of Software Engineering Research,

FoSER ’10, ACM, New York, NY, USA, 2010, pp. 125–128. doi:10.1145/

1882362.1882389.

44

[3] R. De Lemos, H. Giese, H. A. Müller, et al., Software engineering for self-

adaptive systems: A second research roadmap, in: Software Engineering

for Self-Adaptive Systems II, Springer, 2013, pp. 1–32.

[4] B. Cheng, R. de Lemos, H. Giese, et al., Software engineering for self-

adaptive systems: A research roadmap, Software Engineering for Self-

Adaptive Systems (2009) 1–26.

[5] D. Weyns, Software engineering of self-adaptive systems, in: S. Cha, R. N.

Taylor, K. Kang (Eds.), Handbook of Software Engineering, Springer

International Publishing, Cham, 2019, pp. 399–443. doi:10.1007/

978-3-030-00262-6_11.

[6] C. W. Krueger, Software reuse, ACM Computing Surveys (CSUR) 24 (2)

(1992) 131–183.

[7] M. L. Griss, Software reuse: From library to factory, IBM Systems Journal

32 (4) (1993) 548 –566. doi:10.1147/sj.324.0548.

[8] N. Abbas, J. Andersson, Harnessing variability in product-lines of self-

adaptive software systems, in: Proceedings of the 19th International Con-

ference on Software Product Line (SPLC), SPLC ’15, ACM, New York,

NY, USA, 2015, pp. 191–200. doi:10.1145/2791060.2791089.

[9] D. Garlan, S. Cheng, A. Huang, et al., Rainbow: Architecture-based self-

adaptation with reusable infrastructure, Computer 37 (10) (2004) 46–54.

[10] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research

challenges, ACM Transactions on Autonomous and Adaptive Systems

(TAAS) 4 (2) (2009) 14.

[11] D. Weyns, U. Iftikhar, J. Söderlund, Do external feedback loops improve the

design of self-adaptive systems? a controlled experiment, in: Proceedings

of the 8th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems, SEAMS 13, IEEE Press, 2013, p. 312.

45

[12] J. Andersson, et al., Modelling Dimensions of Self-adaptive Software Sys-

tems, in: Software Engineering for Self-Adaptive Systems, Vol. 5525 of

LNCS, Springer, 2009.

[13] R. Asadollahi, M. Salehie, L. Tahvildari, StarMX: A framework for de-

veloping self-managing java-based systems, in: Software Engineering for

Adaptive and Self-Managing Systems, 2009. SEAMS ’09. ICSE Workshop

on, 2009, pp. 58 –67. doi:10.1109/SEAMS.2009.5069074.

[14] J. Floch, S. Hallsteinsen, E. Stav, et al., Using architecture models for

runtime adaptability, Software, IEEE 23 (2) (2006) 62–70. doi:10.1109/

MS.2006.61.

[15] R. Rouvoy, P. Barone, Y. Ding, et al., Music: Middleware support for self-

adaptation in ubiquitous and service-oriented environments, in: B. Cheng,

R. de Lemos, H. Giese, et al. (Eds.), Software Engineering for Self-Adaptive

Systems, Vol. 5525 of Lecture Notes in Computer Science, Springer Berlin

/ Heidelberg, 2009, pp. 164–182.

[16] R. Calinescu, D. Weyns, S. Gerasimou, et al., Engineering trustworthy

self-adaptive software with dynamic assurance cases, IEEE Transactions

on Software Engineering 44 (11) (2018) 1039–1069. doi:10.1109/TSE.

2017.2738640.

[17] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product

lines, IEEE Computer 41 (4) (2008) 93–95.

[18] N. Esfahani, S. Malek, Uncertainty in self-adaptive software systems, in:

R. de Lemos, H. Giese, H. A. Müller, et al. (Eds.), Software Engineering

for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, Ger-

many, October 24-29, 2010 Revised Selected and Invited Papers, Springer

Berlin Heidelberg, 2013, pp. 214–238. doi:10.1007/978-3-642-35813-5_

9.

46

[19] S. Mahdavi-Hezavehi, P. Avgeriou, D. Weyns, A classification frame-

work of uncertainty in architecture-based self-adaptive systems with mul-

tiple quality requirements, in: I. Mistrik, N. Ali, R. Kazman, et al.

(Eds.), Managing Trade-Offs in Adaptable Software Architectures, Mor-

gan Kaufmann, Boston, 2017, pp. 45 – 77. doi:https://doi.org/10.

1016/B978-0-12-802855-1.00003-4.

[20] C. Krupitzer, F. M. Roth, S. Vansyckel, et al., Towards reusability in auto-

nomic computing, in: 2015 IEEE International Conference on Autonomic

Computing, 2015, pp. 115–120. doi:10.1109/ICAC.2015.21.

[21] S. Hallsteinsen, E. Stav, J. Floch, Self-adaptation for everyday systems,

in: Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed

Systems, WOSS 04, Association for Computing Machinery, New York, NY,

USA, 2004, p. 6974. doi:10.1145/1075405.1075419.

[22] N. Abbas, Designing self-adaptive software systems with reuse, Ph.D. the-

sis, Linnaeus University, Department of computer science and media tech-

nology (CM) (2018).

[23] R. Prieto-Diaz, Status report: software reusability, Software, IEEE 10 (3)

(1993) 61–66. doi:10.1109/52.210605.

[24] W. B. Frakes, K. Kang, Software reuse research: status and future, IEEE

Transactions on Software Engineering 31 (7) (2005) 529–536. doi:10.

1109/TSE.2005.85.

[25] K. Pohl, G. Böckle, F. Van Der Linden, Software product line engineering:

foundations, principles, and techniques, Springer-Verlag New York, Inc.,

2005.

[26] J. Andersson, L. Baresi, N. Bencomo, et al., Software Engineering Pro-

cesses for Self-adaptive Systems, in: Software Engineering for Self-adaptive

Systems 2, Vol. 7475 of Lecture Notes in Computer Science, Springer, 2012,

pp. 51–75.

47

[27] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, A taxonomy of uncertainty

for dynamically adaptive systems, in: Proceedings of the 7th International

Symposium on Software Engineering for Adaptive and Self-Managing Sys-

tems, SEAMS ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 99–108.

[28] D. Perez-Palacin, R. Mirandola, Uncertainties in the modeling of self-

adaptive systems: A taxonomy and an example of availability evaluation,

in: 5th ACM/SPEC International Conference on Performance Engineer-

ing, ACM, New York, NY, USA, 2014, pp. 3–14. doi:10.1145/2568088.

2568095.

[29] P. Tarr, H. Ossher, W. Harrison, et al., N degrees of separation: multi-

dimensional separation of concerns, in: Proceedings of the 21st interna-

tional conference on Software engineering, ACM, 1999, pp. 107–119.

[30] N. Quan, Distributed game environment : A software product line for

education and research, Master’s thesis, Linnaeus University, Department

of Computer Science (2013).

[31] OMG, Software & Systems Process Engineering Metamodel Specification

(SPEM), Tech. rep., OMG (Apr. 2008).

[32] L. Bass, J. Ivers, M. H. Klein, et al., Reasoning frameworks, Tech. rep.,

Software Engineering Institute, Carnegie Mellon University (2005).

[33] J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (1)

(2003) 41–50.

[34] A. Diaz-Pace, H. Kim, L. Bass, et al., Integrating quality-attribute rea-

soning frameworks in the arche design assistant, in: S. Becker, F. Plasil,

R. Reussner (Eds.), Quality of Software Architectures. Models and Archi-

tectures, Vol. 5281 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, 2008, pp. 171–188. doi:10.1007/978-3-540-87879-7_11.

[35] N. Abbas, A. Jesper, Architectural reasoning support for product-lines of

self-adaptive software systems - a case study, in: D. Weyns, R. Mirandola,

48

I. Crnkovic (Eds.), Proceedings of the 9th European Conference on Software

Architecture (ECSA), Vol. 9278 of LNCS, Springer, 2015, pp. 20–36.

[36] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd

Edition, Addison-Wesley Professional, 2003.

[37] R. Wirfs-Brock, A. McKean, Object design: roles, responsibilities, and

collaborations, Addison-Wesley Professional, 2003.

[38] N. Abbas, J. Andersson, M. U. Ifikhar, et al., Rigorous architectural rea-

soning for self-adaptive software systems, in: 1st Workshop on Qualitative

Reasoning about Software Architectures, IEEE, 2016, pp. 1–8.

[39] N. Abbas, J. Andersson, D. Weyns, Modeling variability in product

lines using domain quality attribute scenarios, in: Proceedings of the

WICSA/ECSA 2012 Companion Volume, WICSA/ECSA ’12, ACM, New

York, NY, USA, 2012, pp. 135–142. doi:10.1145/2361999.2362028.

[40] K. Kang, Feature-oriented domain analysis (FODA) feasibility study, Tech.

rep., DTIC Document (1990).

[41] N. Abbas, J. Andersson, Architectural reasoning for dynamic software

product lines, in: Proceedings of the 17th International Software Prod-

uct Line Conference Co-located Workshops, 2013, pp. 117–124. doi:

10.1145/2499777.2500718.

[42] E. Miedes, F. D. Munoz-Escoi, Dynamic software update, Tech. Rep. ITI-

SIDI-2012/004, Instituto Universitario Mixto Tecnologico de Informatica,

Universitat Politecnica de Valencia, Campus de Vera s/n, 46022 Valencia

(Spain) (2012).

[43] D. Weyns, B. Schmerl, V. Grassi, et al., On patterns for decentralized

control in self-adaptive systems, in: Software Engineering for Self-Adaptive

Systems II, Springer, 2013, pp. 76–107.

49

[44] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch: why reuse is

so hard, IEEE Software 12 (6) (1995) 17–26. doi:10.1109/52.469757.

[45] C. Wohlin, P. Runeson, M. Höst, et al., Experimentation in Software En-

gineering, 1st Edition, Springer-Verlag Berlin Heidelberg, 2012.

[46] D. Iglesia, D. Weyns, MAPE-K formal templates to rigorously design be-

haviors for self-adaptive systems, ACM Transactions on Autonomous and

Adaptive Systems 10 (3) (2015) 15:1–15:31. doi:10.1145/2724719.

[47] H. Ziv, D. Richardson, R. Klösch, The uncertainty principle in software en-

gineering. university of california, Tech. rep., Irvine UCI-TR-96-33 (1996).

[48] N. Juristo, A. M. Moreno, Basics of Software Engineering Experimentation,

1st Edition, Springer Publishing Company, Incorporated, 2010.

[49] W. Frakes, C. Terry, Software reuse: Metrics and models, ACM Computing

Surveys 28 (2) (1996) 415–435. doi:10.1145/234528.234531.

[50] N. E. Fenton, M. Neil, Software metrics: Roadmap, in: Proceedings of the

Conference on The Future of Software Engineering, ACM, New York, NY,

USA, 2000, pp. 357–370. doi:10.1145/336512.336588.

[51] I. S. 610.12-1990, IEEE Standard Glossary of Software Engineering Ter-

minology, Tech. rep., The Institute of Electrical and Electronics Engi-

neers 345 East 47th Street, New York, NY 10017, USA (1990). doi:

10.1109/ieeestd.1990.101064.

[52] P. Peeters, J. van Asperen, M. Jacobs, et al., The application of Function

Point Analysis (FPA) in the early phases of the application life cycle A

Practical Manual: Theory and case study, 2nd Edition, Netherlands Soft-

ware Metrics Association (NESMA), 2005.

[53] D. E. Gray, Doing research in the real world, SAGE Publications Ltd.,

2013.

50

[54] B. S. Bloom, M. D. Engelhart, E. J. Furst, et al., Taxonomy of educational

objectives, handbook I: The cognitive domain, Vol. 19, New York: David

McKay Co Inc, 1956.

[55] S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality (com-

plete samples), Biometrika 52 (3/4) (1965) 591–611.

[56] N. M. Razali, B. W. Yap, Power comparisons of shapiro-wilk, kolmogorov-

smirnov, lilliefors and anderson-darling tests, Journal of Statistical Model-

ing and Analytics 2 (1) (2011) 21–33.

[57] P. Runeson, M. Höst, A. Rainer, et al., Case Study Research in Software En-

gineering: Guidelines and Examples, 1st Edition, Wiley Publishing, 2012.

[58] D. Weyns, G. S. Ramachandran, R. K. Singh, Self-managing internet of

things, in: A. M. Tjoa, L. Bellatreche, S. Biffl, et al. (Eds.), SOFSEM

2018: Theory and Practice of Computer Science, Springer International

Publishing, Cham, 2018, pp. 67–84.

[59] G. Toffetti, S. Brunner, M. Blchlinger, et al., Self-managing cloud-native

applications: Design, implementation, and experience, Future Generation

Computer Systems 72 (2017) 165 – 179. doi:https://doi.org/10.1016/

j.future.2016.09.002.

51

Appendix A. Final Questionnaire

• This questionnaire is designed to measure learning outcomes and to collect feedback on the

course 4DV610. It has nothing to do with examination or grades in the course. So feel free

to express your opinion while answering the questionnaire.

• To measure learning outcomes, we use first three levels of Blooms taxonomy3, as defined

below:

Knowledge is the lowest level of learning outcomes and is defined as remembering of pre-

viously learned material. This may involve the recall of a wide range of material, from

specific facts to complete theories, but all that is required is the bringing to mind of

the appropriate information.

Comprehension is one step higher than the knowledge, and is defined as the ability to

grasp the meaning of material. This may be shown by translating material from one

form to another (words to numbers), by interpreting material (explaining or summa-

rizing), and by estimating future trends (predicting consequences or effects).

Application is one step higher than the comprehension level, and refers to the ability to

use learned material in new and concrete situations. This may include the application

of such things as rules, methods, concepts, principles, laws, and theories.

• For Multiple choice questions, please encircle the choice(s) which best matches to your an-

swer.

Part A - Background Questions

1. Which degree program are you currently enrolled??

Mastera. (Please specify, if other)b.

2. What is your major subject?

Computer Science/Software Technologya) (Please specify, if other)b)

3. How many credits have you earned so far?

30 or Lessa. 60 or Lessb. 120 or Lessc. More than 120d.

4. Out of these credits, how much come from the courses primarily focusing on software design

and architecture?

7.5 or lessa. 15 or lessb. 30 or lessc. More than 30d.

5. How do you rate your knowledge of Software Design and Architecture on a scale from 1 to

6?

[Poor]1. 2. 3. 4. 5. [Excellent]6.

6. How do you rate your comprehension of Software Design and Architecture on a scale from

1 to 6?

[Poor]1. 2. 3. 4. 5. [Excellent]6.

7. How do you rate your application skills of Software Design and Architecture on a scale from

1 to 6?

[Poor]1. 2. 3. 4. 5. [Excellent]6.

8. Do you have working experience in industry with focus on software design and engineering?

3Forehand, Mary. “Blooms taxonomy”. Emerging perspectives on learning, teaching, and
technology (2010)

52

Noa) 6 Months or Lessb) 1 Year or lessc) 1 to 5 Yearsd) More than 5 Yearse)

Part B domain Responsibility Structure (dRS) Approach

9. Which one of the following statements best describes the domain Responsibility Structure

(dRS)?

a) The dRS is a design pattern that offers a reusable solution to a commonly occurring

problem within a given context in software design.

b) The dRS is a set of (responsibility) components and connectors that together form

reference architecture to realize quality attributes, such as self-management properties.

c) The dRS is a framework that provides a reusable platform to develop software systems.

d) Dont know.

10. The core of the dRS is a self-adaptation (MAPE-K) which is used as principle runtime

variability mechanism, supported through available architectural knowledge in the form of

architectural patterns and tactics.

a) True

b) False

c) Dont know

11. The dRS approach uses to model domain variability. (Select only one option)

a) Feature Diagram

b) Traditional Software Development Diagrams such as Use Case, Sequence Diagrams,

etc.

c) An Orthogonal Variability Model (OVM)

d) Dont know.

Part C: In this part we rate and compare the two approaches that were used during the two class

assignments to design or redesign products with given self-adaptation requirements. To distinguish

the two approaches, lets call the approach used in the first assignment as the reference approach,

and the other used in the second assignment as the dRS approach. Please use “Ref Scale” for the

reference approach, and “dRS Scale” for the dRS approach, wherever applicable.

12. How do you rate the two approaches from gaining knowledge point of view, on a scale from

1 to 6?

Ref.

Scale:

[Very Simple]1. 2. 3. 4. 5. [Too Complex]6.

dRS

Scale:

[Very Simple]1. 2. 3. 4. 5. [Too Complex]6.

13. How do you rate the two approaches from comprehension point of view, on a scale from 1

to 6?

Ref.

Scale:

[Very Simple]1. 2. 3. 4. 5. [Too Complex]6.

dRS

Scale:

[Very Simple]1. 2. 3. 4. 5. [Too Complex]6.

14. How do you rate the two approaches from application point of view, on a scale from 1 to 6?

Ref.

Scale:

[Very Simple]1. 2. 3. 4. 5. [Too Complex]6.

53

dRS

Scale:

[Very Simple]1. 2. 3. 4. 5. [Too Complex]6.

15. How do you rate the two approaches from separation of concerns point of view, on a scale

from 1 to 6?

Ref.

Scale:

[Poor]1. 2. 3. 4. 5. [Excellent]6.

dRS

Scale:

[Poor]1. 2. 3. 4. 5. [Excellent]6.

16. How do you rate the two approaches from being more intuitive and helpful in terms of

available documentation for analysis and design process, on a scale from 1 to 6?

Ref.

Scale:

[Poor]1. 2. 3. 4. 5. [Excellent]6.

dRS

Scale:

[Poor]1. 2. 3. 4. 5. [Excellent]6.

For Questions 17 to 20: We compare the two approaches by making a statement and require you

to encircle only one of the given options that best matches to your opinion.

17. As compare to the reference approach, the dRS approach provides more intuitive approach to

transform quality attribute (self-management properties) requirements into responsibilities

and components designed to fulfill these responsibilities?

Strongly Disagreea) Disagreeb) Neutralc) Agreed)

Strongly Agreee) Don’t Knowf)

18. As compare to the reference approach, the dRS approach provides better over-all support

to realize domain quality attributes with self-adaptive characteristics, such as self-healing,

self-optimization, self-upgradability, etc.

Strongly Disagreea) Disagreeb) Neutralc) Agreed)

Strongly Agreee) Don’t Knowf)

19. As compare to the reference approach, the dRS approach provides better over-all support to

realize domain quality attributes characterized with runtime changes in their requirements.

Strongly Disagreea) Disagreeb) Neutralc) Agreed)

Strongly Agreee) Don’t Knowf)

20. As compare to the reference approach, the dRS approach provides better architectural sup-

port in the form of architectural patterns and tactics?

Strongly Disagreea) Disagreeb) Neutralc) Agreed)

Strongly Agreee) Don’t Knowf)

54

Nadeem Abbas: Nadeem Abbas is a senior lecturer within the Department of Computer Sci-

ence and Media Technology, Linnaeus University, Sweden. His main research interests include the

development of self-adaptive software systems with systematic reuse, and development of mecha-

nisms to manage variability and uncertainties involved in the development of self-adaptive software

systems.

Jesper Andersson: Jesper Andersson is a senior lecturer and department chair within the

Department of Computer Science and Media Technology, Linnaeus University, Sweden. His research

focuses mainly on Software Engineering techniques and methodologies supporting the development

of smarter systems. His other research interests include software architecture, self-adaptive software

systems, software reuse, and software ecosystems.

Danny Weyns: Danny Weyns is a professor in the Department of Computer Science, Katholieke

Universiteit Leuven, Belgium; he is also part-time affiliated with Linnaeus University, Sweden. His

main research interest includes software engineering of self-adaptive systems, with a particular focus

on formalisms and runtime models to realize and assure the goals of adaptive systems relying on

principles from software architecture and control theory.

55

Declaration	of	interests	
	
The	authors	declare	that	they	have	no	known	competing	financial	interests	or	personal	relationships	
that	could	have	appeared	to	influence	the	work	reported	in	this	paper.	
	
�The	authors	declare	the	following	financial	interests/personal	relationships	which	may	be	considered	
as	potential	competing	interests:		
	

	
	

None.	

	
Credit	Author	Statement	
	
Nadeem	Abbas:	Conceptualization,	Methodology,	Software,	Validation,	Formal	
Analysis,	Investigation,	Writing	-	Original	Draft	
	
Jesper	Andersson:	Supervision,	Conceptualization,	Methodology,	Writing-	
Original	draft	preparation.		
	
Danny	Weyns:	Validation,	Formal	Analysis,	Writing-	Review	and	Editing	
	

