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Abstract: Some new oscillatory and asymptotic properties of solutions of neutral differential
equations with odd-order are established. Through the new results, we give sufficient conditions for
the oscillation of all solutions of the studied equations, and this is an improvement of the relevant
results. The efficiency of the obtained criteria is illustrated via example.
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1. Introduction

During this paper, we investigate the asymptotic properties of solutions to the odd-order
neutral equation

(r (l) (z(n−1) (l))α)′ + f (l, u(η(l))) = 0, l ≥ l0 > 0, (1)

where l ≥ l0, z (l) = u (l) + p (l) u (θ (l)) , 0 ≤ p (l) ≤ p0 < ∞ and n is an odd natural number.
Through the paper, we assume that

(I) α is a ratio of odd positive integers, r, η, θ ∈ C1 (I0,R+) , r′ (l) ≥ 0, η (l) < l, η′ > 0,
(
η−1 (l)

)′ ≥
η0 > 0, θ′ (l) ≥ θ0 > 0, liml→∞ η (l) = ∞, liml→∞ θ (l) = ∞, Iρ :=

[
lρ, ∞

)
, the function

f ∈ C (I0 ×R,R), and there exists a nonnegative function q such that | f (l, u)| ≥ q (l) |u|α.
Moreover, we study asymptotic behavior and oscillation of solutions of (1) in a canonical case,
that is, ∫ ∞

l0

1
r1/α($)

d$ = ∞. (2)

(II) θ (l) < l and θ ◦ η = η ◦ θ.

If there exists lu ≥ l0 such that the real valued function u is continuous, r
(

z(n−1)
)α

is continuously
differentiable and satisfies (1), for all l ∈ Iu; then, u is said to be a solution of (1). We restrict our
discussion to those solutions u of (1) which satisfy sup {|u (l)| : l1 ≤ l0} > 0 for every l1 ∈ Iu.

Definition 1. A solution u of Equation (1) is called an N-Kneser solution if there exists a l∗ ∈ I0 such that
z (l) z′ (l) < 0 for all l ∈ I∗. The set of all eventually positive N-Kneser solutions of Equation (1) is denoted
by <.
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Definition 2. A solution u of (1) is said to be non-oscillatory if it is positive or negative, ultimately; otherwise,
it is said to be oscillatory. The equation itself is termed oscillatory if all its solutions oscillate.

There are many authors who studied the problem of oscillation of differential equations of a
different order and presented many techniques in order to obtain criteria for oscillation of the studied
equations, for example, [1–12].

For applications of odd-order equations in extrema, biology, and physics, we refer to the following
examples. In 1701, James Bernoulli published the solution to the Isoperimetric Problem—a problem in
which it is required to make one integral a maximum or minimum, while keeping constant the integral
of a second given function, thus resulting in a differential equation of third-order (see [13]). In the early
1950s, Alan Lloyd Hodgkin and Andrew Huxley developed a mathematical model for the propagation
of electrical pulses in the nerve of a squid. The Hodgkin–Huxley Model is a set of nonlinear ordinary
differential equations. The model has played a seminal role in biophysics and neuronal modeling.

Recently, researchers have paid attention to neutral differential equations, as well as studying
the oscillation behavior of their solutions. There is a practical side to study the problem of the
oscillatory properties of solutions of neutral equations besides the theoretical side. For example,
the neutral equations arise in applications to electric networks containing lossless transmission
lines. Such networks appear in high-speed computers where lossless transmission lines are used
to interconnect switching circuits. For more applications in science and technology, see [14–16].

Karpuz et al. [17] studied the higher-order neutral differential equations of the following type:

(u(l) + p(l)u(θ(l)))(n) + q(l)u(η(l)) = 0, for l ∈ [l0, ∞) (3)

where oscillatory and asymptotic behaviors of all solutions of higher-order neutral differential
equations are compared with first-order delay differential equations, depending on two different
ranges of the coefficient associated with the neutral part

Xing et al. [18] established some oscillation criteria for certain higher-order quasi-linear neutral
differential equation

(r (l)
(
(u(l) + p(l)u(θ(l)))(n−1)

)α
)′ + q(l)uα(η(l)) = 0, n ≥ 2 (4)

where α ≤ 1 is the quotient of odd positive integers.
Li and Rogovchenko [19] concerned with the asymptotic behavior of solutions to a class of

third-order nonlinear neutral differential equations(
r (t)

(
(x (t) + p0x (t−v0))

′′
)α)′

+ q (t) xα (τ (t)) = 0,

where p0 ≥ 0, p0 6= 1 and v0 are constants, v0 ≥ 0 (delayed argument) or v0 ≤ 0 (advanced argument).
Some results that are closely related to our work are presented as follows:

Theorem 1 ([17], Corollary 2, see [20], Theorem 3.1.1 and [21]). Assume that p satisfies the condition

p ∈ C
(
[l0, ∞) , R+

)
satisfies lp := lim sup

l→∞
p (l) < 1.

If

lim sup
l→∞

∫ l

η(l)

1
(n− 1)!

(η (ρ))n−1 q (ρ)dρ > 1

or

lim inf
l→∞

∫ l

η(l)

1
(n− 1)!

(η (ρ))n−1 q (ρ)dρ >
1
e
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holds, then (3) is almost oscillatory.

Theorem 2 ([18], Corollary 2.8 ). Let n be odd, α ≤ 1,
(
η−1 (l)

)′ ≥ η0 > 0, 0 ≤ p (l) ≤ p0 < ∞, θ (l) ≤ l,
and θ′ (l) ≥ θ0 > 0, suppose that (2) holds. If θ−1 (η (l)) < l and

lim inf
l→∞

∫ l

θ−1(η(l))

Θ (ρ)
(
ρn−1)α

r (ρ)
dρ >

(
1
η0

+
pα

0
η0θ0

)
((n− 1)!)α

e
,

where Θ (l) = min{q
(
η−1 (l)

)
, q
(
η−1 (θ (l))

)
; then, every solution of (4) is oscillatory or tends to zero

as l → ∞.

Lemma 1 ([18,22]). Assume that u1, u2 ∈ [0, ∞). Then,

(u1 + u2)
α ≤ µ (uα

1 + uα
2) ,

and

µ =

{
1 for 0 < α ≤ 1;
2α−1 for α > 1.

Lemma 2 ([23]). Let u ∈ Cn ([l0, ∞) , (0, ∞)) . Assume that u(n) (l) is of fixed sign and not identically zero
on [l0, ∞) and that there exists a l1 ≥ l0 such that u(n−1) (l) u(n) (l) ≤ 0 for all l ≥ l1. If liml→∞ u (l) 6= 0,
then, for every λ ∈ (0, 1), there exists lµ ≥ l1 such that

u (l) ≥ λ

(n− 1)!
ln−1

∣∣∣u(n−1) (l)
∣∣∣ for l ≥ lµ.

2. Main Results

For the sake of convenience, we use the following notation:

R0 (ς, $) =
∫ ς

$
r−1/α (ρ)dρ, Rk (ς, $) =

∫ ς

$
Rk−1 (ς, ρ)dρ, k = 1, 2, ..., n− 2

and
Q (l) = min{q (l) , q (θ (l))}, Q1 (l) = min{q

(
η−1 (l)

)
, q
(

η−1 (θ (l))
)
}.

The following lemma is a direct conclusion from Lemmas 2.1 and 2.4 in [18], so its proof
was neglected.

Lemma 3. Assume that u is an eventually positive solution of (1). Then, there exists a sufficiently large
l1 ≥ l0 such that, for all l ≥ l1, either

Case (1) : z (l) > 0, z′ (l) > 0, z(n−1) (l) > 0, (r (l) (z(n−1) (l))α)′ < 0

or
Case (2) : (−1)k z(k) (l) > 0, for k = 0, 1, 2, ..., n.

Now, in the following theorem, we will provide a new criterion for non-existence of N-Kneser
solutions of (1) by using the comparison theorem.

Theorem 3. Assume (I) and (II) holds. If there exists a function ζ (l) ∈ C ([l0, ∞) , (0, ∞)) satisfying
η (l) < ζ (l) and θ−1 (ζ (l)) < l, such that the differential equation

G′ (l) +
1
µ

θ0

θ0 + pα
0

Rα
n−2 (ζ (l) , η (l)) Q (l) G

(
θ−1 (ζ (l))

)
= 0 (5)
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is oscillatory, then < is an empty set.

Proof. Let u be a N-Kneser solution of (1), say u (l) > 0 and u (η (l)) > 0 for l ≥ l1 ≥ l0.
This implies that

(−1)k z(k) (l) > 0, for k = 0, 1, 2, ..., n. (6)

From (1), we see that

0 ≥
pα

0
θ′ (l)

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ pα

0q (θ (l)) uα (η (θ (l)))

≥
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ pα

0q (θ (l)) uα (η (θ (l)))

=
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ pα

0q (θ (l)) uα (θ (η (l))) . (7)

Combining (1) and (7), we obtain

0 ≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ q (l) uα (η (l))

+ pα
0q (θ (l)) uα (θ (η (l)))

≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
(8)

+ Q (l) (uα (η (l)) + pα
0uα (θ (η (l)))) .

From definition of z and using (I), we have

z (η (l)) = u (η (l)) + p (η (l)) u (θ (η (l))) ≤ u (η (l)) + p0u (θ (η (l))) .

By using the latter inequality in (8), we get

0 ≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+Q (l) (u (η (l)) + p0u (θ (η (l))))α

≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+

1
µ

Q (l) zα (η (l)) ,

that is,

0 ≥
(

r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α
)′

+
1
µ

Q (l) zα (η (l)) . (9)

On the other hand, it follows from the monotonicity of r (l) (z(n−1) (l)) that

−z(n−2) ($) ≥ z(n−2) (ς)− z(n−2) ($) =
∫ ς

$

r1/α (ρ) z(n−1) (ρ)

r1/α (ρ)
dρ

≥ r1/α (ς) z(n−1) (ς) R0 (ς, $) . (10)

Integrating (10) from $ to ς, we have

− z(n−3) ($) ≤ z(n−3) (ς)− z(n−3) ($) = r1/α (ς) z(n−1) (ς) R1 (ς, $) . (11)

Integrating (11) n− 3 times from $ to ς and using (6), we get

z ($) ≥ r1/α (ς) z(n−1) (ς) Rn−2 (ς, $) . (12)
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Thus, we have

z (η (l)) ≥ r1/α (ζ (l)) z(n−1) (ζ (l)) Rn−2 (ζ (l) , η (l)) ,

which, by virtue of (9), yields that

0 ≥ (r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α

)′

+
1
µ

Q (l) r (ζ (l))
(

z(n−1) (ζ (l)) Rn−2 (ζ (l) , η (l))
)α

. (13)

Now, set

G (l) = r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α

> 0.

From (I) and the fact that r (l) (z(n−1) (l)) is non-increasing, we have

G (l) ≤ r (θ (l))
(

z(n−1) (θ (l))
)α
(

1 +
pα

0
θ0

)
or equivalently,

r (ζ (l)) (z(n−1) (ζ (l)))α ≥ θ0

θ0 + pα
0

G
(

θ−1 (ζ (l))
)

. (14)

Using (14) in (13), we see that G is a positive solution of the differential inequality

G′ (l) +
1
µ

θ0

θ0 + pα
0

Rα
n−2 (ζ (l) , η (l)) Q (l) G

(
θ−1 (ζ (l))

)
≤ 0.

In view of [24], Theorem 1, we have that (5) also has a positive solution, a contradiction. Thus,
the proof is complete.

In the following theorem, we establish a hille and nehari type condition that confirms the
non-existence of N-Kneser solutions of (1).

Theorem 4. Assume (I) and (II) hold. If there exists a function δ (l) ∈ C ([l0, ∞) , (0, ∞)) satisfying δ (l) < l
and η (l) < θ (δ (l)) such that

lim sup
1
µ

l→∞

Rα
n−2 (θ (δ (l)) , η (l))

r (θ (δ (l)))

∫ l

δ(l)
Q (ρ)dρ >

θ0 + pα
0

θ0
, (15)

then < is an empty set.

Proof. By using the same method in proof of Theorem 3, we obtain (9). Integrating (9) from δ (l) to l
and using the fact that z is decreasing, we get

r (δ (l)) (z(n−1) (δ (l)))α +
pα

0
θ0

r (θ (δ (l)))
(

z(n−1) (θ (δ (l)))
)α

≥ r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α

+
1
µ

zα (η (l))
∫ l

δ(l)
Q (ρ)dρ

≥ 1
µ

zα (η (l))
∫ l

δ(l)
Q (ρ)dρ.
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Since θ (δ (l)) < θ (l) and r (l) (z(n−1) (l)) is non-increasing, we have

r (θ (δ (l))) (z(n−1) (θ (δ (l))))α

(
1 +

pα
0

θ0

)
≥ 1

µ
zα (η (l))

∫ l

δ(l)
Q (ρ)dρ. (16)

By using (12) with ς = θ (δ (l)) and $ = η (l) in (16), we obtain

r (θ (δ (l))) (z(n−1) (θ (δ (l))))α

(
1 +

pα
0

θ0

)
≥ 1

µ

(
z(n−1) (θ (δ (l)))

)α
Rα

n−2 (θ (δ (l)) , η (l))
∫ l

δ(l)
Q (ρ)dρ,

that is,
θ0 + pα

0
θ0

≥ 1
µ

Rα
n−2 (θ (δ (l)) , η (l))

r (θ (δ (l)))

∫ l

δ(l)
Q (ρ)dρ.

Now, we take the lim sup of both sides of the previous inequality, and we obtain a contradiction
to (15). The proof is complete.

In the following theorem, we will provide another criterion for the non-existence of N-Kneser
solutions of (1) using the comparison theorem.

Theorem 5. Assume (I), (II), and η (θ (l)) < l hold. If the differential equation

Ψ′ (l) + Q1 (l) Rα
n−2 (θ (l) , l)

(
η0θ0

θ0 + pα
0

)
Ψ (η (l)) = 0 (17)

is oscillatory, then < is an empty set.

Proof. Let u be a N-Kneser solution of (1), say u (l) > 0, u (θ (l)) > 0 and u (η (l)) > 0 for l ≥ l1 ≥ l0.
This implies that

(−1)k z(k) (l) > 0, for k = 0, 1, 2, ..., n.

By using (1) and (I), we see that

0 ≥ 1

(η−1 (l))′
(

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α)′

+ q
(

η−1 (l)
)

uα (l)

≥ 1
η0

(
r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α)′

+ q
(

η−1 (l)
)

uα (l) ,

and, similarly,

0 ≥
pα

0

(η−1 (θ (l)))′
(

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α)′

+pα
0q
(

η−1 (θ (l))
)

uα (θ (l))

≥
pα

0
η0θ0

(
r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α)′

+pα
0q
(

η−1 (θ (l))
)

uα (θ (l)) .
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Combining the above inequalities yields that

0 ≥ 1
η0

(
r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α)′

+
pα

0
η0θ0

(
r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α)′

+q
(

η−1 (l)
)

uα (l) + pα
0q
(

η−1 (θ (l))
)

uα (θ (l)) ,

that is,

0 ≥
(

1
η0

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α

+
pα

0
η0θ0

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α

)′
+Q1 (l) zα (l) . (18)

Now, we set

Ψ (l) =
1
η0

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α

+
pα

0
η0θ0

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α

. (19)

From (II) and the fact that r (l) (z(n−1) (l)) is non-increasing, it is easy to see that

Ψ (l) ≤
r
((

η−1 (θ (l))
)) (

z(n−1) (η−1 (θ (l))
))α

η0

(
1 +

pα
0

θ0

)
. (20)

By using (12) with ς = θ (l) and $ = l and (20), we have

zα (l) ≥ r (θ (l))
(

z(n−1) (θ (l))
)α

Rα
n−2 (θ (l) , l) ≥ Ψ (η (l)) Rα

n−2 (θ (l) , l)
(

η0θ0

θ0 + pα
0

)
.

From definition Ψ and using the above inequality in (18), we get

0 ≥ Ψ′ (l) + Q1 (l) Rα
n−2 (θ (l) , l)

(
η0θ0

θ0 + pα
0

)
Ψ (η (l)) .

In view of [24], Theorem 1, we have that (17) also has a positive solution, a contradiction. Thus,
the proof is complete.

3. New Oscillation Criteria

In the following lemma, we present criteria that ensure that non-existence of solutions satisfies
case (1).

Lemma 4. Assume that u be an eventually positive solution of (1) and the differential equation

Φ′ (l) +
Q (l)(

1 + pα
0

θ0

) ( λ0

(n− 1)!r1/α (η (l))
(η (l))n−1

)α

Φ
(

η
(

θ−1 (l)
))

= 0 (21)

or

φ′ (l) +
Q1 (l)(

1
η0

+
pα

0
η0θ0

) ( λ1

(n− 1)!r1/α (l)
ln−1

)α

φ
(

θ−1 (η (l))
)
= 0 (22)

is oscillatory, then z does not satisfy the following case:

z (l) > 0, z′ (l) > 0, z(n−1) (l) > 0 and z(n) (l) ≤ 0. (23)
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Proof. Assume on the contrary that u is an eventually positive solution of (1) and z satisfies (23).
Proceeding as in the proof of Theorem 3, we obtain (9). By using Lemma 2, we get

z (l) ≥ λ

(n− 1)!r1/α (l)
ln−1r1/α (l) z(n−1) (l) . (24)

Therefore, by setting w (l) = r (l) (z(n−1) (l))α in (9) and utilizing (24), we see that w is a positive
solution of the equation(

w (l) +
pα

0
θ0

w (θ (l))
)′

+ Q (l)
(

λ

(n− 1)!r1/α (η (l))
(η (l))n−1

)α

w (η (l)) = 0. (25)

Since w (l) = r (l) (z(n−1) (l))α is non-increasing and it satisfies (25), let us denote

Φ (l) = w (l) +
pα

0
θ0

w (θ (l)) .

It follows from θ (l) < l

Φ (l) ≤ w (θ (l))
(

1 +
pα

0
θ0

)
.

Substituting these terms into (25), we get that Φ is a positive solution of

Φ′ (l) +
Q (l)(

1 + pα
0

θ0

) ( λ

(n− 1)!r1/α (η (l))
(η (l))n−1

)α

Φ
(

η
(

θ−1 (l)
))
≤ 0.

In view of [24], Theorem 1, we have that (21) also has a positive solution, which is a
contradiction (21).

Now, proceeding as in the proof of Theorem 5, we obtain (18). In the same style as the first part,
we have

0 ≥
(

1
η0

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α

+
pα

0
η0θ0

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α

)′
+Q1 (l) zα (l) .

By using Lemma 2, we get

z (l) ≥ λ

(n− 1)!r1/α (l)
ln−1r1/α (l) z(n−1) (l) .

Therefore, by setting U (l) = r (l) (z(n−1) (l))α in (18) and utilizing (24), we see that U is a positive
solution of the equation(

1
η0

U
(

η−1 (l)
)
+

pα
0

η0θ0
U
(

η−1 (θ (l))
))′

+ Q1 (l)
(

λ

(n− 1)!r1/α (l)
ln−1

)α

U (l) = 0. (26)

Since U (l) = r (l) (z(n−1) (l))α is non-increasing and it satisfies (26), let us denote

φ (l) =
1
η0

U
(

η−1 (l)
)
+

pα
0

η0θ0
U
(

η−1 (θ (l))
)

.

It follows from θ (l) < l

φ (l) ≤ U
(

η−1 (θ (l))
)( 1

η0
+

pα
0

η0θ0

)
.
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Substituting these terms into (26), we get that φ is a positive solution of

φ′ (l) +
Q1 (l)(

1
η0

+
pα

0
η0θ0

) ( λ

(n− 1)!r1/α (l)
ln−1

)α

φ
(

θ−1 (η (l))
)
≤ 0.

In view of [24], Theorem 1, we have that (22) also has a positive solution, which is a
contradiction (22). Thus, the proof is complete.

The following theorems give the criteria for oscillation for all solutions of Equation (1).

Theorem 6. If (5) and (21) are oscillatory, then (1) is oscillatory.

Proof. Assume on the contrary that u is an eventually positive solution of (1). Then, from Lemma 3,
we conclude that there are two possible cases for the behavior of z and its derivatives. By using
Theorem 3 and Lemma 4, conditions (5) and (21) ensure that there are no solutions for Equation (1)
satisfy case (1) and case (2) respectively. Thus, the proof is complete.

Theorem 7. If (17) and (21) are oscillatory, then (1) is oscillatory.

Proof. Assume on the contrary that u is an eventually positive solution of (1). Then, from Lemma 3,
we conclude that there are two possible cases for the behavior of z and its derivatives. By using
Theorem 5 and Lemma 4, conditions (17) and (21) ensure that there are no solutions for Equation (1)
satisfying case (1) and case (2), respectively. Thus, the proof is complete.

The following corollaries provided criteria for the oscillation of the first-order equations that were
used in the comparison.

Corollary 1. If there exists a function ζ (l) ∈ C ([l0, ∞) , (0, ∞)) satisfying η (l) < ζ (l) and θ−1 (ζ (l)) < l,
such that

lim inf
l→∞

∫ l

θ−1(ζ(l))
Rα

n−2 (ζ (ρ) , η (ρ))
Q (ρ)

µ
dρ ≥

θ0 + pα
0

θ0e
(27)

and

lim inf
l→∞

∫ l

η(θ−1(l))
Q (l)

(
λ0

(n− 1)!r1/α (η (l))
(η (l))n−1

)α

dρ ≥
θ0 + pα

0
θ0e

(28)

hold, then (1) is oscillatory.

Corollary 2. Let δ (l) = θ (l) in Theorem 4. If η (l) < θ (θ (l)), such that (28) and

lim sup
1
µ

l→∞

Rα
n−2 (θ (θ (l)) , η (l))

r (θ (θ (l)))

∫ l

θ(l)
Q (ρ)dρ >

θ0 + pα
0

θ0
(29)

hold, then (1) is oscillatory.

Corollary 3. If η (θ (l)) < l, such that (28) and

lim inf
l→∞

∫ l

η(θ(l))
Q1 (ρ) Rα

n−2 (θ (ρ) , ρ) >
θ0 + pα

0
η0θ0e

(30)

hold, then (1) is oscillatory.
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Example 1. Consider the differential equation((
(u (l) + pu (δl))(n−1)

)α)′
+

q0

lα(n−1)+1
uα (λl) = 0, l ≥ 1 (31)

From (31), we have r (l) = 1, p (l) = p, θ (l) = δl, η (l) = λl and q (l) = q0/lα(n−1)+1. Using some
mathematical operations. By using Corollary 1, we find that (31) is oscillatory if

q0 ln
(

2δ

δ + λ

)
>

µ
(
θ0 + pα

0
)

θ0e

(
(n− 1)!

(
2

δ− λ

)n−1
)α

and

q0 ln
(

λ

δ

)
>

(
θ0 + pα

0
)

θ0e
((n− 1)!)α

λα
0λα(n−1)

.

By using Corollary 3, we find that (31) is oscillatory if

q0 ln
(

λ

δ

)
>

(
θ0 + pα

0
)

θ0e
((n− 1)!)α

λα
0λα(n−1)

and

q0 ln
(

1
δλ

)
>

(
θ0 + pα

0
)

η0θ0e
((n− 1)!)α

λα(n−1)+1 (δ− 1)α(n−1)
.

4. Conclusions

This article is concerned with oscillatory properties of solutions for the odd-order neutral
equation. Many works have studied the oscillatory properties of solutions of an odd-order equation;
see [17,18]. However, in these works, we find sufficient conditions to ensure that every non-oscillatory
solution tends to zero, that is, conditions that guarantee that all solutions are oscillatory or tend
to zero. Unusually, in this paper, we presented new criteria ensuring that all solutions of (1) are
oscillatory, which in turn is an improvement and extension of the results in [17,18]. For this purpose,
we used the comparison technique with first-order equations. For ease of application in the examples,
Corollaries 1–3 provided criteria for the oscillation of the first-order equations that were used in
the comparison.
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