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Abstract 
Image registration involves finding the best alignment between different images of the same 
object. In these tasks, the object in question is viewed differently in each of the images (e.g. 
different rotation or light conditions, etc.). In digital pathology, image registration aligns 
correspondent regions of tissue from different stereotactic viewpoints (e.g. subsequent deeper 
sections of the same tissue). These comparisons are important for histological analysis and can 
facilitate previously unavailable manipulations, such as 3D tissue reconstruction and cell-level 
alignment of immunohistochemical (IHC) and special stains. Several benchmarks have been 
established for evaluating image registration techniques for histological tissue; however, little 
work has evaluated the impact of scaling registration techniques to Giga-Pixel Whole Slide 
Images (WSI), which are large enough for significant memory limitations, and contain recurrent 
patterns and deformations that hinder traditional alignment algorithms. Furthermore, as tissue 
sections often contain multiple, discrete, smaller tissue fragments, it is unnecessary to align an 
entire image when the bulk of the image is background whitespace and tissue fragments’ 
orientations are often agnostic of each other. We present a methodology for circumventing 
large-scale image registration issues in histopathology and accompanying software. By 
removing background pixels, parsing the slide into discrete tissue segments, and matching, 
orienting and registering smaller segment pairs, we recovered registrations with lower Target 
Registration Error (TRE) when compared to utilizing the unmanipulated WSI. We tested our 
technique by having a pathologist annotate landmarks from 13 pairs of differently stained liver 
biopsy slides, performing WSI and segment-based registration techniques, and comparing 
overall TRE. Preliminary results demonstrate superior performance of registering segment pairs 
versus registering WSI (difference of median TRE of 44 pixels, p<0.001). Segment matching 
within WSI is an effective solution for histology image registration but requires further testing 
and validation to ensure its viability for stain translation and 3D histology analysis. 
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Introduction 

The field of digital pathology has made tremendous progress in the past decade with the advent 

of robust whole slide image (WSI) scanning devices and powerful open source software suites 

for image analysis and machine learning. Earlier techniques focused on morphometry and color 

thresholding with human-designed filters as means of separating histologic features of interest 

for characterization. Recent works have largely moved away from these rigid, predefined 

assumptions in favor of deep learning (DL) and artificial neural networks (ANN) based 

approaches 1. Applied to WSI, these models learn to extract important local morphological 

information and then aggregate many low level features in order to “learn” key higher-level 

features of the image in question. As these algorithms are validated and incorporated into 

clinical workflows2, standardizing these techniques and identifying robust, efficient pre-

processing algorithms is vitally important. 

 

Preliminary deep learning histopathology analyses focused largely on differentiating tissue of 

interest after pathologist annotation (e.g. Basal Cell Carcinoma versus Squamous Cell 

Carcinoma; neoplastic versus non-neoplastic tissue) 3. However, annotation of tissue is 

subjective, shows broad interobserver variability, and is often reliant on consensus-derived 

diagnostic criteria which are updated frequently. To circumvent issues associated with 

subjectively biased studies, a growing collection of works have sought to associate the slide 

information with the quantitative drivers of the disease pathology 4 (e.g. molecular alterations, 

clinical chemistry, survival, etc.), via corresponding immunohistochemistry stains (IHC), 5,6 and 

mutational panels of known oncological driver mutations (among others) 7–9. Furthermore, 

generative techniques have been developed to computationally translate one histological stain 

(e.g. Hematoxylin and Eosin, H&E) to a target stain of interest (e.g. Masson’s Trichrome). Such 

techniques have the potential to save time and money by obviating the need for costly chemical 

staining on an adjacent section10. There are a few studies that suggest the importance and 
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relevance of studying the 3D architecture of the tissue for enhancing our understanding of 

disease processes. As more of these “voxel” based deep learning algorithms are published, 3D 

reconstructions from sequential 5 μm tissue sections are increasingly becoming relevant in 

investigations of disease biology, prognosis, and potential for cancer metastasis 11,12. Finally, 

having aligned, differentially stained slides for the pathologist to rapidly switch back and forth  

between (a very common task that pathologists do manually with glass slides) could improve 

productivity and clinical workflow for pathologists. 

 

In order to associate Giga-Pixel hematoxylin and eosin (H&E)-stained WSI with information from 

stereotactic, molecular, or other staining characteristics, the digitized representations of 

subsequent 5 μm tissue sections must be aligned to a high degree of accuracy. Image 

registration techniques align two or more images of interest through transformation of the 

coordinates of one or more source images to the coordinate system of a target image13. These 

techniques have been successfully applied across many biomedical image domains including: 

X-Ray, CT scans and MRI modalities amongst many others14. Most image registration 

techniques can be recast as optimization problems where the similarity between two images is 

optimized after a series of affine transformations and deformations. However, algorithms differ 

in their calculation of similarity between images and how the image transformations are applied. 

Similarity can be defined as intensity-based or feature-based, where the former calculates a 

correlation-based pixel-wise or window-wise intensity measure between the source and target 

images, while the latter technique identifies objects of interest using algorithms such as SIFT 

(Scale Invariant Feature Transform) 15 or SURF (Speeded Up Robust Features) 16 that are 

correspondent between the two images and measures their total displacement. Based on how 

different the two images are, the algorithm introduces linear rigid transformations through the 

use of scaling, rotation, and translation operations, and non-rigid, or nonlinear operations that 

introduce more specialized transformations for matching. Various optimization approaches and 
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heuristics have been proposed to discover the optimal alignment17,18, and recently, novel deep 

learning and GPU-accelerated approaches have been suggested19,20. For applications to 

histopathology image analysis, these techniques have been formalized into benchmarked 

studies and alignment challenges that begin to better address standard histopathology image 

registration issues21–24. 

 

However, many of these methods have largely dismissed crucial aspects of WSI that may make 

them difficult to register, especially when seeking to implement registration systems at full 

clinical scale. WSI are typically giga-pixel sized images, which means they can occupy up to 50 

GB of memory depending on magnification, amount of tissue present, and image complexity 

(e.g. large segments of highly heterogeneous tissue captured at high magnification require more 

storage space than small sections of homogeneous tissue captured at low magnification). Thus, 

most common clinical workstation computers lack the RAM to even open these images. This is 

complicated by the fact that most workstations also have the minimum required GPU to drive a 

small monitor and are unable to take advantage of modern CUDA GPU accelerated algorithms. 

While many existing registration architectures can process modestly-sized images (20Kpx by 20 

Kpx slides, a typical size for WSI captured at 10X), few have been designed to handle maximum 

magnification WSI (40X) which can contain up to 16-fold more pixels. Most algorithms instead 

utilize down sampling techniques which degrades slide resolution and registration quality.  

 

A large proportion of WSI are typically filled with white space/background. Even in tissue-heavy 

slides, background often comprises more than 50% of the total slide area. Moreover, this 

background space is not homogeneously white, but instead contains a random mosaic of 

thousands of near-white colors. Failing to account for heterogeneous background impedes the 

registration algorithm and can cause significant unwanted transformations and tissue artifacts 

as the algorithm struggles to incorporate both tissue and background alignment. This also 
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unnecessarily adds to the computational burden. Current algorithms also assume that the image 

components (tissue fragments) contained within the WSI are in the same order and orientation 

as the matched tissue section, with negligible deformations, and that the paired tissue sections 

are morphometrically very similar to the target. When the same tissue section is scanned, 

destained, restained, and rescanned, it is generally assumed that there are no significant 

alterations to the tissue morphometry (e.g. through the introduction of new artifacts, distortions, 

tears, etc). In histopathology, the typical processing of tissue and the micrometer level precision 

of important features, render these assumptions invalid. Subsequent tissue sections are 

typically separated by 5um but this is not always the case and the distance between sections 

may be many multiples of 5 μm. Special stains and immunohistochemistry are not necessarily 

performed on sections that are reasonably close to the target H&E, especially in samples 

obtained from clinical practice where numerous stains may be obtained on serial tissue sections 

in discontinuous batches (in between which, the tissue block must often be shaved until 

coplanarity between the blade and block is restored a.k.a refaced). During sectioning, segments 

of tissue may enlarge, shrink, appear and disappear. Additionally, the process of destaining and 

restaining a slide, along with the removal of the cover slip, introduces deformations to the 

original tissue. 

 

Our technique attempts to minimize as many of the above challenges as possible by first 

identifying background pixels with thresholding and breaking each WSI into segments defined 

by connected component analysis (e.g. identifying all independent tissue segments separated 

by background). Once all the independent tissue segments from the two WSI’s have been 

labelled and classified, compatible segments are identified by comparison of area and overall 

geometry and these segments are registered until the maximum homology matches are found. 

To test our hypothesis that matching and registering tissue segments is more accurate and 

pragmatic than co-registering multiple WSI, we introduce and test informatics software entitled 
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PF-MixMatch on a set of paired H&E and Trichrome stained images of liver tissue and compare 

our results to one of the best-performing gigapixel image registration algorithm in the literature.  

 
Materials and Methods 
 
Materials 
 
Twenty-six liver core needle biopsies were acquired at Dartmouth Hitchcock Medical Center via 

routine clinical operations, fixed, embedded in paraffin (FFPE), sectioned via microtome at 5 μm 

and adhered to slides. These slides were then stained with H&E or Trichrome via an automated 

process, according to departmental guidelines. Slides were then scanned, digitized and stored 

at 20x magnification using the Leica Aperio-AT2 scanner, and prepared for analysis by 

conversion to numpy (NPY) arrays.  

 
Methods 

Here, we provide a description of our analytic workflow for PF-MixMatch (Figure 1). After 

acquiring matching WSI with H&E and Trichrome stains, a rotation detection module rotates the 

WSI if it suspects that it has been rotated at least 90 degrees with respect to the target WSI. 

Then background pixels are identified by color thresholding and set to pure white (RGB = 

[255,255,255]). Next tissue segments are identified and labeled by running a connected 

component analysis on the image, which identifies non-background objects covering an area of 

at least 1 × 10$%	square pixels. Statistical parameters such as the area, perimeter, inertial or 

moment tensors, eigenvalues of the object, orientation with respect to the vertical, eccentricity, 

and major and minor axis lengths are calculated for each segment in both WSI. The statistics for 

each segment were represented as a vector of features which were transformed into a 

compressed representation. Compatible segments between the subject and target WSI are 

matched based on nearest neighbor searches of these compressed vectors. Then, using 

connected component masks, the segments are extracted and isolated using bounding boxes 
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and rotated to a vertically aligned position (relative to the major axis) to save memory space and 

to hasten alignment. Finally, the proposed image pairs are registered to each other using a 

GPU-accelerated similarity-based (mean squared error, MSE, loss) registration technique, 

implemented using the backpropagation-based library Airlab19. The resultant distortion matrix for 

each segment pair is computed, allowing for the acquisition of the final registered image.  

 
Assessment of Performance 

To assess the performance of the registration method, we calculated the displacement between 

the corresponding marked regions on the H&E and Trichrome stains after registration, otherwise 

known as the Target Registration Error (TRE). As a comparison, the performance of registration 

on an unsegmented WSI was evaluated using a non-rigid image registration method (Reg-

WSI)17 and compared to local segment alignment using PF-MixMatch19. We estimated 95% 

confidence intervals for the mean and median TREs across all of the morphologically distinct 

region for MixMatch and Reg-WSI methods using a 1000-sample nonparametric bootstrap. Due 

to a right-skew distribution of calculated point-wise displacements for the registrations, we 

conducted a Mann-Whitney U-test 25 to calculate whether the displacements from the Reg-WSI 

analysis were larger than MixMatch. 

 
Software Availability 

We have packaged the implementation of this workflow and released it to the open-source 

community. The software is compatible with Python-3.6 and above, and is available on GitHub 

at the URL (https://github.com/jlevy44/PathFlow-MixMatch) and PyPI (pathflow_mixmatch) for 

all to download. We emphasize that this software was developed as proof-of-concept and not as 

production level software. We welcome additional development to address community needs 

through GitHub issues and offer a wiki for software usage (https://github.com/jlevy44/PathFlow-

MixMatch/wiki). 
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Results 
 
Experimental Design 
 
Our workflow was used to register thirteen pairs of H&E stained and Trichrome stained WSI of 

liver tissue (randomly selected from our WSI corpus) to derive paired and registered tissue 

segments. Because we were not able to fit many of the original WSI into memory when using 

the Reg-WSI, we halved each spatial dimension of the WSI through down sampling with cubic 

interpolation. After registration of all WSI and image segments through the Reg-WSI and 

MixMatch, image and segment pairs were imported into ASAP 26 and correspondent landmark 

regions were identified, dotted, and annotated by a board-certified pathologist. The pathologist 

located the corresponding pairs of segments in their respective WSI registrations and dotted 10 

or more morphologically distinctive areas in each segment. Then, for both Reg-WSI and 

MixMatch, we calculated and compared the registration performance as outlined in the 

methods. 

 
Registration Accuracy 

The distribution of displacements was right-skewed for both algorithms (mean displacement of 

843 pixels and 63 pixels for Reg-WSI and MixMatch respectively, Figure 2). MixMatch      

aligned macro-architectural slide details well, (Fig. 3a) demonstrating the ability to capture major 

holes, breaks, and edges in the tissue that persist between adjacent sections. The median 

displacement between the H&E and trichrome stains in our testing set was significantly lower for 

our MixMatch approach (42 pixels, 95% CI: 40px-44px, Mann-Whitney P-value <0.0001) 

compared with Reg-WSI (86 pixels, 95% CI: 81px-92px,  and Table 1). In addition, out of the 

twelve WSI with matched segment registration data, 10 out of 12 WSIs’ Reg-WSI landmark 

displacements were statistically significantly greater than our MixMatch segment-based 

approach. For instance, Reg-WSI registration on slide 10 had physically translated entire 
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segments of tissue to overlap with adjacent segments, causing significant registration errors 

(Figure 3b).  Reg-WSI posted one statistically significant lower TRE than MixMatch for one of 

the remaining two slides. A per slide breakdown of registration errors can be found in Table 1. 

 

To test whether the additional Reg-WSI registration errors could be attributed to heterogeneous 

background alone, we performed the same background deletion step as in MixMatch on each 

WSI using connected component analyses and reran Reg-WSI on these background deleted 

WSI; as compared to the MixMatch pipeline, Reg-WSI still had larger registration error even 

without heterogeneous background (p=3e-10). 

 
Discussion 
 
Entire gigapixel WSI images can be difficult to co-register because they are large, have 

non-matching features between adjacent sections, and are prone to tissue artifacts. 

Thus, we sought to investigate strategies that utilize connected components and shape 

matching to reduce the memory constraints of the algorithm and improve local 

alignment. Our results suggest that breaking WSI into discrete tissue segments and 

registering these segments (MixMatch) provides better histologic registration accuracy 

than attempting to register an entire WSI (Reg-WSI). Utilizing the MixMatch approach 

effectively eliminated the possibility of “accidental translation” (e.g. the algorithm 

overwarping an image) by matching the segments a priori and then performing the local 

alignment, which yielded more exact alignments (Figure 3b). Indeed, MixMatch 

performed better then Reg-WSI on all but two test cases. . As a consequence of 

performing registration on local tissue components rather than the entire WSI, down-

sampling was not necessary to fit the entire slide into memory (as the tissue segments 
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are significantly smaller than the unmanipulated WSI) achieving robust performance 

and memory efficiency gains compared to using other WSI registration techniques.  

 

While MixMatch has demonstrated the ability to accurately capture correspondent 

macroarchitectural details between adjacent slides and reduce memory constraints by 

breaking the entire WSI into its respective components, there are a few caveats and 

limitations to our approach. While we demonstrated macroarchitectural correspondence, 

microarchitectural features (eg. nuclei, small holes, vacuoles, cells) may be absent or 

different across serial tissue layers, thus precluding analysis of cell level alignment. We 

did not fully address duplicated tissue sections placed side-by-side on WSI (a common 

practice in certain biopsy types), an issue which must be addressed prior to clinical use. 

Furthermore, there were instances in which connected components denoted two slightly 

connected tissue segments in one section as a single component, while separating 

these tissue segments in the adjacent section. The shapes of the resulting fragments 

are unable to be matched and thus warrant additional considerations such as allowing 

maximum homology matches within larger tissue segments, manual separation 27 or 

utilization of clustering techniques to naturally separate the tissue 28–30 31–33. Finally, we 

tested this technique on a small number of slides; further validation on a larger set may 

be warranted. 

 
In this study, we did not seek to compare solely the differential accuracies of the 

underlying registration algorithms, but also to highlight the advantages of dividing WSI 

into discrete tissue segments prior to registration with an eye toward computational 

efficiency. The finetuning alignment technique employed by MixMatch utilized the Airlab 
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registration library; however, it may be fruitful to investigate other tools such as 

HistoReg, 18 Recursive Cascaded Networks, 34 and other approaches 35,36 as means to 

better align individual segment pairs as it applies to their specific domain. Additionally, 

there are many registration loss functions that can be utilized to improve registration 

quality, such as cross-correlational, structural similarity, and mutual information losses, 

which may warrant further study. Future works will focus on improvements to shape 

matching 37,38, microarchitectural alignment on restained slides, finetuning registrations 

through patched based alignment 39,40, apply distributed computing techniques for high 

throughput processing 41 and investigate the impact of this histology registration on 3D 

macroarchitecture reconstruction of tissue and on stain translation techniques through 

Pix2Pix 10,42 43 44. 

 

While we do not claim our software provides the optimal solution for registration in 

histopathology, our preliminary results indicate segment matching within WSI is an effective 

technique to provide high-resolution accurate GPU-accelerated histology image registrations 

that may be readily deployable for 3D reconstruction of tissue and for deep learning stain 

translation techniques. We encourage the greater community to consider employing these 

techniques into their pathology informatics workflows and trying their own rendition of these 

shape matching and alignment algorithms for further optimization. 
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Figures and Tables 
 

 
 
Figure 1: Overview of PF-MixMatch workflow: a) Paired set of images are imported and rotated 
to the overall correct orientation; b) Connected component analysis and shape matching 
identifies individual segments for further alignment; c) Individual WSI segments are rotated to 
the vertical position, where they await fine-tuned alignment using a registration algorithm of 
choice; d) Final resulting registrations of adjacent tissue sections of two segments, 
checkerboard pattern highlights registration alignment 
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Figure 2: Swarm plot embedded in box and whisker plot of target registration errors for distinct 
morphological regions identified on the WSIs (n=766 regions) and segments (n=1365 regions) 
 

 
Figure 3: Visual comparison of registrations obtained for slide ID 10 using approaches: a) 
MixMatch, b) Reg-WSI 

a b

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 24, 2020. . https://doi.org/10.1101/2020.03.22.002402doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002402


Table 1: Per slide breakdown of target registration errors for the Reg-WSI and MixMatch 
methods; * denotes a statistically significant result with p ≤ 0.05; † denotes slide from which 
Reg-WSI yields statistically smaller TRE than MixMatch. 

Slide 
ID 

Reg-WSI Mean 
TRE (pixels) 

MixMatch Mean 
TRE (pixels) 

Reg-WSI Median 
TRE (pixels) 

MixMatch Median 
TRE (pixels) 

P-Value 
10 5181 78 4931 60 5.43E-52 * 
144 97 76 83 58 0.0033 * 
162 92 54 89 32 3.52E-10 * 
169 72 37 70 27 1.64E-08 * 
212 77 67 70 71 0.229 
247 54 35 57 25 0.00251 * 
249_1 90 46 80 35 2.44E-17 * 
43 290 174 104 144 0.976 †  

51 81 39 76 35 0.000107 * 
71 48 26 53 13 0.00288 * 
86 86 57 72 46 1.84E-09 * 
99 157 36 89 38 0.00099 * 
Overall 843 63 86 42 2.01E-72 * 
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