
173

Effective Lock Handling in Stateless Model Checking

MICHALIS KOKOLOGIANNAKIS,MPI-SWS, Germany

AZALEA RAAD,MPI-SWS, Germany

VIKTOR VAFEIADIS,MPI-SWS, Germany

Stateless Model Checking (SMC) is a verification technique for concurrent programs that checks for safety

violations by exploring all possible thread interleavings. SMC is usually coupled with Partial Order Reduction

(POR), which exploits the independence of instructions to avoid redundant explorations when an equivalent

one has already been considered. While effective POR techniques have been developed for many different

memory models, they are only able to exploit independence at the instruction level, which makes them

unsuitable for programs with coarse-grained synchronization mechanisms such as locks.

We present a lock-aware POR algorithm, LAPOR, that exploits independence at both instruction and critical

section levels. This enables LAPOR to explore exponentially fewer interleavings than the state-of-the-art

techniques for programs that use locks conservatively. Our algorithm is sound, complete, and optimal, and

can be used for verifying programs under several different memory models. We implement LAPOR in a tool

and show that it can be exponentially faster than the state-of-the-art model checkers.

CCS Concepts: • Theory of computation→ Verification by model checking; • Software and its engi-

neering→ Software testing and debugging.

Additional Key Words and Phrases: Model checking, mutual exclusion locks, weak memory models

ACM Reference Format:

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Effective Lock Handling in Stateless Model

Checking. Proc. ACM Program. Lang. 3, OOPSLA, Article 173 (October 2019), 26 pages. https://doi.org/10.1145/

3360599

1 INTRODUCTION

Coarse-grained locking (CGL) is the most widespread form of synchronization in concurrent shared-
memory programs. It is a fairly straightforward way of making a sequential program łthread-safež
with programming languages, such as Java, even providing syntactic support for synchronizing all
the methods operating on a shared object (regardless of whether they access the same fields of the
object or not). CGL often performs better than finer-grained schemes in cases of low contention or
when łhardware lock elisionž is available (e.g., on modern x86 processors). Lock elision enables
concurrent execution of lock-protected code regions that do not conflict (e.g., access only disjoint
memory locations), by optimistically executing them and rolling back in case a conflict is detected.

Intuitively, CGL simplifies reasoning about concurrent programs because it reduces the number
of interleavings that a programmer or an automated verifier has to consider. Somewhat surprisingly,
however, CGL has the opposite effect on verification using the state-of-the-art stateless model

checking (SMC) tools (e.g., [Abdulla et al. 2014, 2018; Aronis et al. 2018; Kokologiannakis et al. 2017,

Authors’ addresses: Michalis Kokologiannakis, MPI-SWS, Saarland Informatics Campus, Germany, michalis@mpi-sws.org;

Azalea Raad, MPI-SWS, Saarland Informatics Campus, Germany, azalea@mpi-sws.org; Viktor Vafeiadis, MPI-SWS, Saarland

Informatics Campus, Germany, viktor@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART173

https://doi.org/10.1145/3360599

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599

173:2 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

2019]). More specifically, CGL increases the verification cost significantly because it inhibits the
most important optimization of SMC, which makes the approach scalable, namely (dynamic) partial

order reduction (POR) [Abdulla et al. 2014; Flanagan and Godefroid 2005].
SMC with POR explores all possible program executions (i.e., thread interleavings under sequen-

tial consistency) up to a fixed equivalence relation, where two interleavings are deemed equivalent
if one can be obtained from the other by commuting pairs of independent actions (e.g., accesses to
different locations). Since accesses of different threads are most often independent, POR leads to a
huge reduction in the space that needs to be explored, which in turn makes SMC with POR scalable.
In programs with coarse-grained locks, however, existing POR algorithms achieve very little

reduction in the state space because they treat locking commands as normal instructions. Since
acquisitions of the same lock cannot be commuted (because it would affect which thread acquires
the lock), existing SMC/POR tools consider all the possible ways in which critical sections of the
same lock could be interleaved. This leads to a lot of redundant exploration because the relative
order of critical sections is often irrelevantÐit does not affect the program outcome.

To make SMC scalable for coarse-grained locking programs, we develop the Lock-Aware Partial
Order Reduction (LAPOR) algorithm, which treats lock acquisitions in each program execution as
independent unless their respective order can be deduced from thememory accesses of the execution.
As such, although our algorithm works at the instruction level, it also exploits independence at the
critical section level, thus achieving exponential reductions in the number of explored executions
compared to the state-of-the-art model checking tools.
In more detail, this paper makes the following contributions.

(ğ2) We present an intuitive account of LAPOR through a series of examples, and show how
the lock acquisition order can be inferred on the fly when necessary, without exploring all
possible orderings in advance.

(ğ3) We present the formalism underpinning LAPOR. Our algorithm is parametric both in the
choice of the memory model and in when two concurrent writes are deemed conflicting.

(ğ4) We describe LAPOR in detail, and show that it is sound (produces no false positives), complete
(explores all possible behaviours), and optimal (explores each behaviour exactly once), and
that it can be applied to any memory model that satisfies a few basic assumptions.

(ğ5) We implement LAPOR over the state-of-the-art GenMC model checker [Kokologiannakis
et al. 2019] and evaluate its performance. We show that LAPOR is significantly faster than the
state of the art for programs with coarse-grained locks, while incurring only a small overhead
for programs with fine-grained locks, and negligible overhead for programs without locks.

2 OVERVIEW

2.1 Stateless Model Checking and Dynamic Partial Order Reduction

Stateless Model Checking (SMC) is an effective concurrency verification technique based on the
observation that one can verify a concurrent program by exploring all possible interleavings of
its threads1. However, as exploring all interleavings quickly becomes non-scalable even for small
programs, partial order reduction (POR) techniques are often employed alongside SMC. Given a
suitable notion of instruction independence, POR techniques deem two interleavings equivalent
if one can be obtained from the other by swapping adjacent, independent execution steps. POR
techniques then explore (at least) one interleaving from each equivalence classÐin the context of
SC, these equivalence classes are known as Mazurkiewicz traces [Mazurkiewicz 1987].

1Although the approach presented in this paper is parametric within the choice of the memory model (see ğ3), in this

section we assume a setting of sequential consistency (SC) [Lamport 1979] for ease of presentation.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:3

Amongst POR techniques, Dynamic Partial Order Reduction (DPOR) [Flanagan and Godefroid
2005] stands out. Unlike earlier POR techniques, DPOR does not rely on static over-approximations
to infer whether events are independent. It instead keeps track of the conflicting events along the
exploration path, and uses them to guide further explorations.
To make this concrete, consider the following program with N concurrent reads.2

a1 := x · · · aN := x (N -reads)

While this program has N ! interleavings, almost all (D)POR techniques will explore only one
interleaving by detecting that the read operations are independent (they return the same value
irrespective of their ordering) and hence all interleavings are deemed equivalent.

[init]

R(x) R(x)...

rf rf

Fig. 1. Execution graph.

Each equivalence class of interleavings can be represented as an
execution graph, such as the one shown in Fig. 1 for the N -reads
program. The nodes of an execution graph denote execution events

which correspond to program instructions, while its edges describe
different relations on events. More specifically, the solid black edges
represent the program-order (po) relation, which totally orders the
events in each thread and orders the initialization events before all other events. The dashed edges
represent the reads-from (rf) relation, which relates each write event to the read events that read
from it and obtain its value. rf is total and functional on its second argument: every reads reads
from precisely one write. In the graph of Fig. 1, all read events read from the initialization event.
Note that the reads are not related to one another as they are independent.

The objective of SMC is to explore all execution graphs of a given program in a systematic way,
while keeping only one graph in memory at any given time. In the remainder of this article we use
the terms ‘execution graphs’, ‘executions’, ‘graphs’ and ‘equivalence classes’ interchangeably.

2.2 Locks in Stateless Model Checking

Although the notion of instruction independence is well-studied for memory accesses (reads and
writes), exploiting independence is muchmore difficult in the presence of locks. To see why, consider
a variant of the N -reads program where each read is wrapped in a critical section using locks:

lock(l);
a1 := x ;
unlock(l)

· · ·

lock(l);
aN := x ;
unlock(l)

(N -reads-lock)

For such locking programs, existing (D)POR techniques take an either fine-grained or coarse-grained
approach to locks.

Fine-grained Approaches. Fine-grained approaches consider interleavings at the instruction
level, treating lock() andunlock() operations as individual instructions. In the case ofN -reads-lock,
the lock operations are considered as dependent because they access the same lock and cannot
be reordered. This yields N ! distinct equivalence classes capturing the order in which the lock is
acquired. That is, existing (D)POR techniques explore N ! interleavings (one per execution) instead
of one as in the case of N -reads.
More concretely, for N = 2, assume without loss of generality that a (D)POR algorithm first

obtains execution A in Fig. 2, where the left thread acquires the lock first. The algorithm subse-
quently detects that the two threads compete to obtain the same lock; it thus reverses the order in
which the lock is acquired, yielding execution B . As such, although adding locks to N -reads does
not alter the program behaviour, it results in additional unnecessary executions.

2In our examples, we use a, b , c for local variables, and x , y, z for global (shared) variables, which are initialized with 0.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:4 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

A [init]

L(l)

R(x)

U(l)

L(l)

R(x)

U(l)

B [init]

L(l)

R(x)

U(l)

L(l)

R(x)

U(l)

Fig. 2. Executions of the N -reads-lock program for N = 2 under a classic POR algorithm.

The reason for this is that traditional (D)POR algorithms treat lock() and unlock() operations as
memory accesses (reads and writes). More specifically, lock() is assigned read semantics, unlock()
is assigned write semantics, and rf is required to be one-to-one on lock/unlock events. This
characterization of locks captures the order of lock acquisition elegantly: when the lock operation
of a critical section cs2 reads from the unlock operation in critical section cs1, then cs1 is ordered
before cs2. That is, the rf relation induces a total order on critical sections and thus determines the
lock acquisition order. As lock operations participate in rf, SMC algorithms always consider the
lock operations as dependent. As we have seen, this can then lead to an exponential increase in the
number of executions, hindering performance needlessly.

This can be very surprising to programmers using SMC to test their code because it contradicts the
intuition that the behaviour of concurrent programs is monotonic with respect to synchronization:
adding more synchronization (e.g., locks) to a program should not introduce additional behaviours.
As such, when inserting locks in the N -reads program to obtain N -reads-lock, the possible
behaviours of N -reads-lock must be included in those of N -reads. As SMC techniques are
used to explore the possible behaviours of a program by considering all its executions, under the
monotonicity intuition one then does not expect N -reads-lock to have more executions than N -
reads. However, while recent SMC techniques generate only one execution for N -reads (ignoring
the read order), they generate N ! executions for the N -reads-lock variant (considering all lock
orderings), thus breaking the monotonicity property.

Coarse-grained Approaches. In coarse-grained approaches, (D)POR techniques treat critical
sections as atomic blocks, and only consider interleavings at the level of critical sections. As such,
for the N -reads-lock above, these techniques correctly identify the N ! possible interleavings
of the critical sections as equivalent, thus generating one execution. Such atomic treatment of
critical sections may improve performance significantly in conservative settings where all accesses
to shared variables are enclosed within critical sections (e.g., N -reads-lock). However, in mixed

settings where shared variables may be accessed both within and without critical sections, such
atomic treatment is unsound as it fails to explore all executions.
To see this, consider the conservative program below (left) and its mixed variant (right):

lock(l);
x := 1;
x := 2;
unlock(l)

lock(l);
a := x ;
unlock(l)

(ww+r-cons)

lock(l);
x := 1;
x := 2;
unlock(l)

a := x (ww+r-mixed)

Theww+r-cons program has two possible executions: one where the left critical section is executed
first and thus a = 2, another where the right critical section is executed first and thus a = 0. The
ww+r-mixed program also has a third possible execution. Since the right thread does not acquire
the lock l , the critical section in the left thread need not execute atomically with respect to the
right thread, and so the read may interleave between the two writes yielding the outcome a = 1.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:5

[init]
{

[init]

L(l)
{

[init]

L(l)

R(x)

{ · · · {

[init]

L(l)

R(x)

U(l)

L(l)

{ · · · {

[init]

L(l)

R(x)

U(l)

· · ·

L(l)

R(x)

U(l)

Fig. 3. Full exploration for the N -reads-lock program.

When treating critical sections atomically, (D)POR techniques cannot distinguish betweenww+r-

cons and its mixed variant ww+r-mixed, failing to explore the valid execution in which a = 1. As
such, atomic treatment of critical sections is unsound in the mixed setting.

2.3 LAPOR: Keeping Locks Unordered

LAPOR follows the fine-grained approach of considering interleavings at the level of instructions. It
therefore records each individual instruction as an event in an execution. In order to avoid redundant
executions due to locks, however, unlike classical (D)POR approaches, LAPOR does not assign
read/write semantics to locks; nor does it record the total lock acquisition order. Instead, LAPOR
keeps the lock operations unordered, and infers the lock order on the fly, only when necessary.

Let us demonstrate LAPOR via the N -reads-lock example. As shown in Fig. 3, starting from an
empty execution (containing only the initialization events), LAPOR inspects the program and adds
execution events one at a time, thus arriving at a full execution where the locks are unordered. Since
there is only one reads-from option (i.e., the initialization event) for the reads in each thread, and
since locks do not participate in rf, LAPOR explores only one execution rather than N ! executions.

2.4 LAPOR: Inferring Lock Orderings On the Fly

In the N -reads-lock program above, the order of lock acquisition does not matter as the locks do
not alter the behaviour of the program. This, however, is not always the case because locks may
induce mutual exclusion constraints on the execution. In such cases, LAPOR infers the necessary
lock orderings on the fly. To demonstrate this, consider the example below:

lock(l);
x := 42;
y := 42;
unlock(l)

lock(l);
a := x ;
b := y;
unlock(l)

(ww+rr-lock)

Here, the order of lock acquisition matters because the values read from x andy depend on the order
in which the locks are acquired: when the left thread acquires the lock first, the right thread reads 42
for x and y; when the right thread acquires the lock first, the right thread reads 0 (the initialization
value) for x and y. Let us describe how LAPOR infers the lock ordering in ww+rr-lock.

As before, starting from the empty graph (containing initialization events only), LAPOR incre-
mentally adds all events of the first thread, as well as the lock event of the second thread, arriving
at execution 1 of Fig. 4. LAPOR then proceeds to add the event associated with the a := x read.
Inspecting the execution so far, LAPOR notes that this read may read either 0 or 42, and thus
both possibilities must be explored, as depicted in executions 2 and 3 of Fig. 4. However, rather
than exploring both executions at once, LAPOR proceeds with one of the executions (e.g., 2), and
pushes the alternative execution into a work set to be explored at a later time.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:6 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

1 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

{

2 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)
rb

lb

3 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

lb

Fig. 4. Key exploration step for ww+rr-lock.

2 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)
rb

lb

{

4 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

R(y)

rb

rb

lb

5 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

R(y)

rb

lb

lb

Fig. 5. Key exploration step for ww+rr-lock (continued).

Although reading 0 and 42 are both consistent options, reading either value induces a certain lock
ordering, as discussed above. That is, the order of lock acquisition matters because the two critical
sections are not independent. We refer to two such critical sections as conflicting. For example, in
ww+rr-lock, the two critical sections are read-write conflicted because the right thread reads
from location x , and the left thread also writes at that memory location. As we describe shortly,
LAPOR detects conflicting critical sections, infers their induced lock orderings, and tracks them as
an additional relation in the execution, namely the locks-before relation: lb.

In the case where a := x reads 0 (in 2), LAPOR proceeds as follows. First, it adds a reads-before
(a.k.a. from-read) edge (rb) from a := x to x := 42, as depicted in 2 . Intuitively, rb edges relate
each read r (e.g., a := x) to all the writes (e.g., x := 42) that overwrite the value read by r . As such,
the presence of an rb edge between the critical sections of distinct threads indicates a conflict: both
critical sections access the same location (e.g., x) and one is overwriting the value read by the other.
Next, LAPOR determines the induced lock ordering as prescribed by rb: when there is an rb

edge from critical section cs1 to cs2, then cs1 must have acquired the lock before cs2, and thus there
is an lb edge from cs1 to cs2. This is illustrated in 2 (Fig. 4) by the lb edge from the critical section
in the right thread to that in the left.

Analogously, the presence of an rf edge between the critical sections of distinct threads indicates
a conflict: both critical sections access the same location and one reads a value written by the other.
As such, the two critical sections in 3 (Fig. 4) are deemed conflicted and LAPOR adds an lb edge
from the critical section in the left thread to that in the right.
Continuing from 2 , LAPOR next adds the b := y read, which may once again read either 0 or

42, as depicted in graphs 4 and 5 of Fig. 5). Note that if locks did not enforce mutual exclusion,
both read options would be valid. However, since locks do enforce mutual exclusion, reading 0 is

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:7

1 [init]

L(l)

R(x)

W(x, 1)

U(l)

L(l)

R(x) {

3 [init]

L(l)

R(x)

W(x, 1)

U(l)

L(l)

R(x)

W(x, 2)

4 [init]

L(l)

R(x)

L(l)

R(x)

W(x, 2)

2 [init]

L(l)

R(x)

W(x, 1)

U(l)

L(l)

R(x)

Fig. 6. Key exploration step for 2rw-lock.

the only valid option as reading 42 violates mutual exclusion due to the lock ordering imposed by
lb. Let us now discuss how LAPOR detects this mutual exclusion violation.
In the case where b := y reads 42, i.e., there is an rf edge from y := 42 to b := y as shown in

5 , LAPOR detects a conflict between the two critical sections, and thus adds an lb edge from the
critical section in the left thread to that in the right. This then leads to an lb cycle between the two
critical sections, which means that the resulting graph is inconsistent, because a critical section
cannot be simultaneously ordered both before and after another one. Thus reading 42 is discarded
as invalid. Subsequently, the execution in 4 is completed by adding the unlock event of the right
thread, thus concluding the first run of LAPOR.
Lastly, LAPOR completes execution 3 in Fig. 4 following analogous steps: it adds the b := y

read, excludes 0 as a possible reads-from value for b := y (otherwise we obtain an lb cycle resulting
in an inconsistent execution), and arrives at the execution where both a := x and b := y read 42.

2.5 LAPOR: Excluding Inconsistent Executions

In ğ2.4 we showed that when adding a read r to the graph, some reads-from options for r may lead
to inconsistent executions. Nevertheless, a read can always be safely added to the graph as there is
at least one reads-from option that preserves consistency. However, as we demonstrate here, this is
not the case when adding a write to the graph; i.e., the mere addition of a write to the graph may
render it inconsistent. Consider the example below:

lock(l);
a := x ;
if a = 0 then x := 1;
unlock(l)

lock(l);
b := x ;
x := 2;
unlock(l)

(2rw-lock)

Starting from the empty graph with initialization events, LAPOR first adds lock(l) and a := x in
the left thread. The a := x read can only read from the initialization event since the graph contains
no other writes. This makes the condition of the if statement true, enabling the addition of x := 1.
LAPOR then addsunlock(l) in the left thread, as well as lock(l) in the second thread. It next adds the
b := x read, detecting that there are two available reads-from options (either form the initialization
event, or the x := 1 write in the first thread), as depicted in executions 1 and 2 of Fig. 6.

Observe that as depicted in 1 (resp. 2), the choice of reads-from option for b := x results in an
rb (resp. rf) edge between x := 1 and b := x , which in turn induces an order on the two critical
sections, as discussed earlier. As before, LAPOR continues with one of the executions (e.g., 1),
and the other execution (e.g., 2) is added to a work set for later exploration. Continuing from 1 ,
LAPOR next adds the x := 2 write, which brings up two issues that require additional care.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:8 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

First, the addition of the x := 2 write results in an rb edge from a := x to x := 2, which in turn
induces an lb edge from the left critical section to the right, as depicted in 3 . This then leads to
an lb cycle, rendering the execution inconsistent; as such, graph 3 is not explored further.
Second, as discussed above, previously when a := x was added, there was only one read-from

option: the initialization event. However, note that in an interleaving of 2rw-lock where the right
thread is executed before the left, it is possible for a := x to read from x := 2 in the right thread. As
such, we must ensure that this alternative interleaving is also explored. To do this, when adding a
writew (e.g., x := 2), regardless of whether addingw makes the graph inconsistent, we check ifw
may revisit an existing read r in the graph (e.g., a := x), in that r may read from the newly addedw ,
leading to an additional execution (e.g., 4 in Fig. 6).

When this is the case, following Abdulla et al. [2018] and Kokologiannakis et al. [2019], we only
keep the following events in this additional execution: (1) r itself (e.g., a := x), (2) the events that
were added before r (e.g., lock(l) in the left thread), (3)w itself (e.g., x := 2), and (4) the events that
led to w (e.g., lock(l) and b := x in the right thread). In other words, we remove all events that
were added after r but did not lead to w (e.g., the x := 1 and unlock(l) in the left thread). This is
because the new value read by r (fromw) may affect the control flow, and lead to different events
in the graph. For example, in this new execution where x := 2 revisits a := x (i.e., a := x reads from
x := 2), the condition of the if statement is no longer true, and thus x := 1 is no longer part of the
execution, and must be removed from the graph, as depicted in 4 .

Once again, the new execution 4 is added to the work set for later exploration, and thus the work
set contains 2 and 4 at this point. As the current execution 3 was dropped due to inconsistency,
LAPOR proceeds by exploring the remaining executions in the work set.

Exploring 2 is straightforward and is simply completed by adding the remaining events of the
right thread, yielding an execution where a = 0 and b = 1. Analogously, continuing from 4 , the
x := 1 write is no longer added (as the conditional fails), and the exploration is completed by adding
the unlock(l) event of the left thread, yielding an execution where a = 2 and b = 0.

Remark 1. Note that when adding b := x reading 0 (from the initialization event) in graph 3 ,
LAPOR cannot know in advance that this leads to an inconsistent execution at the next step (after
adding x := 2). This is because LAPOR does not know of the next events that are added to the graph
in due course. In particular, if b := x were the only event in the critical section of the right thread,
reading 0 would be a valid option and would not lead to an inconsistent execution. However, were
we to disallow b := x reading 0 (fearing that it may lead to inconsistency), we would inadvertently
miss the consistent execution in which both a := x and b := x read 0 from the initialization event.

2.6 LAPOR: Parametric Treatment of Write-Write Conflicts

In the previous sections we showed how LAPOR uses rb and rf to detect read-write conflicts, i.e.,
when one critical section writes to a location read by the other. We next describe how LAPOR deals
with write-write conflicts, i.e., when two critical sections write to the same location without reading
from it. Consider the w+w+lock example below (left), whose two critical sections are conflicting
because they both access x and at least one of them is a write.

lock(l);
x := 1;
unlock(l)

lock(l);
x := 2;
unlock(l)

(w+w+lock) x := 1 x := 2 (w+w)

The w+w+lock program has two interleavings: one where the left thread acquires the lock first,
another where the right thread acquires the lock first. The order in which the two critical sections
execute determines the final value of x , but does not affect any observation made by the program
(since the program does not read x). As such, it suffices for a model checker to explore only one of

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:9

1 [init]

L(l)

W(x, 1)

U(l)

L(l)

W(x, 2)

U(l)

mo

lb

2 [init]

L(l)

W(x, 1)

U(l)

L(l)

W(x, 2)

U(l)

mo

lb

1 [init]

L(l)

W(x, 1)

U(l)

L(l)

W(x, 2)

U(l)

Fig. 7. Executions of the w+w+lock program via mo (left) and wb (right)

the two interleavings. LAPOR can achieve this, but it depends on how exactly it is instantiated to
order concurrent writes. As we will shortly see, LAPOR is parametric in its treatment of write-write
conflicts and will explore one or two interleavings depending on the underlying DPOR algorithm
used for ordering normal memory accesses.
To explain this, let us look at how existing DPOR algorithms handle the w+w example above

(right), obtained from w+w+lock by removing the lock operations.
Classical DPOR algorithms [Abdulla et al. 2014; Flanagan and Godefroid 2005] consider the

two writes on x conflicting, and thus explore two interleavings: one where x := 1 executes first
and another where x := 2 executes first. To distinguish between the two interleavings, execution
graphs in classical DPOR algorithms (in addition to po and rf) record the ‘modification-order’, mo,
which totally orders the writes on each location. Execution graphs recording mo are often called
Mazurkiewicz traces [Mazurkiewicz 1987] or Shasha-Snir traces [Shasha and Snir 1988] in the
literature. LAPOR can be instantiated with such execution graphs by also using mo to infer the
induced lock ordering in the same way as with rf and rb. For the w+w+lock program, this leads
to two executions as depicted in Fig. 7 (left).

However, several more recent DPOR algorithms [Abdulla et al. 2018; Aronis et al. 2018; Chalupa
et al. 2017; Kokologiannakis et al. 2017, 2019] do not consider all orderings on the writes of the
same location unless this order is observable. As such, since the value of x is not read in w+w, the
order of the writes cannot possibly be observable, and thus these techniques explore only one
execution for w+w, ignoring the order in which the writes are executed.

[init]

W(x, 2)

W(x, 3)

W(x, 1)

R(x)
rf

wb
wb

wb wb

Fig. 8. The wb relation

To do this, several such techniques compute the ‘writes-before’ rela-
tion, wb ⊆ mo, which (similarly to lb) infers the order between writes.
That is, wb orders writes on the same location only when necessary.
For example, consider the execution of Fig. 8. In this execution, W(x, 2)
must write before W(x, 3) as they are po-related. Moreover, W(x, 1)must
write before W(x, 3): otherwise, R(x)would read 1 because of coherence.
However, observe that W(x, 2) and W(x, 1) are not ordered. Intuitively,
so long as wb is respected for x , these can execute in either order as
this order cannot be observed.
LAPOR can be instantiated with such techniques by using wb instead of mo to induce the lock

orderings between critical sections with write-write conflicts. For the w+w+lock example above,
the order between the two writes is unnecessary; thus the recorded wb relation is empty, leading to
a single execution as in Fig. 7 (right).
This parametricity of LAPOR is a significant part of our contribution: we reduce the number

of explorations exponentially by recording the lock ordering when necessary by (1) identifying
read-write conflicted critical sections, and (2) taking advantage of the underlying (D)POR technique
and utilizing its notion of conflicts to detect write-write-conflicted critical sections.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:10 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

3 FORMAL MODEL

We present the formalism underpinning LAPOR.

Labels, Events and Executions. As discussed in ğ2, in the literature of declarative (a.k.a. ax-
iomatic) concurrency models, the traces of a program are typically represented as a set of execution
graphs, where the graph nodes denote execution events, and graph edges capture the sundry rela-
tions on events. Each event corresponds to the execution of an instruction. An event is a tuple of
the form ⟨i,n, l⟩, where i ∈ Tid ⊎ {0} is a thread identifier (0 for initialization events) with Tid ⊆ N,
n ∈ N is the serial number inside a thread, and l ∈ {error} ⊎ Lab is an event label. The serial
number of an event denotes its index (from 1) within its thread; e.g., the first event of a thread has
serial number 1. Serial number 0 is reserved for initialization events.

A label may be either: (i) the error label error (denoting assertion violations); or (ii) an instruction

label l ∈ Lab. As the set of instructions is memory model (MM) specific, the set of event labels is
also MM-specific. As such, we keep our definitions parametric in the choice of MM, and assume
a set of labels, Lab, associated with the instructions of the underlying MM. For instance, under
the SC memory model, the store instruction x := 1 is associated with the label W(x, 1). To model
instruction labels, we assume a set of memory locations, Loc, ranged over by x,y, z. We further
assume a set of read labels, RLab ⊆ Lab, a set of write labels, WLab ⊆ Lab, a set of lock labels,
LLab ⊆ Lab, and a set of unlock labels, ULab ⊆ Lab, associated with read (load), write (store), lock
and unlock instructions, respectively. For instance, the SC label W(x, 1) is a write label.

Definition 3.1 (Events). Given a set of labels Lab, an event e ∈ Event is a tuple ⟨i,n, l⟩, where
i ∈ Tid is a thread identifier, n ∈ N is a sequence number, and l ∈ {error} ⊎ Lab is a label.

We typically use a, b and e to range over events. The functions tid, sn, and lab project the
thread identifier, the sequence number, and the label of an event respectively. We assume a set of
locations Loc, and assume that functions loc, valr and valw respectively project the location, the
read value and the written value of a label, where applicable. For instance, loc(l)=x and valw(l)=1
for l=W(x, 1). We lift the label functions loc, valr and valw to events, and write e.g., loc(e) for
loc(lab(e)), given an event e . We define the read events as R △

= {e ∈ Event | lab(e) ∈ RLab}; the
write (W), lock (L) and unlock (U) events are defined analogously. We define initialization events as
Event0

△

= {e ∈ W | tid(e)=0}.

Definition 3.2 (Executions). An execution is a tuple G=⟨E, rf ⟩, where E ⊆ Event is a sequence of
events, and rf ⊆ (E ∩ W) × (E ∩ R) is the reads-from relation, which is total and functional on its
second argument: every read event reads from exactly one write event.

The order of events in the sequence E denotes the order in which the events were added toG.
Given an executionG , we writeG .E andG .rf for its components, and writeG .R forG .E∩R; similarly
for G .W, G .L and G .U. We write G .E0 for G .E ∩ Event0; we write G .Ei for {⟨i

′
,−,−⟩ ∈ G .E | i = i ′};

and write G .po for the program order defined as follows:

G .po △

= G .E0 × (G .E \G .E0) ∪

{
⟨⟨i1,n1, l1⟩,

⟨i2,n2, l2⟩⟩

⟨i1,n1, l1⟩, ⟨i2,n2, l2⟩ ∈ G .E \G .E0
∧ i1 = i2 ∧ n1 < n2

}

Initialization events are po-before all other events, and events of the same thread are ordered accord-
ing to their sequence number. Further, we define SetRF(G,w, r) as graph obtained from changing the
incoming rf edge of r to come fromw . Formally, SetRF(⟨E, rf ⟩,w, r) △

= ⟨E, rf \ E × {r } ∪ {⟨w, r ⟩}⟩.

The Memory Model. LAPOR can be instantiated for any memory modelM that satisfies some
basic assumptions.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:11

3 [init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

R(y)

U(l)

rf

rf

lb

Fig. 9. Illustration of the csl and lb relations on an execution of ww+rr-lock.

First,M should define a consistency predicate on executions, consM(.) saying which executions
are allowed. The permitted behaviours of a given program P under M are described as the set
of its consistent executions. For the correctness proofs, we require that consM(.) is well-formed,
prefix-closed, and lock-extensible (see ğ4.2).

Second, we assume thatM defines a happens-before relation, hb, that contains the po relation and
may additionally contain some synchronization edges. For instance, in the case of C11, happens-
before contains an edge from a release writew to an acquire read r when r reads fromw . Consistency
of an execution G must require that hb is a strict partial order (irreflexive and transitive).

The wo Relation. Recall from ğ2 that LAPOR infers the lock order between conflicting critical
sections by computing the ‘locks-before’ relation, lb. As discussed in ğ2.6, LAPOR is parametric
in its notion of write-write conflicts. To model this, we assume the existence of a ‘write order’
parameter, wo, describing when two writes on the same location are deemed conflicted. As discussed
in ğ2.6, wo can then be instantiated by either (1) the ‘modification order’ relation mo, describing a
strict total order on the writes of each location; or (2) the smaller ‘writes-before’ relation wb by
Lahav and Vafeiadis [2015], described below.

Notation. Given a relation r and a set A, we write r?, r+ and r∗ for the reflexive, transitive and
reflexive-transitive closures of r, respectively. We write dom(r) and rng(r) for the domain and range
of r, respectively. We write r−1 for the inverse of r; r|A for r ∩ (A ×A); [A] for the identity relation
on A: {(a,a) | a ∈ A}; and [a] for [{a}]. We write re to restrict r to its external subset, i.e., the r
edges between different threads: re

△

= r \ (po ∪ po−1). Given relations r1 and r2, we write r1 ; r2
for {(a,b) | ∃c . (a, c) ∈ r1 ∧ (c,b) ∈ r2}, i.e., their relational composition. When r is a strict partial
order, we write r|imm for the immediate edges in r, i.e., r \ r ; r. Given an event set E, we write Ex for
{e ∈E | loc(e)=x}. Finally, we write ++ for sequence concatenation.

The csl Relation. The ‘critical section’ relation, csl , relates events in the same critical section of
lock l . To define it, we introduce an equivalence (reflexive, transitive and symmetric) relation csl
on events contained in a critical section guarded by lock l . An event a belongs to a critical section
guarded by lock l if it is po-after a L(l) event e and there is no U(l) event po-between e and a.

Definition 3.3. Given an executionG and a lock l , the critical section relation on l ,G .csl , is defined
as follows:

G .csl
△

= {(a,b) | ∃e ∈ G .Ll . e
pocs?

l

−−−→ a ∧ e
pocs?

l

−−−→ b}

with G .pocsl
△

= G .po \ (G .po?; [G .Ul];G .po).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:12 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

For example, let us consider the complete execution 3 of the ww+rr-lock example of ğ2.4
(Fig. 9). As can be seen (highlighted in yellow), the execution has two critical sections: csl relates all
the events of the first thread to one another, and all the events of the second thread to one another.

The lb Relation. We move on to the lb relation, which we incorporate into the underlying
model’s hb relation. Recall from ğ2 that an rf edge between two critical sections in different threads
renders the two sections write-read conflicted, and thus induces an lb edge between the events of
the two sections in the rf direction. Put formally, if a and b are events in a critical section guarded
by l , and (a,b) ∈ G .rfe, then for all a′,b ′ such that (a,a′) ∈ csl and (b,b

′) ∈ csl (i.e., a
′ and b ′

are in the same critical sections as a and b, respectively), we have (a′,b ′) ∈ lb. It is sufficient to
consider the inter-thread rf edges (rfe): same-thread rf edges either belong to the same critical
section or to po-ordered critical sections, in which case they are already ordered by hb.

Similarly, if a read of a critical sectiona reads from awrite that is overwritten by awrite in a critical
section b of the same lock, then all events in a are lb-before the events in b. Formally, we define
the ‘reads-before’ relation as: G .rb △

= G .rf−1;G .wo, and require that G .csl ;G .rbe;G .csl ⊆ G .lb.
Intuitively, rb relates each read r to the writes wo-after the write r reads from.
Analogously, in the case of write-write conflicted critical sections, the (parametric) wo relation

induces lb edges in the wo direction. We thus define the lb relation as the smallest transitive
relation that contains the orderings induced by the rfe, rbe and woe edges between critical sections.

Definition 3.4. Given an execution G, the locks-before relation, G .lb, is the smallest transitive
relation that satisfies the following for all locations l :

G .csl ; (G .rfe ∪G .rbe ∪G .woe);G .csl ⊆ G .lb

We adapt the definition of the underlying memory model, so as to include lb in the definition of
hb. As a result, checking consM(.) ensures that lb is irreflexive.

Returning to the execution in Fig. 9, the rf edges induce an lb edge from the critical section of
the first thread to that of the second thread. Technically, there is an lb edge from every event of
thread 1 to every event of thread 2, but we only show one edge for brevity.

The wb Instantiation of wo. As discussed above, the wo parameter may be instantiated as either:
(1) the ‘modification order’, mo △

=

⋃
x ∈Loc mox , where each mox is a strict total order on the writes of

location x ; or (2) the ‘writes-before’ order, wb △

=

⋃
x ∈Loc wbx , where each wbx is a strict partial order

on the writes of location x , satisfying certain conditions.
We next present the formal definition of wbx in Def. 3.5, as defined by Lahav and Vafeiadis

[2015]. In the original definition by Lahav and Vafeiadis [2015], the G .hb relation corresponds to
the ‘happens-before’ relation of the release-acquire fragment of the C11 memory model [Batty et al.
2011; Lahav et al. 2017].

Definition 3.5 (The wb relation). Given an execution G, its ‘happens-before’ relationG .hb and a
location x , if G .hb is transitive and G .po ∪G .lb ⊆ G .hb, then the writes-before relation on x ,G .wbx ,
is defined as the smallest transitive relation that satisfies the following inequality:

[G .Wx];
(
(G .rf∗;G .hb; (G .rf−1)?;G .rf∗) \ (G .rf−1)∗

)
; [G .Wx] ⊆ G .wbx

The writes-before relation is defined as: wb △

=

⋃
x ∈Loc wbx .

Calculating hb, lb, and wb. Note that the definitions of hb, lb, and wb are mutually recursive.
The definition of wb depends on hb, which includes lb, whose definition recursively depends on
wo

△

= wb. We therefore calculate the three relations together by fixpoint iteration. Starting with
lb = wb = ∅ and hb as defined by the underlying memory model, we iteratively add to the lb and

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:13

[init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

W(y, 1)

U(l)

rf

rb
{

[init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

W(y, 1)

U(l)

rb

lb

{

[init]

L(l)

W(x, 42)

W(y, 42)

U(l)

L(l)

R(x)

W(y, 1)

U(l)

rb

wb

lb

Fig. 10. An example of the recursive calculation of hb, lb, and wb.

wb relations the LHS of the inequalities in Def. 3.4 and Def. 3.5 respectively, as well as any transitive
edges, and extend hb to include lb until a fixpoint is reached.
Figure 10 shows an example of the fixpoint calculation. In the first iteration of the fixpoint, wb

edges are added from the initializer events to all writes of the graph. (For brevity, Fig. 10 does not
display these edges and instead shows the induced rb edge from R(x) to W(x, 42).) In the second
iteration, the rb edge induces lb and hb edges from the events of the second thread to the events
of the first thread. (Again for brevity, Fig. 10 shows only one such edge.) In the third iteration, a wb
edge is created between the W(y, 1) and the W(y, 42), due to the previously created lb/hb edge. In
the fourth (and last) iteration, no further edges can be added and so the fixpoint iteration finishes.

4 LAPOR: LOCK-AWARE PARTIAL ORDER REDUCTION

Our model checking algorithm for locks, LAPOR, can be built as an extension of any (D)POR
algorithm, as long as it calculates its alternative exploration options at each step and not at the
end of each execution. For concreteness, here we present a version of LAPOR built on top of the
GenMC model checking algorithm by Kokologiannakis et al. [2019]. Basing LAPOR over GenMC

enables our algorithm to be parametric with respect to the memory model and allows us to prove
its correctness and optimality (see ğ4.2).

Configurations. Recall from ğ2 that given a program P , LAPOR explores the executions of P
one at a time, recording the alternative explorations encountered along the way in a work set. For
instance, when adding a read event r to the current executionG , if r has several reads-from options
in G, then one of these options is considered in G, and the remaining options are added to the
work set for future exploration. As such, as in GenMC, LAPOR maintains a configuration of the
form ⟨G, Γ⟩, where G denotes the current execution, and Γ denotes the work set. A work set Γ in
GenMC is a tuple comprising several components in order to track alternative future explorations
efficiently. However, as the representation details of work sets are not necessary for understanding
LAPOR, here we represent it as an abstract component Γ, and refer the reader to Kokologiannakis
et al. [2019] for more details.

The Main Verify Procedure. LAPOR begins exploring the executions of a program P by calling
Verify(P). This procedure creates an initial configuration comprising the initial graphG0 (containing
initialization events only) and an empty work set Γ. It then generates the executions of P one at a
time by calling VisitOne(P,G, Γ) on Line 4, which fully explores one execution extending G, and
pushes alternative explorations encountered to the work set Γ. Once VisitOne(P,G, Γ) returns a
full execution, remaining executions are generated by exploring the options in Γ (Line 5).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:14 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

Algorithm 1 Exploration algorithm

1: procedure Verify(P)
2: ⟨G, Γ⟩ ← ⟨G0,∅⟩
3: do

4: VisitOne(P,G, Γ)

5: while ⟨G, Γ⟩ ← nextExp(Γ)

6: procedure VisitOne(P,G, Γ)
7: while consM(G) do

8: a ← nextEventP (G)

9: if a = ⊥ then

10: output(łGenerated execution G.ž)
11: return

12: if a ∈ error then exit(łErroneous program.ž)

13: G .E← G .E++[a]

14: if a ∈ W then

15: calcRevisits(G, Γ,a)

16: if a ∈ R then

17: W ← G .E ∩ Wloc(a)
18: choose somew0 ∈W

19: G ← SetRF(G,w0,a)

20: push(Γ,
{
SetRF(G,w,a) w ∈W \ {w0}

}
)

4.1 The VisitOne Procedure

The VisitOne(P,G, Γ) procedure carries out the crux of the algorithm by exploring one execution
at a time. The VisitOne procedure in Algorithm 1 is essentially that of GenMC, but has much
more elaborate implementations of the consM(.) and the nextEventP (.) functions (see below).
The VisitOne procedure proceeds as follows. In each iteration of this loop, while the current

graph G is M-consistent (consM(G) holds), it is extended with its next event a, given by the
nextEventP (G) function described shortly. If nextEventP (G) returns ⊥, the current execution graph
cannot be extended further because the program has either terminated or all the threads are blocked.
In this case, VisitOne outputs the execution graph and terminates. If the next event a is an assertion
violation, then an error is reported (Line 12), and the algorithm terminates. Otherwise, we add a to
the graph by placing it at the end of the sequence of events (Line 13).

If the new event a is a write, we check whether it may revisit existing reads in the graph; i.e., if
existing reads may read from a (see ğ2.5). This is done by calling calcRevisits(G, Γ,a) on Line 15,
which adds all possible revisit options to the work set Γ. For instance, in Fig. 6 of ğ2.5, upon adding
the write event W(x, 1) to 3 , the algorithm detects that W(x, 1) may revisit the read event R(x) in
the left thread as depicted in 4 , and thus 4 is added to the work set. The calcRevisits(G, Γ,a)
procedure is that of GenMC and remains unchanged in our LAPOR extension. It is not necessary
to understand the details of calcRevisits(G, Γ,a) to understand LAPOR. We have thus omitted the
calcRevisits(G, Γ,a) procedure here and refer the reader to [Kokologiannakis et al. 2019].

If a is a read, we must calculate its incoming rf edge. We first calculate the set of writesW that
a could read from (Line 17), choose a writew0 for the current exploration (Line 18), set a to read
fromw0 in G (Line 19), and push the remaining revisit options to Γ (Line 20).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:15

CheckingConsistency: The consM(.) Function. Asmentioned in ğ3, consM(G) includes a check
that hb is irreflexive. Further recall that we have adapted the definition of hb to include lb, which
in turn also depends on wo (which, in the case of wo △

= wb, recursively depends on hb). Therefore,
as part of consM(G), we calculate the three relations together via a fixpoint iteration as explained
at the end of ğ3.

The nextEventP Function. As described in ğ2, LAPOR explores each execution of a given
program incrementally by adding one event at a time, respecting the program-order (po) in each
thread; i.e., the events of each thread are added in po order. To do this, LAPOR uses the nextEventP
function of GenMC (Line 8) which returns the next event a to be added toG . More concretely, given
a program P and an execution G of P , the nextEventP (G) function in GenMC returns an event a of
thread i in G such that: (1) a is is the next event of i in G .po (i.e., a.tid = i and a.sn = |G .Ei | + 1);
(2) i is not stuck (e.g., due to a failed assume statement); and (3) i has not finished execution. When
no such event exists in G (i.e., all threads are stuck or finished), then nextEventP (G) returns ⊥.
In the presence of locks, defining nextEventP requires additional care. Recall the ww+rr-lock

program in ğ2.4 and consider a run of LAPOR where the lock(l) events and the x := 42 and a := x

events have been added to the execution, with a := x reading from x := 42, as shown in 1 below.

1 [init]

L(l)

W(x, 42)

L(l)

R(x)

lb

{

2 [init]

L(l)

W(x, 42)

L(l)

R(x)

R(y)

lb

{

3 [init]

L(l)

W(x, 42)

W(y, 42)

L(l)

R(x)

R(y)
rb

lb

lb

Note that as discussed in ğ2, the rf edge between x := 42 and a := x induces an lb edge between
the two critical sections. Given the conditions outlined above, the nextEventP (G) may next choose
to add either y := 42 or b := y. Let us assume that nextEventP (G) chooses b := y. As depicted above
in 2 , since the execution thus far contains no other writes on y, the b := y read has only one
reads-from option: the initialization event. However, as shown in 3 , reading from the initialization
leads to an inconsistent execution: when y := 42 is eventually added to the graph, it results in an
rb edge between b := y and y := 42, which in turn induces an lb between the two critical sections,
resulting in an lb cycle. As such, starting from execution 1 , we fail to generate the execution in
which a := x and b := y both read 42 from the first thread. In other words, the only way to extend
1 consistently is for b := y to read from x := 42, and thus nextEventP (G) must add x := 42 before

b := y. Intuitively, when two critical sections are lb-ordered, cs1
lb
−→ cs2, the events in cs1 may affect

the reads-from options of those in cs2, and thus all events of cs1 must be added before those of cs2.
More generally, we define nextEventP (G) to prioritize the events of open critical sections (those

without an unlock event), and to add such events in the lb order. That is, when nextEventP (G)=a,
as well as the (1)-(3) conditions stipulated by GenMC outlined above, we require that: (4) eitherG
contain no open critical sections, or a be an event in an lb-minimal open critical section:

G .OCS=∅ ∨ a ∈ G .OCS ∧ ∄b . b ∈ G .OCS ∧ (b,a) ∈ G .lb

where G .OCS △

=

⋃

x ∈Loc

G .OCSx with G .OCSx
△

= {e | [e];G .csx,∅ ∧ [e];G .csx ; [G .Ux]=∅}

In our LAPOR development, we implement nextEventP to choose an event a in the left-most
thread i (i.e., one with the smallest thread identifier) that satisfies conditions (1)-(4).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:16 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

Note that if the executions of a program P are not well-formed in their acquisition of locks, then
nextEventP may get stuck. For instance, consider a variant of the ww+rr-lock program in ğ2.4
without unlock(l) in the left thread. Continuing from graph 1 above, after adding the y := 42
event, the nextEventP function gets stuck: we cannot add the events of the right thread since the
left critical section is open and is lb-before the right one.
To address this, when nextEventP (G) = ⊥, LAPOR checks that the current execution G is lock-

well-formed, in that lock and unlock events are paired. Put formally, letG .lpox
△

= (G .po|Lx∪Ux)|imm;
a (full) execution G is lock-well-formed iff:

∀x,a ∈ G .E. (a ∈ G .Lx ⇒ ∃u ∈ G .Ux . (a,u) ∈ G .lpox) ∧ (a ∈ G .Ux ⇒ ∃l ∈ G .Lx . (l,a) ∈ G .lpox)

When a full execution G is not lock-well-formed, LAPOR reports an error.

4.2 LAPOR: Soundness, Completeness and Optimality

In this section, we establish the correctness of LAPOR by showing that its generated execution
graphs satisfy three properties: soundness, completeness and optimality. Given a program P and a
memory model m, we say that LAPOR generates execution G for P if running Verify(P) outputs
G (at Line 10 of VisitOne) among other executions. Soundness ensures that if LAPOR generates
G for P , then G is consistent (i.e., consm(G) holds); completeness ensures that if G is a consistent
execution of P , then LAPOR generates G for P ; and optimality ensures that the executions of P
generated by LAPOR are pairwise distinct.
The soundness proof is straightforward: LAPOR checks consistency after each step, dropping

inconsistent executions (Line 7 of VisitOne); as such, it only outputs consistent executions. The
optimality of LAPOR follows immediately from the optimality of its parent algorithm GenMC,
as established in [Kokologiannakis et al. 2019]. That is, as LAPOR is implemented by extending
GenMC’s consistency check and next event selection, and these extensions do not affect the
optimality of the algorithm, the optimality of LAPOR follows straightforwardly from that of
GenMC.

Establishing completeness is, however, more difficult. Even though GenMC is complete, this does
not necessarily imply the completeness of its LAPOR extension. This is because in order to achieve
completeness, GenMC requires the underlying memory model to be well-formed, prefix-closed and
extensible. While the first two properties (described shortly) are preserved in the presence of locks,
extensibility is not. In particular, extensibility requires that execution consistency be preserved
under extension with events. That is, for all executions G and all events a, if G is consistent, then
after adding a toG the execution remains consistent. As we discussed in ğ2.5, this is not necessarily
the case in the presence of locks: the mere addition of a write event may render an execution
inconsistent. In other words, the extensibility requirement of GenMC is too strong in the presence
of locks. We thus weaken the extensibility requirement and show the LAPOR completeness under
a weaker requirement: lock-extensibility. That is, if the underlying memory model is well-formed,
prefix-closed and lock-extensible, then LAPOR is complete.
Well-formedness ensures that consistent executions do not contain po ∪ rf cycles: for all G, if

G is consistent, then G .porf △

= (G .po ∪G .rf)+ is irreflexive. As argued by Kokologiannakis et al.
[2019], this property precludes problematic executions exhibiting the ‘out of thin air’ behaviour.
Moreover, well-formedness ensures that the execution consistency is independent of the order in
which events are added: for all G=⟨E, rf ⟩, if G is consistent, then ⟨E ′, rf ⟩ is also consistent for any
permutation E ′ of E. This is because the order of events inG .E constitutes auxiliary instrumentation
used by the algorithm, and thus execution consistency must be agnostic to this order.
Prefix-closedness ensures that each execution G of a program can be generated by adding its

event in any order that extends G .porf. As noted by Kokologiannakis et al. [2019], all well-known

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:17

memory models including SC [Lamport 1979], TSO [Owens et al. 2009], PSO [SPARC International
Inc. 1994], and RC11 [Lahav et al. 2017], satisfy this property. This allows us to fix the order
in which events are added via the nextEventP function (described above), and thus generate all
program executions systematically. Put formally, the prefix-closedness states that given a consistent
execution G and a porf-closed set of events E ⊆ G .E (i.e., dom(G .porf; [E]) ⊆ E), restricting G to
those events in E yields a consistent execution, i.e., ⟨E,G .rf|E⟩ is consistent.

Recall from our discussion above (see the nextEventP function) that lb-ordered critical sections
may affect the reads-from options of one another, thereby affecting consistency. That is, when
the event addition order does not respect lb, consistency may be compromised. This is indeed
the scenario that led to inconsistency in our 2rw-lock example of ğ2.5: even though the right
critical section in execution 1 of Fig. 6 is lb-ordered before the left one, its events are added after
those of the left one, leading to inconsistency in 3 . Lock-extensibility thus weakens the notion of
extensibility to allow for such scenarios; i.e., we require extension to preserve consistency only

if the construction of the execution thus far respects the lb order. That is, when extending an
execution G with an event a (with a.sn = |G .Ea .tid | + 1), if G is consistent and either a is not in a
critical section, or a is in an lb-maximal critical section, then lock-extensibility requires that the
graph obtained by adding a to G be consistent. Note that when a is in a non-G .lb-maximal critical

section cs, i.e., there exists cs′ such that cs
lb
−→ cs′, then the cs′ events in G were added before a,

thereby violating the lb order; we thus do not require the resulting execution to be consistent.
Put formally, lock-extensibility states that for all G, a and G ′=add(G,a), if G is consistent and
∃l . a ∈ G ′.csl ⇒ ∄b . (a,b) ∈ G .lb, then either (1) a < G ′.R and G ′ is consistent; or (2) there exists
w ∈ G ′ such that G ′.rf[a 7→ w] is consistent.

Theorem 4.1 (Correctness). The LAPOR algorithm is sound and optimal. If the underlying
memory model is well-formed, prefix-closed and lock-extensible, then LAPOR is complete.

Proof (sketch). Soundness follows immediately from the VisitOne algorithm, while optimality
follows immediately from the optimality of GenMC in Kokologiannakis et al. [2019].

To show that LAPOR is complete, we must show that it generates all executions of a program P

under a given memory modelM that is well-formed, prefix-closed and lock-extensible. As discussed
above and demonstrated in [Kokologiannakis et al. 2019], the well-formedness and prefix-closedness
ofM ensure that every execution of P can be generated incrementally, by adding one event at a time.
We then demonstrate that each execution G of P generated incrementally can also be generated
by LAPOR if we permute the order in which its events are added. That is, for each execution G

obtained by adding events in the order σ=e1, e2, · · · , en , there exists some permutation σ ′ of σ , such
that LAPOR adds events in the σ ′ order and arrives at G . In order to show that such a permutation
exists, we may need to remove events and re-add them later (corresponding to the calcRevisits(.)
step). As such, we must ensure that we preserve execution consistency after re-adding each event.
This can always be done thanks to the lock-extensibility ofM which ensures that LAPOR never
gets stuck. More concretely, at each step when adding event a to G1 and obtaining G2, either a is
not in a critical section in which case consistency of G2 is ensured by lock-extensibility, or a is in a
critical section. In the latter case when a is in a critical section cs, we add a in a way that renders cs
a maximal critical section inG2, and thus lock-extensibility ensures thatG2 is consistent. To ensure
that cs is deemed a maximal critical section, we proceed as follows. If a is a read event, we pick its
reads-from option to be a wo-maximal write inG1; if a is a write event, we set a to be a wo-maximal
event in G2; and if a is a lock event, we set a to be an lb-maximal event in G2. Given the definition
of lb, this then ensure that the critical section of a, namely cs, is a maximal critical section in G2.
The detailed completeness proof is given in the Appendix. □

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:18 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

5 EVALUATION

To evaluate the performance of our approach, we have implemented LAPOR as a verification tool
for C programs that use C11 atomics and the pthread library for concurrency. More specifically, our
LAPOR implementation is an extension of the open-sourceGenMCmodel checker [Kokologiannakis
et al. 2019], available at https://github.com/MPI-SWS/genmc. We note that since GenMC supports
a DPOR algorithm that computes wb for ordering writes on the same memory location, we have
instantiated LAPOR based on this DPOR with wb.
In the following, we compare LAPOR against the DPOR algorithm that GenMC employs. We

avoid direct comparisons with other SMC tools for two reasons. First, since LAPOR is built over
GenMC, the direct comparison between the two tools better demonstrates the pros and cons of the
lock-aware approach, while including other tools in the tables would dilute the message. Second,
GenMC has already been extensively evaluated against other SMC tools (see Kokologiannakis
et al. [2019]) and demonstrated to outperform them in most cases. Although we do not report
the measurements, we have confirmed that the same holds for the benchmarks of this paper. In
particular, because of GenMC’s optimality with respect to a coarse equivalence relation, none of
the existing SMC tools can be faster except perhaps by a polynomial factor.

Experimental Setup. We conducted the experiments on a Dell PowerEdge M620 blade system
with two Intel Xeon E5-2667 v2 CPU (8 cores @ 3.3 GHz) and 256GB of RAM running a custom
Debian-based distribution. We used LLVM 3.8.1 for GenMC. Unless explicitly noted otherwise, all
reported times are in seconds. We set the timeout limit to six hours.

5.1 Benchmark Selection

To evaluate the benefit of our approach over the baseline GenMC, we have used a diverse set of
benchmarks.

First (ğ5.2), in order to measure the overhead of calculating the lb relation, we have chosen a set
of benchmarks where we expect that LAPOR will have no benefit over GenMC (i.e., the coarser-
grained equivalence partitioning of LAPORwill coincide with that of GenMC). For this purpose, we
took a standard set of benchmarks from the TACAS competition on Software Verification [SV-COMP
2019] that have been used extensively in the DPOR literature by many different tools [Abdulla et al.
2015, 2016, 2018; Alglave et al. 2013; Huang and Huang 2016]. These benchmarks use locks scarcely
and only in a very fine-grained fashion, and so we do not expect any performance improvement by
using LAPOR over GenMC.
More specifically, we took the benchmarks from two different concurrency categories: pthread

and pthread-atomic. From these, we excluded those that do not contain locks (as they are not
interesting for our purposes), as well as those that are not data-deterministic (because data-
determinism is a prerequisite for stateless model checking). For the remaining 11 benchmarks,
we modelled verifier directives that indicate certain sections should executed atomically (e.g.,
the __VERIFIER_atomic_begin() and __VERIFIER_atomic_end() primitives) by having our tool
acquire/release a designated lock accordingly. We note that these benchmarks are small C programs
(50-100 LoC) with the exception of scull, a toy Linux-kernel driver (∼455 LoC).

Next (ğ5.3), in order to evaluate the pros and cons of our approach, we shift our focus to more
synthetic benchmarks. We used benchmarks similar to the ones presented in ğ2 (e.g., N -reads, N -

reads-lock, ww+rr-lock), both with and without lock-induced synchronization, and we evaluate
LAPOR in both versions.
These synthetic benchmarks show (1) that our tool can explore exponentially fewer executions

than GenMC by exploiting independence at the critical-section level, and (2) that the introduction
of additional synchronization in a program does not have a significant impact in LAPOR. They also

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

https://github.com/MPI-SWS/genmc

Effective Lock Handling in Stateless Model Checking 173:19

Table 1. Benchmarks from [SV-COMP 2019]. The LB column is the loop bound used.

Executions Time (s)

LB GenMC LAPOR GenMC LAPOR

fib_bench 5 16 632 5922 11.60 3.83

indexer 4 64 64 0.22 2.60

lazy - 6 6 0.04 0.04

queue_ok 10 2 2 0.04 0.28

stack-1 5 252 252 0.16 0.61

stateful01-2 - 6 4 0.04 0.04

triangular 5 16 632 5922 11.03 2.03

gcd 3 12 12 0.04 0.06

read_write_lock - 96 96 0.08 0.14

scull - 1749 922 0.25 0.23

time_var_mutex - 2 2 0.04 0.03

provide further measurements showing how the calculation of lb impacts the verification time
both in benchmarks that have conflicting critical sections, and in benchmarks that do not.
Finally (ğ5.4), we provide a more realistic workload for evaluating the performance of LAPOR,

by running it on a few coarse-grained and fine-grained implementations of concurrent data struc-
tures under two different workloads. The data structures we considered are: (1) concurrent sets
implemented as a doubly-linked list, (2) concurrent binary search trees (BSTs), and (3) concurrent
hashtables. The coarse-grained versions use a global lock to protect the entire data structure, while
the fine-grained versions use hand-over-hand locking for the sets and the BSTs, and per-bucket
locking for the hashtables. Our first workload includes only searching, and the second includes
both searching and updating. For the implementations requiring a linked list, we ported the linked
list implementation used in the Linux kernel.

As we will see, LAPOR achieves exponential reductions not only for synthetic benchmarks, but
also for these more realistic workloads, and is able to exhaustively verify client programs of such
data structures within a few seconds.

5.2 SV-COMP Benchmarks

We start with the standard benchmarks from SV-COMP [2019], whose results are summarized in
Table 1. For each benchmark, the table reports both the number of executions explored by each
tool and the time taken to generate them. The LB column contains the loop unrolling bound used
where applicable.

As shown in Table 1, the performance of LAPOR is comparable to (and sometimes better than)
that of GenMC in these benchmarks. In most cases,GenMC performs somewhat better than LAPOR,
but there are several cases where LAPOR explores considerably fewer executions than GenMC,
and is therefore much faster.
Let us first focus on benchmarks where GenMC is faster than LAPOR, and explain why this is

the case (see the indexer and stack-1 benchmarks). In general, in cases where both tools explore
the same number of executions, LAPOR has additional overhead compared to a traditional DPOR
technique, as expected. This overhead is induced by the calculation of lb, which can be considerable
or insignificant depending on the program under test.
As mentioned in ğ3, lb includes the parametric wo relation that orders writes, which in our

implementation is instantiated as wb. However, wb includes hb, and hb in turn includes lb. This

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:20 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

means that in order to calculate lb (necessary for the consistency checks), we have to perform
a fixpoint calculation. This calculation can be relatively expensive (at least O(n3) in the number
of critical sections and/or conflicting write accesses), and is performed repeatedly. Our LAPOR
implementation recalculates lb from scratch at each step, whereas GenMC checks consistency in a
more incremental fashion. This is reflected in the performance of our tool in relevant test cases.
For example, consider the indexer program. This test has 13 threads concurrently modifying a

concurrent array, and locks are used to ensure the mutual exclusion of compare-and-swap (CAS)
operations. This, however, results in conflicting critical sections (where the lock order does matter)
within for-loops that are executed multiple times for each thread. Due to the large number of
threads and the number of critical sections in each thread, large executions are created, in which
the calculation of lb requires a lot of time.
On the other hand, there are several benchmarks where LAPOR is considerably faster than

GenMC (see the fib_bench and triangular benchmarks). As shown, LAPOR is able to leverage the
independence between different critical sections, resulting in far fewer executions (explorations),
which in turn reduces the verification time as well.

The reason behind this is the structure of the benchmarks. In particular, both benchmarks have
two concurrent writer threads manipulating shared locations within a critical section, and a third
concurrent łcheckerž thread ensuring that each location satisfies a particular invariant (predicate)
at all times. What is crucial, however, is that the two writers write to different locations, and the
checker reads each location individually, rather than reading all locations in one critical section. As
such, LAPOR detects that each read of the checker need not be ordered with respect to the writer
that does not write to this particular location, and hence explores significantly fewer executions.

In summary, the overhead LAPOR induces is expected, and does not have a considerable impact
on the performance of the tool. We note that most of the [SV-COMP 2019] benchmarks are small
programs that use locks for the manipulation of shared locations, even though plain atomic accesses
would suffice. Nevertheless, despite the fact that there is little to gain in such small test cases where
the cost of each execution is quite low, LAPOR outperforms GenMC in a number of cases. As we
show in ğ5.4, in programs with significantly more complex critical sections, the benefits of using
an approach such as LAPOR become even more prevalent.

5.3 Synthetic Benchmarks

We continue with a number of synthetic benchmarks with their results summarized in Table 2, for
both non-locking (left) and locking (right) versions of the benchmarks.

As in ğ5.1, the first important observation here is that LAPOR can explore exponentially fewer
executions than GenMC. Indeed, inspecting the locking version of these benchmarks, LAPOR is
generally significantly faster than GenMC, as it explores exponentially fewer executions. In the
only case where both tools explore the same number of executions (because the ordering between
the critical sections matters), namely the rw-lock benchmark, LAPOR maintains comparable
performance to GenMC, and is only a constant factor slower than GenMC.

The second important observation here is that the introduction of lock-induced synchronization
can only reduce the number of executions explored by LAPOR. As shown in the two columns of
ğ5.1, LAPOR explores the same number or fewer executions when going from the non-locking to
the locking version of a benchmark. By contrast, when going from the non-locking to the locking
version, GenMC explores exponentially more executions for benchmarks such as nreads, nwrites
and nww-rr, while exploring fewer executions only for the rw benchmark. This is because in the
rw benchmark each thread unconditionally performs a number of operations, and this is why the
introduction of lock-induces synchronization in the locking version reduces the number of explored
executions. We note that even the mere presence of empty critical sections can lead GenMC to

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:21

Table 2. Non-locking (left) and locking (right) versions of synthetic benchmarks

Executions Time (s)

GenMC LAPOR GenMC LAPOR

nreads(6) 1 1 0.04 0.04

nreads(7) 1 1 0.04 0.04

nreads(8) 1 1 0.04 0.04

nwrites(6) 1 1 0.04 0.04

nwrites(7) 1 1 0.04 0.04

nwrites(8) 1 1 0.04 0.04

nww-rr(6) 36 36 0.04 0.04

nww-rr(7) 49 49 0.04 0.04

nww-rr(8) 64 64 0.04 0.04

rw(6) 16 807 16 807 0.69 0.82
rw(7) 262 144 262 144 16.09 17.78
rw(8) 4 782 969 4 782 969 1014.49 1083.55

Executions Time (s)

GenMC LAPOR GenMC LAPOR

nreads-lock(6) 720 1 0.14 0.04

nreads-lock(7) 5040 1 1.17 0.04

nreads-lock(8) 40 320 1 18.95 0.04

nwrites-lock(6) 720 1 0.14 0.04

nwrites-lock(7) 5040 1 1.12 0.04

nwrites-lock(8) 40 320 1 18.08 0.04

nww-lock-rr(6) 720 6 0.21 0.04

nww-lock-rr(7) 5040 7 1.40 0.04

nww-lock-rr(8) 40 320 8 22.32 0.04

rw-lock(6) 720 720 0.14 0.37
rw-lock(7) 5040 5040 1.27 3.10
rw-lock(8) 40 320 40 320 21.96 38.00

complex-lock(2) 42 6 0.04 0.04

complex-lock(3) 11 214 90 2.81 0.11

Table 3. Coarse-grained (left) and fine-grained (right) data structure benchmarks (seekers workload)

Executions Time (s)

GenMC LAPOR GenMC LAPOR

cset(5) 120 1 0.30 0.11

cset(6) 720 1 1.57 0.15

cset(7) 5040 1 11.46 0.18

cset(8) 40 320 1 134.02 0.25

cbst(5) 120 1 0.12 0.08

cbst(6) 720 1 0.55 0.11

cbst(7) 5040 1 4.12 0.13

cbst(8) 40 320 1 56.82 0.16

chtable(5) 113 400 1 81.90 0.05

chtable(6) ś 1 ś 0.07

chtable(7) ś 1 ś 0.09

chtable(8) ś 1 ś 0.11

Executions Time (s)

GenMC LAPOR GenMC LAPOR

fset(5) 120 1 0.70 0.13

fset(6) 720 1 3.97 0.17

fset(7) 5040 1 29.48 0.22

fset(8) 40 320 1 296.35 0.29

fbst(5) 120 1 0.16 0.09

fbst(6) 720 1 0.90 0.11

fbst(7) 5040 1 6.76 0.14

fbst(8) 40 320 1 81.34 0.17

fhtable(5) 2 1 0.05 0.05

fhtable(6) 4 1 0.05 0.05

fhtable(7) 8 1 0.05 0.06
fhtable(8) 16 1 0.07 0.07

explore exponentially more executions as the number of threads increases (this is the case for the
complex-locks benchmark), while such critical sections do not have any effect in LAPOR.

Finally, it is worth noting that the calculation of lb does not seem to impose a significant overhead
on LAPOR. In the non-locking versions of these benchmarks, both tools perform similarly, even in
the case of rw, where the number of explored executions is rather large.

5.4 Data Structure Benchmarks

We conclude our evaluation with data structure benchmarks. The results for a reading workload
are shown in Table 3; the results for a mixed (reading and writing) workload are shown in Table 4.
Entries with a dash łśž denote that the tool did not finish after six hours (the timeout limit).
First, for the reading workload (see Table 3), LAPOR explores exponentially fewer executions

than GenMC for both version of these benchmarks with coarse-grained and fined-grained locking
schemes. Since there are no concurrent writes on these data structures, LAPOR does not order
any of the critical sections, both for the coarse-grained and the fine-grained versions. By contrast,
GenMC does keep track of the lock ordering, which has a significant impact even in the fine-grained
version. More specifically, even though a hand-over-hand locking scheme is used for the concurrent

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:22 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

Table 4. Coarse-grained (left) and fine-grained (right) data structure benchmarks (mixed workload)

Executions Time (s)

GenMC LAPOR GenMC LAPOR

cset(5) 120 4 0.20 0.50
cset(6) 720 6 1.05 1.65
cset(7) 5040 6 7.83 2.52

cset(8) 40 320 18 96.20 4.95

cbst(5) 120 5 0.12 0.81
cbst(6) 720 5 0.77 2.45
cbst(7) 5040 5 5.78 3.32

cbst(8) 40 320 5 76.40 4.36

chtable(5) 113 400 2 103.59 0.11

chtable(6) ś 4 ś 0.34

chtable(7) ś 8 ś 0.80

chtable(8) ś 16 ś 2.96

Executions Time (s)

GenMC LAPOR GenMC LAPOR

fset(5) 352 4 0.87 0.51

fset(6) 4590 6 12.14 1.94

fset(7) 38 536 6 121.71 3.10

fset(8) 340 348 18 2274.48 5.99

fbst(5) 120 5 0.20 1.14
fbst(6) 720 5 1.22 3.57
fbst(7) 5040 5 9.00 4.78

fbst(8) 40 320 5 102.35 5.47

fhtable(5) 2 2 0.05 0.10
fhtable(6) 4 4 0.05 0.34
fhtable(7) 8 8 0.06 0.81
fhtable(8) 16 16 0.08 2.95

set and the concurrent BST, which would, for example, reduce lock contention if this program was
running on a real CPU, GenMC still needs to serialize the lock acquisitions of the root node in
these data structures in order to guarantee full coverage. Thus, GenMC explores the same number
of executions for the coarse-grained and the fine-grained version of most of the test cases.
The concurrent hashtable is the only program where GenMC does better when moving from a

coarse-grained locking scheme to a fine-grained one. In this benchmark, each thread searches for
two items, and collisions occur for 5 or more threads. GenMC is unable to cope with the large state
space of the coarse-grained version of the program, timeouts for 6 threads or more, and it is very
slow even for 5 threads. In the fine-grained version of the same benchmark GenMC does much
better. Nevertheless the number of executions it explores increases exponentially with the number
of threads, while LAPOR explores only 1 execution for both versions.

Next, we move on to the mixed workload including both searching and inserting elements (see
Table 4). Similarly for this workload, in most cases LAPOR explores exponentially fewer executions
and is significantly faster than GenMC. Despite the increased complexity of calculating lb (due to
concurrent modifications taking place), LAPOR maintains a very good performance and greatly
outperforms GenMC, even though it is a bit slower compared to itself on the previous workload.
This is expected because the results of the searches in the data structure now depend on the
concurrent additions and hence LAPOR explores more than one execution per benchmark.

Finally, we conclude with two observations about two benchmarks under this workload, namely
the concurrent set and the concurrent hashtable. For the concurrent set, observe that the number
of executions explored increases when going from the coarse-grained to the fine-grained version.
This is because the set is implemented as a sorted doubly-linked list, and when an updater reaches
the end of the list attempting to insert an element, it must also acquire the lock on the list head,
thus contending with both updaters and seekers attempting to traverse the list. For the concurrent
hashtable, due to the collisions and concurrent modifications, tracking the lock order is deemed
necessary; hence GenMC and LAPOR explore the same number of executions. As expected, LAPOR
is slower than GenMC in this case, although LAPOR is still competitive in terms of performance.

6 RELATED WORK

Stateless Model Checking. Following the success of tools such as Verisoft [Godefroid 1997]
and CHESS [Musuvathi et al. 2008] paving the way for Stateless Model Checking, the literature

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:23

of DPOR algorithms grew rapidly [Abdulla et al. 2014; Flanagan and Godefroid 2005; Kokologian-
nakis et al. 2017]. Initially, DPOR algorithms partitioned the state space based on Mazurkiewicz
traces [Mazurkiewicz 1987] under sequential consistency [Abdulla et al. 2014; Flanagan and Gode-
froid 2005], or based on Shasha-Snir traces [Shasha and Snir 1988]3 under weak memory mod-
els [Abdulla et al. 2015, 2016; Kokologiannakis et al. 2017; Norris and Demsky 2013; Zhang et al.
2015]. Subsequently, algorithms that use coarser equivalence partitioning were proposed first for
SC [Aronis et al. 2018; Chalupa et al. 2017], and later for Release-Acquire [Abdulla et al. 2018]. Re-
cently, GenMC [Kokologiannakis et al. 2019] proposed a memory model-agnostic DPOR algorithm
that exploits such coarse partitioning. However, despite their effectiveness, these algorithms all
utilize independence only at the instruction level, and not at the critical section level.

To our knowledge, the only DPOR algorithm that can utilize independence at the critical section
level is CDPOR (Constrained Dynamic Partial Order Reduction) by Albert et al. [2018]. More
specifically, CDPOR exploits conditional independence between critical sections: two critical sections
may be considered independent, depending on the current execution state. To check for such
independence, CDPOR uses checks based on pre-generated constraints, which may result in
(potentially expensive) state-equivalence checks. For example, consider the following program:

lock(l);
a0 := x ;
unlock(l)

lock(l);
x := v1;
unlock(l)

· · ·

lock(l);
x := vn ;
unlock(l)

(R+N -writes)

If v1 = v2 = · · · = vn , then CDPOR detects that reading from any of the N writes leads to an
equivalent state, and hence explores 2 executions (one reading the initial value, and one reading
from one of the writes). On the other hand, LAPOR explores N + 1 executions (one for each possible
value the read can read), as it does not take conditional independence into account. However, if
v1,v2, ... ,vn are pairwise distinct (and non-zero), CDPOR explores (N + 1)! executions (as the N
writes all lead to different states), while LAPOR still explores N + 1 executions.

In other words, CDPOR introduces a semantic pruning in order to exploit independence at the
critical section level, while LAPOR extends the underlying DPOR (which is a form of syntactic
pruning) to the critical section level. Indeed, the two techniques are complementary and could be
combined, potentially yielding even better reductions.

Unfoldings. Rodríguez et al. [2015] propose a combination of unfoldings and DPOR to reduce
the number of explored executions under SC only. Although exponential reductions (compared
to Mazurkiewicz traces) can be achieved in this case as well, this work is also another form of
semantic pruning, and is orthogonal to the underlying DPOR framework.

Maximal Causality Reduction. Finally, Maximal Causality Reduction (MCR) [Huang 2015;
Huang and Huang 2016] is another technique for stateless model checking which is different from
(D)POR. MCR uses a maximal causal model to partition the state space into equivalence classes,
which can lead to a coarser equivalence partitioning than the one obtained by wb.

Intuitively, given one execution of the program, MCR generates a set of constraints that allow a
particular read in the execution to read a different value (rather than read from a different place),
and the feasibility of these constraints is checked with an SMT solver. These constraints also include
Φlock , which totally orders the critical sections for each lock location. It may well be possible to
replace Φlock with a constraint similar to lb acyclicity that uses MCR’s data validity constraints to
deduce necessary lock orderings.

3Shasha-Snir traces are the natural extension of Mazurkiewicz traces for weak-memory consistency.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

173:24 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

Race Detection. The idea of keeping critical sections unordered has also been applied in the
context of race detection [Kini et al. 2017; Roemer et al. 2018; Smaragdakis et al. 2012]. Given a
trace of an execution of a concurrent program (under SC), these techniques attempt to discern
whether there exists a pair of unordered, conflicting events, which constitutes a race. However,
instead of using hb for ordering events, critical sections are only ordered when necessary (via
similar relations to lb), enabling the detection of more races from one given trace.
While these works are typically sound (i.e., no false positives), they are not complete, as they

only guarantee that a race does not exist in the given trace, and in all traces that can be inferred
from the given one (by taking all linear extensions of the partial lock ordering). By contrast, our
approach is both sound and complete, although verification is in general more expensive.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented LAPOR, a new stateless model checking approach for handling programs
with locks. We demonstrated how LAPOR reduces the umber of explorations exponentially by
recording the lock ordering only when necessary. LAPOR achieves this by identifying read-write
conflicted critical sections, and exploiting the underlying (D)POR technique and utilizing its notion
of conflicts to detect write-write-conflicted critical sections. In comparison to classical DPOR
approaches, LAPOR explores far fewer executions for programs that use locks conservatively, i.e.,
programs that acquire locks more often than strictly necessary. This, however, means that the the
time spent per execution is longer, as the consistency condition checked is more complex.
More interestingly, LAPOR can be used to model check transactional programs under the se-

rializability consistency model [Papadimitriou 1979]. As with locks, serializability requires that
concurrent transactions (critical sections) appear to execute one after the other in a total sequential
order. Each serializable transaction is of the form [C], where C denotes a block of code to be executed
atomically, tantamount to a critical section delimited by locks. More concretely, a transactional
program P under serializability can be converted into an equivalent locking program by replacing
each transaction [C] in P , with lock(l); C;unlock(l) instead, where l denotes a global lock acquired
by all transactions. As such, LAPOR can model check transactional programs under serializability
by treating each transaction as a critical section.
We believe that the idea of not recording the order between lock events can be generalized

to other synchronization idioms, such as reader-writer locks and barriers, and can decrease the
verification time for other classes of programs. More generally, the same idea could perhaps be
applied to programs with reads whose returned value does not affect the thread’s subsequent
memory accesses. For such read events, it should be possible to avoid recording the incoming
rf-edges, and hence drastically reduce the number of execution graphs explored. In the future, we
would like to explore these ideas further.

As an additional direction of future work, we would like to investigate combining LAPOR with
CDPOR (constrained dynamic partial order reduction) [Albert et al. 2018]. As discussed in ğ6, the
semantic pruning of CDPOR is orthogonal to the syntactic pruning of LAPOR, and the combination
of the two techniques may further reduce the number of explorations.

ACKNOWLEDGMENTS

We thank the OOPSLA’19 reviewers for their valuable feedback. The second author was supported
in part by a European Research Council (ERC) Consolidator Grant for the project łRustBeltž, under
the European Union Horizon 2020 Framework Programme (grant agreement number 683289).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

Effective Lock Handling in Stateless Model Checking 173:25

REFERENCES

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order reduction.

In POPL 2014. ACM, New York, NY, USA, 373ś384. https://doi.org/10.1145/2535838.2535845

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2015. Stateless Model Checking for TSO and PSO. In TACAS 2015 (LNCS), Vol. 9035. Springer, Berlin, Heidelberg, 353ś367.

https://doi.org/10.1007/978-3-662-46681-0_28

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson. 2016. Stateless Model Checking for

POWER. In CAV 2016 (LNCS), Vol. 9780. Springer, Berlin, Heidelberg, 134ś156. https://doi.org/10.1007/978-3-319-41540-

6_8

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal Stateless Model Checking

Under the Release-acquire Semantics. Proc. ACM Program. Lang. 2, OOPSLA, Article 135 (Oct. 2018), 29 pages. https:

//doi.org/10.1145/3276505

Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. 2018. Constrained Dynamic Partial Order Reduction.

In CAV 2018 (LNCS), Vol. 10982. Springer, Berlin, Heidelberg, 392ś410. https://doi.org/10.1007/978-3-319-96142-2_24

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient Bounded Model Checking of

Concurrent Software. In CAV 2013 (LNCS), Vol. 8044. Springer, Berlin, Heidelberg, 141ś157. https://doi.org/10.1007/978-

3-642-39799-8_9

Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. 2018. Optimal Dynamic Partial Order Reduction

with Observers. In TACAS 2018 (LNCS), Vol. 10806. Springer, Berlin, Heidelberg, 229ś248. https://doi.org/10.1007/978-3-

319-89963-3_14

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In POPL

2011. ACM, New York, NY, USA, 55ś66. https://doi.org/10.1145/1926385.1926394

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-centric Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec. 2017), 30 pages. https://doi.org/10.1145/

3158119

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In POPL 2005.

ACM, New York, NY, USA, 110ś121. https://doi.org/10.1145/1040305.1040315

Patrice Godefroid. 1997. Model Checking for Programming Languages using VeriSoft. In POPL 1997. ACM, New York, NY,

USA, 174ś186. https://doi.org/10.1145/263699.263717

Jeff Huang. 2015. Stateless model checking concurrent programs with maximal causality reduction. In PLDI 2015. ACM,

New York, NY, USA, 165ś174. https://doi.org/10.1145/2737924.2737975

Shiyou Huang and Jeff Huang. 2016. Maximal Causality Reduction for TSO and PSO. In OOPSLA 2016. ACM, New York, NY,

USA, 447ś461. https://doi.org/10.1145/2983990.2984025

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race Prediction in Linear Time. In PLDI 2017. ACM,

New York, NY, USA, 157ś170. https://doi.org/10.1145/3062341.3062374

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective Stateless Model Checking

for C/C++ Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017), 32 pages. https://doi.org/10.1145/

3158105

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries. In

PLDI 2019. ACM, New York, NY, USA, 15. https://doi.org/10.1145/3314221.3314609

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In ICALP 2015 (LNCS), Vol. 9135.

Springer, Berlin, Heidelberg, 311ś323. https://doi.org/10.1007/978-3-662-47666-6_25

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In PLDI 2017. ACM, New York, NY, USA, 618ś632. https://doi.org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Computers 28, 9 (Sept. 1979), 690ś691. https://doi.org/10.1109/TC.1979.1675439

Antoni Mazurkiewicz. 1987. Trace Theory. In Petri nets: Applications and relationships to other models of concurrency (LNCS),

Vol. 255. Springer, Berlin, Heidelberg, 279ś324. https://doi.org/10.1007/3-540-17906-2_30

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008.

Finding and Reproducing Heisenbugs in Concurrent Programs. In OSDI 2008. USENIX Association, Berkeley, CA, USA,

267ś280.

Brian Norris and Brian Demsky. 2013. CDSChecker: Checking concurrent data structures written with C/C++ atomics. In

OOPSLA 2013. ACM, New York, NY, USA, 131ś150. https://doi.org/10.1145/2509136.2509514

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs 2009. Springer,

391ś407. https://doi.org/10.1007/978-3-642-03359-9_27

Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database Updates. J. ACM 26, 4 (Oct. 1979), 631ś653.

https://doi.org/10.1145/322154.322158

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/2983990.2984025
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/322154.322158

173:26 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. 2015. Unfolding-based Partial Order Reduction. In

CONCUR 2015 (LIPIcs), Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 456ś469. https://doi.org/10.4230/

LIPIcs.CONCUR.2015.456

Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage, Unbounded Sound Predictive Race Detection. In PLDI

2018. ACM, New York, NY, USA, 374ś389. https://doi.org/10.1145/3192366.3192385

Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel Programs That Share Memory. ACM Trans.

Program. Lang. Syst. 10, 2 (April 1988), 282ś312. https://doi.org/10.1145/42190.42277

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound Predictive Race Detection

in Polynomial Time. In POPL 2012. ACM, New York, NY, USA, 387ś400. https://doi.org/10.1145/2103656.2103702

SPARC International Inc. 1994. The SPARC architecture manual (version 9). Prentice-Hall.

SV-COMP. 2019. Competition on Software Verification (SV-COMP). https://sv-comp.sosy-lab.org/2019/ [Online; accessed

27-March-2019].

Naling Zhang, Markus Kusano, and Chao Wang. 2015. Dynamic partial order reduction for relaxed memory models. In

PLDI 2015. ACM, New York, NY, USA, 250ś259. https://doi.org/10.1145/2737924.2737956

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 173. Publication date: October 2019.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/2103656.2103702
https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/2737924.2737956

	Abstract
	1 Introduction
	2 Overview
	2.1 Stateless Model Checking and Dynamic Partial Order Reduction
	2.2 Locks in Stateless Model Checking
	2.3 LAPOR: Keeping Locks Unordered
	2.4 LAPOR: Inferring Lock Orderings On the Fly
	2.5 LAPOR: Excluding Inconsistent Executions
	2.6 LAPOR: Parametric Treatment of Write-Write Conflicts

	3 Formal Model
	4 LAPOR: Lock-Aware Partial Order Reduction
	4.1 The VisitOne Procedure
	4.2 LAPOR: Soundness, Completeness and Optimality

	5 Evaluation
	5.1 Benchmark Selection
	5.2 SV-COMP Benchmarks
	5.3 Synthetic Benchmarks
	5.4 Data Structure Benchmarks

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

