

Edinburgh Research Explorer

Efficient Storage of Pareto Points in Biobjective Mixed Integer
Programming

Citation for published version:
Adelgren, N, Belotti, P & Gupte, A 2018, 'Efficient Storage of Pareto Points in Biobjective Mixed Integer
Programming', INFORMS Journal on Computing, vol. 30, no. 2, pp. 324-338.
https://doi.org/10.1287/ijoc.2017.0783

Digital Object Identifier (DOI):
10.1287/ijoc.2017.0783

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
INFORMS Journal on Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 07. May. 2020

https://doi.org/10.1287/ijoc.2017.0783
https://doi.org/10.1287/ijoc.2017.0783
https://www.research.ed.ac.uk/portal/en/publications/efficient-storage-of-pareto-points-in-biobjective-mixed-integer-programming(d9b54e3e-d3ab-4036-9b0d-ba1de731a467).html

This article was downloaded by: [129.215.104.20] On: 27 February 2020, At: 06:24
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Efficient Storage of Pareto Points in Biobjective Mixed
Integer Programming
Nathan Adelgren, Pietro Belotti, Akshay Gupte

To cite this article:
Nathan Adelgren, Pietro Belotti, Akshay Gupte (2018) Efficient Storage of Pareto Points in Biobjective Mixed Integer
Programming. INFORMS Journal on Computing 30(2):324-338. https://doi.org/10.1287/ijoc.2017.0783

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2018, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2017.0783
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

INFORMS JOURNAL ON COMPUTING
Vol. 30, No. 2, Spring 2018, pp. 324–338

http://pubsonline.informs.org/journal/ijoc/ ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Efficient Storage of Pareto Points in Biobjective
Mixed Integer Programming
Nathan Adelgren,a Pietro Belotti,b Akshay Guptec

a
Department of Mathematics and Computer Science, Edinboro University of Pennsylvania, Edinboro, Pennsylvania 16444;

b
FICO, Birmingham B37 7GN, United Kingdom;

c
Department of Mathematical Sciences, Clemson University,

Clemson, South Carolina 29634

Contact: nadelgren@edinboro.edu, http://orcid.org/0000-0003-3836-9324 (NA); pietrobelotti@fico.com,

http://orcid.org/0000-0001-6591-6886 (PB); agupte@clemson.edu, http://orcid.org/0000-0002-7839-165X (AG)

Received: September 30, 2014
Revised: April 15, 2016; May 1, 2017;
August 15, 2017
Accepted: September 3, 2017
Published Online: April 30, 2018

https://doi.org/10.1287/ijoc.2017.0783

Copyright: © 2018 INFORMS

Abstract. In biobjective mixed integer linear programs (BOMILPs), two linear objectives

are minimized over a polyhedron while restricting some of the variables to be integer.

Since many of the techniques for finding or approximating the Pareto set of a BOMILP use

and update a subset of nondominated solutions, it is highly desirable to efficiently store

this subset. We present a new data structure, a variant of a binary tree that takes as input

points and line segments in �2

and stores the nondominated subset of this input. When

used within an exact solution procedure, such as branch and bound (BB), at termination

this structure contains the set of Pareto optimal solutions.

We compare the efficiency of our structure in storing solutions to that of a dynamic

list, which updates via pairwise comparison. Then we use our data structure in two

biobjective BB techniques available in the literature and solve three classes of instances

of BOMILP, one of which is generated by us. The first experiment shows that our data

structure handles up to 10
7
points or segments much more efficiently than a dynamic list.

The second experiment shows that our data structure handles points and segments much

more efficiently than a list when used in a BB.

History: Accepted by David Woodruff, editor-in-chief.

Funding: Partial support by Office of Naval Research [Grant N00014-16-1-2725] is acknowledged.

Keywords: biobjective mixed integer optimization • Pareto set • data structure

1. Introduction
Biobjective mixed integer linear programs (BOMILP)

have the following form:

minimize

x , y
f (x , y) :�

[
f
1
(x , y) :� c>

1
x + d>

1
y ,

f
2
(x , y) :� c>

2
x + d>

2
y
]

s.t. (x , y) ∈PI :� {(x , y) ∈�m ×�n
: Ax +By ≤ b},

(1)

where PI is a bounded set. Define as Ω :� {ω ∈ �2

: ω �

f (x , y) ∀ (x , y) ∈ PI} the collection of all points in �2

which can be obtained using the objective function val-

ues of feasible solutions to (1). We refer to the space �2

containing Ω as the objective space.
For any two vectors v1 , v2 ∈ �2

we use the following

notation: v1 5 v2

if v1

i ≤ v2

i for i � 1, 2; v1 ≤ v2

if v1 5 v2

and v1 , v2

; and v1 < v2

if v1

i < v2

i for i � 1, 2. Given

distinct (x̄ , ȳ), (x′, y′) ∈ PI , we say that f (x̄ , ȳ) domi-
nates f (x′, y′) if f (x̄ , ȳ) ≤ f (x′, y′). This dominance is

strong if f (x̄ , ȳ) < f (x′, y′); otherwise it is weak. A point

(x̄ , ȳ) ∈ PI is (weakly) efficient if �(x′, y′) ∈ PI such that

f (x′, y′) (strongly) dominates f (x̄ , ȳ). The set of all

efficient solutions in PI is denoted by XE. A point

ω̄ � f (x̄ , ȳ) is called Pareto optimal if (x̄ , ȳ) ∈ XE. Given

Ω′ ⊆Ω we say that ω′ ∈ Ω′ is nondominated in Ω′ if

�ω′′ ∈Ω′ such that ω′′ dominates ω′. Note that Pareto

optimal points are nondominated in PI . We consider a

BOMILP solved when the set of Pareto optimal points

ΩP :� {ω ∈ �2

: ω � f (x , y) ∀ (x , y) ∈ XE} is found.
It is known (Ehrgott 2005) that a biobjective LP

(BOLP) can be solved by taking convex combinations of

f
1
(·) and f

2
(·) and solving a finite number of LPs. Thus,

for BOLP, the set of Pareto points can be character-

ized as ΩP � {(ξ
1
, ξ

2
) ∈ �2

: ξ
2
� ψ(ξ

1
)} where ψ(·) is a

continuous, convex, piecewise linear function obtained

using extreme points of the feasible region. For biob-

jective integer programs (BOIPs), it is known that ΩP
is a finite set of points in �2

. Now consider the case

of BOMILP. Let Y � Projy PI be the set of integer fea-

sible subvectors to (1). Since PI is bounded, we have

Y � {y1 , . . . , yk} for some finite k. Then for each y i ∈ Y,

there is an associated BOLP, referred to as a slice problem
and denoted �(y i), obtained by fixing y � y i

in (1):

�(y i) min

x

{
f
1
(x)� c>

1
x + d>

1
y i ,

f
2
(x)� c>

2
x + d>

2
y i

}
s.t. Ax ≤ b − By i . (2)

324

http://pubsonline.informs.org/journal/ijoc/
mailto:nadelgren@edinboro.edu
http://orcid.org/0000-0003-3836-9324
mailto:pietrobelotti@fico.com
http://orcid.org/0000-0001-6591-6886
mailto:agupte@clemson.edu
http://orcid.org/0000-0002-7839-165X

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 325

Figure 1. (Color online) Example of Solutions Generated When Solving an Instance of BOMILP

(a) Generated points and segments

(10, 5)

(11, 4)
(14, 3)

(17, 2)

(8, 7)

(7, 10)

(9, 13)
(5, 11)

(4, 14)

(2, 15)

(1, 17)

(1, 19)

(6, 16)

(1, 19)

(1, 17)

(2, 15)
(6, 16)

(9, 13)
(4, 14)

(5, 11)

(7, 10)

(8, 7)

(10, 5)

(11, 4)

(14, 3)
(17, 2)

f1

f2

f1

f2

(b) Nondominated subset

Problem �(y i) has a set of Pareto solutions Ωi :�

{(ξ
1
, ξ

2
) ∈�2

: ξ
2
� ψi(ξ1

)}, where ψi(·) is a continuous
convex piecewise linear function as explained before.

ThenΩP ⊆
⋃k

i�1
Ωi and this inclusion is strict in general.

In particular, we have

ΩP �

k⋃
i�1

(
Ωi\

⋃
j,i
(Ω j +�2

+
\{0})

)
. (3)

Such union of sets is not, in general, represented by

a convex piecewise linear function. Figure 1 shows an

example with k � 5.

It should be noted that finding ΩP is not a trivial

task in general. In the worst case, ΩP �
⋃k

i�1
Ωi and

one may have to solve every slice problem to termi-

nation, which can have exponential complexity. For

multiobjective IPs (i.e., m � 0), De Loera et al. (2009)

prove that ΩP can be enumerated in polynomial-time

for fixed n, which extends the well-known result that

single-objective IPs can be solved in polynomial-time

for fixed n (Lenstra 1983). We are unaware of any simi-

lar results for BOMILP.

Exact procedures for solving BOMILP with gen-

eral integers have been recently the subject of intense

research. Exactmethods have been presented by Belotti

et al. (2012, 2016), Boland et al. (2014), and more

recently by Soylu and Yıldız (2016). Özpeynirci and

Köksalan (2010) give an exact method for finding sup-
ported solutions of BOMILP. Most other techniques

in the literature tackle specific cases. Vincent et al.

(2013) improved upon the method of Mavrotas and

Diakoulaki (2005) for mixed 0-1 problems. Stidsen et al.

(2014) propose a method for solving mixed 0-1 prob-

lems in which only one of the objectives contains con-

tinuous variables. Belotti et al. (2012), Mavrotas and

Diakoulaki (2005), Stidsen et al. (2014), and Vincent

et al. (2013) are based on branch-and-bound (BB) pro-

cedures in which the Pareto set is determined by

solving several BOLPs. Instead, Boland et al. (2014),

Özpeynirci and Köksalan (2010), and Soylu and Yıldız

(2016) determine the Pareto set by solving several

MIPs, albeit in different ways. Although, for example,

Boland et al. (2014) recursively partition the objective

space to circumscribe subsets of Pareto points and seg-

ments, Soylu and Yıldız (2016) find the Pareto frontier

incrementally, starting from a solution to a single-

objective problem. The pure integer case has been stud-

ied for binary variables (Kiziltan and Yucaoğlu 1983),

general integers (Ralphs et al. 2006) and specific classes

of combinatorial problems (Sourd and Spanjaard 2008,

Przybylski et al. 2010, Jozefowiez et al. 2012).

We present a data structure for efficiently storing a

nondominated set of feasible solutions to a BOMILP.

For lack of a better name, we call it biobjective tree, or
BoT. The BoT can be used in exact and heuristic solu-

tion procedures that aim at finding or approximating

the Pareto set. Data structures such as quad-trees have
been used for storing Pareto points in the past (Sun

and Steuer 1996, Sun 2006), although only in the pure

integer case. Sun and Steuer (1996) stored nondom-

inated solutions using both quad-trees and dynamic

lists which were updated via pairwise comparison.

They showed that in the pure integer, biobjective case,

dynamic lists store nondominated solutions more effi-

ciently than quad-trees.

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
326 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

In Section 2, we describe the BoT; and in Section 3,

we describe the insertion function, prove its correct-

ness, and provide an example of use. In Section 4, we

present the results of two experiments. The first exper-

iment shows that a BoT is able to store nondominated

points and segments more efficiently than a dynamic

list, and can insert up to 10
7

solutions in reasonable

time. In the second experiment, we utilize a BoT in the

BB procedures of Belotti et al. (2012) and Adelgren and

Gupte (2016) to solve specific instances of BOMILP. The

results show that BoT handles points and segments

much more efficiently than a list when used in a BB.

2. Biobjective Tree (BoT)
Figure 1(a) shows an example of solutions that might

be generated when solving an instance of BOMILP. We

would like to store the nondominated portion of these

points and segments, as shown in Figure 1(b). A BoT

stores only the nondominated subset of the solutions

regardless of the order in which they are inserted. Con-

sider the set of solutions in Figures 1(a) and suppose

that the segments connecting (1, 17), (2, 15), (4, 14), and
(9, 13) are currently stored. When inserting the point

(5, 11), which dominates a portion of the segment con-

necting (4, 14) and (9, 13), the portion must be removed

before the point is added. Similarly, when the seg-

ment connecting (6, 16) and (7, 10) is inserted, because
a portion of this segment is dominated by (5, 11), only
the nondominated portion of the segment should be

added.

A BoT is a binary search tree (BST) in which each

node represents either a singleton or a line segment

associated with a Pareto point or set of Pareto points in

the objective space. Denote as Π the set of nodes in the

tree. Each π ∈ Π is defined as a triplet π � (S, l , r), its
components defined as follows:

• S � (x
1
, x

2
, y

1
, y

2
) represents a segment [(x

1
, y

1
),

(x
2
, y

2
)] defined in the objective space; the segment col-

lapses to a point if x
1
� x

2
and y

1
� y

2
.

• l and r are the left and the right child node of π,
respectively.

We identify each element of a triplet π as π.S, π.l,
and π.r. Let us define operators that are used in the

remainder: size(π) is the size of the subtree rooted

at π, defined as size(�) � 0 and size(π) � 1 + size(π.l)+
size(π.r); also, parent(π) is a node π′ such that π′.l � π
or π′.r � π, if any exists, or � otherwise. Hence, π is a

leaf node if π.l �π.r ��, or the root node if parent(π)��.
Finally, subtree(π) is the subtree rooted at π. In the

remainder, even though a node π is defined by a triplet,

we sometimes use π to refer to π.S for ease of nota-

tion (especially with set operations), but only where

we believe this does not lead to confusion. In particu-

lar, for π � (S, l , r) the operation π ∩A, where A ⊆ �2

,

returns a node π′ � (S′, l , r) such that S′ � S∩A.

A BoT contains nodes that correspond each to a seg-

ment S � [(x
1
, y

1
), (x

2
, y

2
)] such that x

1
≤ x

2
and y

1
≥ y

2
,

as otherwise S can be reduced to a single point. The BoT

maintains a nonstrict total order � between nodes: for

two nodes π′ � (S′, l′, r′), π′′ � (S′′, l′′, r′′) ∈Π, with S′ �
[(x′

1
, y′

1
), (x′

2
, y′

2
)] and S′′ � [(x′′

1
, y′′

1
), (x′′

2
, y′′

2
)], π′ � π′′ if

either π′ and π′′ are the same, or x′
2
≤ x′′

1
and y′

2
≥ y′′

1
.

Our notation extends to node segments as well, i.e.,

π′ � π′′ ≡ π′.S � π′′.S. Also, for any π ∈ Π, we have

π.l � π � π.r.
All operations on the BoT must conserve this total

order; as for any BST, enumerating its sorted elements

amounts to an in-order parse of the tree. Removal of

a subtree from the BST and rebalancing subtrees pre-

serves the order (Knuth 1998). Most tree operations

carry over to the BoT without change, but insertion,

discussed in Section 3, is radically different: a BST

insertion increases the tree size by one, while in a BoT,

inserting a single node might have a large-scale effect.

For instance, an entire subtree might be deleted if the

inserted segment S dominates all nodes of the subtree.

Even if S does not dominate any of the current nodes,

the nondominated portion of S could be as many as

t + 1 disjoint segments (if t nodes are stored).
This is the main point of departure with classical

BSTs and other data structures (red-black trees, for

instance) that have fast insertion and lookup. This also

explains why other data structures such as a list or a

hash tablemight be less suited for this purpose: lookup

and insertion in the list are rather expensive at O(t)
if t is the number of elements in the list; insertion of

a point in a hash table, and the possible deletion of a

large number of elements is inefficient in a hash table

for many reasons. One such reason is lack of locality of

the data: a good hash function would guarantee large

separation, in the hash table, between two adjacent

points or segments in the objective space. Finding all

segments that are dominated by one point or segment

would prove inefficient, as it might require visiting the

entire data structure.

The following notation is useful in the remainder of

the paper: we partition�2

relative to the segment π.S �

[(x
1
, y

1
), (x

2
, y

2
)] of a node π into four regions Rα(π)

for α ∈ {up,dn, left, right}. We define R
up
(π) � π.S +

{(x , y) ∈ �2

: x > 0, y > 0}, i.e., the set of points domi-

nated by π; R
dn
(π) � π.S + {(x , y) ∈ �2

: x ≤ 0, y ≤ 0};
R

left
(π) � {(x , y) ∈ �2

: x ≤ x
1
, y > y

1
}; and finally

R
right
(π)� {(x , y) ∈ �2

: x > x
2
, y ≤ y

2
} (see Figure 2).

Example 1. Suppose π ∈ Π is defined by the segment

between (2, 5) and (3, 3). Further suppose that π
1
is

the point (1, 5), π
2
is the point (2, 6), and both π

1
and

π
2
are inserted into the BoT. Observe Figure 2(c). The

point associated with node π
1
weakly dominates the

left-most point of the segment associated with π, and

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 327

Figure 2. (Color online) Partition of �2

w.r.t. a Segment or Point π.S (a, b); Example of Weak Domination (c)

(a) Segment (b) Single point (c) Weak domination

Left
Up

Right

Dn

�

�

�2

�1

(1, 5)

(2, 6)

(2, 5)

(3, 3)

�

Left Up

RightDn

thus π
1
should be stored. However, the point associ-

ated with node π
2
is weakly dominated by the segment

associated with π, and so π
2
should not be stored.

The previous example leads us to our next choice.

Consider π and π
1
in Figure 2(c): we should mark

the segment as open at (2, 5), i.e., π.S �](2, 5), (3, 3)],
assuming no other points dominate (3, 3). However, for

simplicity, we do not memorize whether a segment π.S
is open or closed on either extreme. Instead, upon ter-

mination of the BB, for any node π we check the nodes

immediately to the left and to the right to determine if

π.S is (partially) open.

3. Insertion
The Insert function is described inAlgorithm 1. It takes

two inputs: a node π∗ to be inserted and a node π,
which is the root of the tree. Because a node π does not

hold any information of all other nodes of the subtree

rooted at π, the insertion of π∗ might have to be propa-

gated both to π.l and to π.r. For this reason, the Insert

function is recursive. If the recursive call inserts π∗ in
π.l �� (or π.r ��), then π.l becomes π∗. The main call

to Insert is done by passing the root node of the tree,

denoted as π
0
, as the second argument.

The function Replace(π′, π′′) replaces π′ ∈ Π with

π′′ ∈ Π, leaving the BoT otherwise unchanged. We

instead denotewith π′←π′′ the process of replacing π′

and its entire subtree with π′′ and its entire subtree.

RemoveNode(π), described in Algorithm 2, deletes π
if it is a leaf node, otherwise it replaces π with a

node π′ of its subtree that retains the total order. For

this, π′ must be adjacent to π to the left or right, i.e., it

is the left-most node of the right subtree of π or right-

most node of the left subtree of π.

Algorithm 1 (Inserting a new point or segment π∗ into a
BoT at node π)
1: function Insert(π∗ , π)
2: if π∗ �� then return
3: if π �� then Replace(π, π∗)
4: else
5: Define S′ :� π.S\cl(R

up
(π∗))

6: if S′ �� then

7: RemoveNode(π)
8: Insert(π∗ , π)
9: else
10: if ∃S′′, S′′′ s.t. S′ � S′′∪ S′′′∧ cl(S′′)∩

cl(S′′′)��∧ S′′ � S′′′ then
11: Create new node π′ � (S′′′,�, π.r)
12: π.r← π′

13: π.S← S′′

14: else π.S← S′

15: Insert(π∗ ∩R
left
(π), π.l)

16: Insert(π∗ ∩R
right
(π), π.r).

We skip the trivial cases and focus on line 5 onward

in Algorithm 1. The set S′ is obtained by removing

from π.S the set of points dominated by π∗. If S′ � �,
π is entirely dominated by π∗ and can be removed;

the procedure is then called recursively on the new

subtree. If S′ ,�, then it might be the union of at most

two subsegments S′′ and S′′′. If so, S′′′ becomes the

segment of a new node π′, which is assigned the right

subtree of π, and π has its segment restricted to S′′.
Otherwise, π.S is changed to S′. Insertion is then called

recursively on the left and right subtrees of π.
The following property is equivalent to the total

order mentioned in Section 2.

Property 1. For any π ∈ Π, all nodes in the subtree of π.l
(resp. π.r) are located completely within R

left
(π) (resp.

R
right
(π)).

Algorithm 2 (Remove a node that has been shown to be
dominated)
1: function RemoveNode(π)
2: if size(π)� 1 then π←�
3: else
4: if size(π.l) > size(π.r) then

π̃← FindRightmostNode(π.l)
5: else π̃← FindLeftmostNode(π.r)
6: Replace(π, π̃)
7: RemoveNode(π̃).
For a tree with t nodes at the time of an insertion,

the worst-case complexity of Insert is O(t) as the entire
tree might have to be visited. For example, consider the

tree containing all points {(i ,M − i), i � 1, 2, . . . ,M − 1}

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
328 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

for any M > 2. Inserting π∗ � (0, 0), which results in π∗

replacing the whole tree, requires visiting all nodes of

the tree.

3.1. Correctness
Proposition 1. Insert removes any portion of a currently
stored node π, which is dominated by an inserted node π∗.

Proof. Obvious from steps 7 (if S′ � �), 13 (if S′ �
S′′∪ S′′′), and 14 (S′ is a segment) of Algorithm 1.

Proposition 2. Insert adds node π∗, or a portion, to the
tree if and only if it is not dominated by any node currently
stored in the tree.

Proof. (If) Let S′ be a portion of π∗.S not dominated by

any π ∈Π; then (S′,�,�) is inserted as a leaf node after

a finite number of recursive calls—see lines 15 and 16.

(Only if) We show the contrapositive. Suppose there

is a portion
˜S of π∗.S that is dominated by π ∈ Π.

If π � π
0
, then Insert(π∗ , π) has the effect (line 5) of

removing
˜S from the set of points to be inserted, while

the two recursive calls at lines 15 and 16 are made

for π∗ ∩ R
left
(π) and π∗ ∩ R

right
(π), both excluding

˜S.
If π , π

0
and π ∈ subtree(π

0
.l) (resp. π ∈ subtree(π

0
.r)),

the recursive call Insert(π∗ ∩ R
left
(π

0
), π

0
.l) (resp.

Insert(π∗ ∩ R
right
(π

0
), π

0
.r)) guarantees that a call to

Insert(π∗ , π) will be placed, i.e.,
˜S will be eliminated

by subsequent recursive calls. �

According to Propositions 1 and 2, the end state of

the BoT contains all and only nondominated solutions.

Proposition 3. Insert retains Property 1.

Proof. The result is trivial for the cases in lines 2 and 3

of Algorithm 1. The same holds if S′ � � (line 6), as it

is easy to prove that RemoveNode retains Property 1.

If, for the node π∗ to be inserted, π∗.S ⊂ ⋃
π∈Π R

up
(π),

then π∗ is dominated and by Proposition 2 it will not be

inserted, thereby not modifying the BoT. By the same

Figure 3. (Color online) An Example That Shows the Effect of the Insertion of a Segment on a Set of Nondominated Segments

(a) Inserting (5, 11) (b) Inserting (8, 7), (14, 3)

Rleft(�*)

Rup(�*)

Rdn(�*)
Rright(�*)

(7, 10)

(8, 7)

(10, 5)
(14, 3)

�*

�0.r

Rleft(�0) Rup(�0)

Rdn(�0) Rright(�0)

(6, 16)

(5, 11)

(7, 10)�*

�0

proposition, any segment π∗.S or portion that neither

dominates nor is dominated by any nodewill be added

to the BoT so as to satisfy Property 1: Insert recursively

runs lines 15 and 16 until said portion is added as a leaf.

Assume now that π∗.S ∩ R
dn
(π) , � for at least

one π ∈ Π. Since π∗ is not dominated, two cases

arise: (i) π.S\cl(R
up
(π∗)) is a single segment S′;

(ii) π.S\cl(R
up
(π∗)) is the union of two disjoint seg-

ments S′′ and S′′′with S′′�S′′′.
In case (i), the property holds after running line 14,

as π.S is replaced by its subset S′. Case (ii) is dealt

with on lines 10–13: since S′′ � S′′′, π̃.S � S′′ for all π̃ ∈
subtree(π.l) and S′′′ � π̂.S for all π̂ ∈ subtree(π.r). Thus,
replacing π.S with S′′ ensures that Property 1 is main-

tained for π.l, while placing π′ :� (S′′′,�, π.r) as the

right child of π ensures that the same holds for π.r. By
construction π � π′, and this concludes the proof. �

3.2. Illustrative Example
We use the points and segments in Figure 1(a) as input

to a BoT and show a few of the nontrivial steps of

developing it. Assume that these solutions are obtained

from five separate slice problems and that the Pareto

sets of these slice problems are: (i) the singleton (1,19),

(ii) the piecewise linear curve connecting (1, 17) and
(9, 13), (iii) the one connecting (6, 16) and (11, 4), (iv) the
singleton (5, 11), and (v) the piecewise linear curve con-

necting (8, 7) and (17, 2). The points and segments that

define these Pareto sets are inserted into the BoT in the

order of (iii), (iv), (ii), (v), (i). Piecewise linear curves are

inserted as individual line segments from left to right.

The first call is on an empty tree, hence π∗ �
[(6,16),(7,10)] becomes the tree. The next point is π∗�
[(7,10),(10,5)]; note that π∗ ⊂ R

right
(π

0
) and should be

inserted at π
0
.r. Since π

0
.r��, π∗ replaces π

0
.r. The in-

sertion of [(10,5),(11,4)] is analogous.
Next consider Pareto set (iv). Let π∗←(5, 11) and call

Insert(π∗ , π
0
). Observe Figure 3(a). Because π∗ partially

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 329

Figure 4. (Color online) Rebalancing a Tree Upon Insertion of Point (5, 11)

(a) Tree after inserting (5, 11)

(5, 11)

(41/6, 11)
to (7, 10)

(7, 10) to
(10, 5)

(10, 5) to
(11, 4)

(5, 11)

(41/6, 11)
to (7, 10)

(4, 14) to
(5, 69/5)

(1, 17) to
(2, 15)

(2, 15) to
(4, 14)

(10, 5) to
(11, 4)

(14, 3) to
(17, 2)

(25/2, 4) to
(14, 3)(8, 7) to

(28/3, 55/9)

(7, 10) to
(8, 25/3)

(28/3, 55/9) to
(10, 5)

(b) Tree after rebalancing (c) Final tree

(5, 11)

(41/6, 11)
to (7, 10)

(4, 14) to
(5, 69/5)

(1, 17) to
(2, 15)

(2, 15) to
(4, 14)

(10, 5) to
(11, 4)

(7, 10) to
(10, 5)

dominates π
0
, we remove the dominated portion of π

0

by letting S′ � π
0
.S\cl(R

up
(π∗)). As a consequence, π∗ ⊂

R
left
(S′), and, since π

0
.l � �, π∗ becomes the left child

of π
0
. Figure 4(a) shows the BoT after π∗ has been

inserted. We leave it to the reader to consider Pareto

set (ii). Rebalancing the subtree rooted at π
0
.l after pro-

cessing this set yields the BoT shown in Figure 4(b).

Consider now the insertion of Pareto set (v). Let

π∗←[(8, 7), (14, 3)] and call Insert(π∗ , π
0
). Clearly π∗ ⊂

R
right
(π

0
), and is hence inserted to π

0
.r. Observe from

Figure 3(b) that π∗ partially dominates π
0
.r. This time,

though, the portion of π
0
.r, which is dominated, is

the center section of the segment. This means that

π
0
.r must be split into two nodes π

1
and π

2
. Node π

1

takes the place in the tree where π
0
.r originally was,

and the left subtree of π
0
.r becomes the left sub-

tree of π
1
. Node π

2
becomes the right child of π

1

and the right subtree of π
0
.r becomes the right sub-

tree of π
2
. Subsequently, π∗ ⊂ R

right
(π

1
) and thus π∗

is inserted to π
2
(which is now π

0
.r.r). Notice that

π
0
.r.r partially dominates π∗ and that it is the cen-

ter portion of π∗ that is dominated. Thus the calls

to Insert(π∗ ∩ R
left
(π

0
.r.r), π

0
.r.r.l) and Insert(π∗ ∩

R
right
(π

0
.r.r), π

0
.r.r.r) each causes a portion of π∗ to

be inserted at π
0
.r.r.l and π

0
.r.r.r respectively. Since

π
0
.r.r.l � �, π∗ ∩ R

right
(π

0
.r.r) becomes π.r.r.l. Since

π
0
.r.r.r is the segment (10, 5) to (11, 4), it is clear that

another portion of π∗ needs to be removed, and then

the remainder of π∗ becomes π
0
.r.r.r.r.

The remaining insertions are analogous to those that

we have described. After yet another rebalance, the

final BoT is as in Figure 4(c).

4. Computational Experiments
We implemented the BoT in the C programming lan-

guage and performed two tests. The first test addresses

the efficiency with which a large number of randomly

generated solutions can be stored in a BoT, using differ-

ent rebalancing techniques. The second test addresses

the utility of a BoT when used in the two BB algo-

rithms for BOMILP by Belotti et al. (2012) andAdelgren

and Gupte (2016). All tests were run on Clemson Uni-

versity’s Palmetto Cluster. Specifically, an HP SL250s

server node with a single Intel E5-2665 CPU core with

16 GB RAM running Scientific Linux 6.4 was used.

In all of these experiments, we compare the perfor-

mance of the BoT with that of a dynamic linked list (L).

Like a BoT, the linked list takes points and segments

in �2

as input and stores only the nondominated sub-

set of all input. All segments S � (x
1
, x

2
, y

1
, y

2
) of the

linked list are stored in nondecreasing order of x
1
,

so that parsing all elements of the list produces the

same output as an in-order visit of a BoT. Inserting

a point or segment S′ consists in comparing it with

every stored point or segment in the list, until a seg-

ment S is encountered such that S′ ⊂ R
left
(S). During

each comparison, dominated solutions are discarded.

Although only a few, if any, elements of the list might

be changed with the insertion of S′ (because we do

not know where these elements are located and do not

have more sophisticated search mechanisms on such a

list), insertion has an average complexity of O(t). Such
lists have been used for storing nondominated solu-

tions in both the pure integer (Sun and Steuer 1996) and

mixed-integer cases (Mavrotas and Diakoulaki 2005,

Vincent et al. 2013).

Maintaining a balanced tree is one of the most costly

operations, as shown in the tests below. As its only

purpose is efficiency, it does not need to be applied at

every step. Hence, we decided to further consider the

rebalancing operations and use an alternative strategy

that is less computationally costly, but still keeps the

BoT fairly balanced.

We use the strategy of Overmars and Van Leeuwen

(1982): for each nonleaf node π, the subtrees of π.l and
π.r must contain nomore than (1/(2−δ))size(π) nodes,
where δ is a preselected value in the open interval

(0, 1). This causes the depth of the tree to be, at most,

log
2−δ t, where t is the number of nodes in the tree.

Overmars and Van Leeuwen (1982) also suggest

rebalancing by traversing the path travelled by an

inserted solution in the reverse order and checking

whether or not the balance criterion is satisfied at each

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
330 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

of these nodes. This saves one from having to check

the balance criterion at every node in the tree since

the only places where it could have been altered are at

nodes along this path. In our case, though, when a line

segment is inserted into a BoT, it often does not remain

intact, but may be separated into many smaller seg-

ments, each traversing its own path through the tree

before finally being added. For this reason, rearranging

the tree after insertion is troublesome, and we experi-

mented with the following alternative approaches:

A0. No rebalancing is used.

A1. Before inserting a point or segment at the root

node, check the balance criterion at every node in the

tree and rebalance where necessary. This approach

guarantees that the balance of the tree is maintained,

though at a high computational cost.

A2. Check the balance criterion after the k-th inser-

tion (we used k � 100 in our tests), then check the bal-

ance criterion when the tree size increased by 101%

w.r.t. the size at the previous check. This approach sig-

nificantly decreases the complexity of rebalancing, but

eliminates the balance guarantee.

A3. Check the balance criterion at any node where

insertion is recursively called. This approach has a

much lower complexity than A1, and would cause bal-

ance to be maintained at the root node, and along any

frequently travelled paths in the tree. However, again

the guarantee of balance is lost.

A4. Combine approaches A2 and A3: check the bal-

ance criterion of the entire tree after the k-th insertion

(k � 100), then check the balance criterion again when

the tree size increases by 800% w.r.t. the size at the

previous check. In between these checks of the entire

tree, check the balance criterion for any node where

insertion is recursively called.

Approach A4 allows for maintaining a fairly well

balanced tree by applying approach A2 much more

infrequently than if using approach A2 alone. Clearly

this has a higher complexity than approach A3, but it

may be less than that of approach A2 and allow for a

more balanced tree.

We implemented each of these approaches in our

first experiment, described in Section 4.1. We utilize

approach A2 when performing our second experi-

ment, which is described in Section 4.2 because for

most of our tests, A2 performed comparably to A0 in

terms of CPU time, but always maintained a more bal-

anced tree.

4.1. Insertion of Large Number of Random Points
This first test has two main purposes: (i) to com-

pare the efficiency of a BoT with that of a dynamic

list when storing nondominated solutions, and (ii) to

determine the best rebalancing approach w.r.t. tree

depth and time.

The test consists of repeating the following proce-

dure until N insertions have been made into a BoT

or the dynamic list. First, generate a random integer

i ∈ [1, 6] and a random number r
1
∈ (0, 10). Then, if

i > 1, for each j ∈ {2, . . . , i} a random number c j ∈ (0, 1)
is generated and we define r j � r

1
+

∑ j
`�2

c` . Next, for

each j ∈ {1, . . . , i} the following are computed: (i) y j �

(10.5 − r j)2/5 − k, and (ii) x j � r j + (5 − k). Here k is

a dynamic value which is defined as 1 at the start of

the test and increases by µ/N each time the above

process is repeated, and µ ∈ � determines how much

the solutions should “improve” over the course of the

test. If i � 1, the singleton (x
1
, y

1
) is inserted into the

structure; otherwise, the points (x
1
, y

1
), . . . , (xi , yi) are

arranged in order of increasing x values and then the

line segments connecting each adjacent pair of points

are inserted into the structure. All instances used for

these tests and the code used to create them are avail-

able online at https://github.com/Nadelgren/ĲOC-

Efficient.

We performed this test 100 times for each combina-

tion of the values N ∈ {10
4 , 10

5 , 10
6 , 10

7} and µ ∈ {0,
0.001, 0.01, 0.1, 1, 10}. We used various values for δ
and found that the results were quite similar, but we

decided to use a value of δ � 0.3. For each test we

recorded the total insertion time for both algorithms,

the final depth of a BoT, and the final number of nodes

stored in the BoT and in the list.

With µ close to zero, there is little or no separation

between early generated solutions and later generated

ones, and all are likely to be Pareto. With large val-

ues of µ, there is significant separation between early

generated solutions and later generated ones, the latter

being much more likely to be Pareto. Figure 5 shows

an example of solutions generated during this exper-

iment for µ � 0.1, 1 and 10 and for N � 100; of these,

only nondominated solutions are in the BoT at the end

of the test.

The minimum, maximum, and geometric means of

the CPU times and final depths of the tree can be found

in Tables 1–3. The symbols A0–A4 and L indicate runs

in which the various rebalancing approaches of a BoT

and the dynamic list were used for storing solutions.

Also, entries in Tables 1–3 that contain dashes are those

for which no results are available because individual

runs took over 12 hours to complete andwere therefore

terminated. The symbols ~ and † indicate results for

which, due to the large amount of time taken for each

individual run, we were unable to perform the test 100

times. For these results, each test was instead run five

times (for ~) and three times (for †).
We use performance profiles (Dolan and Moré 2002)

to show the relative effectiveness of the various rebal-

ancing approaches, in terms of CPU time and tree

depth, in Figure 6. We omit the results of the list imple-

mentation and rebalancing approach A1 as they per-

formed poorly in terms of CPU time when compared

to the other approaches, and only show profiles for

https://github.com/Nadelgren/IJOC-Efficient
https://github.com/Nadelgren/IJOC-Efficient

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 331

Figure 5. (Color online) Example of Randomly Generated Solutions; N � 100

(a) � = 0.1

18 20

15

10

5

0

–5

20

15

10

5

0

–5

16

14

12

10

8

6

4

2

0

–2
4 6 8 10 12 14 16 4 0 2 4 6 8 10 12 145 6 7 8 9 10 11 12 13 14

(b) � = 1 (c) � = 10

N � 10
7

and for a few values of µ for reasons of space.

For µ � 0 (Figure 6(a)), A2, shown by the curve with

+ symbols, has the best time performance, although

it does not dominate A0 (the solid line), which in

turn is at least 30% worse than A2 in half of the

instances but never worse than 40%. Algorithms A3

and A4 perform similarly and are dominated by A0

and A2. For µ � 0.001, instead (see Figure 6(b)), A0

dominates A2, which is, nevertheless, never more than

15% worse than the best performance. Algorithms A3

and A4 (lines with ∗ and ◦, respectively) performworse

still, and this is confirmed for µ � 1 (see Figure 6(c)),

where A4 fares slightly better than A3. This is con-

firmed for µ � 10 (not shown).

Table 1. Time and Depth of the Tree for the Random Points Test (µ � 0, 0.001)

Time (s) Depth Time (s) Depth

Rebal

N type Min Avg Max Min Avg Max Min Avg Max Min Avg Max

µ � 0 µ � 0.001

10
4

A0 0.08 0.09 0.10 34 42.6 53 0.03 0.03 0.04 25 31.6 41

A1 2.22 2.31 2.55 16 16.2 18 0.28 0.30 0.36 12 12.0 13

A2 0.16 0.20 0.35 16 17.1 18 0.05 0.05 0.08 12 13.6 16

A3 0.11 0.16 0.38 16 17.0 18 0.04 0.05 0.1 12 13.1 14

A4 0.11 0.16 0.39 16 17.0 18 0.04 0.05 0.09 12 13.1 14

L 5.65 5.94 6.27 — — — 0.35 0.37 0.41 — — —

10
5

A0 4.52 4.85 4.94 42 51.3 62 0.64 0.70 0.79 27 36.7 52

A1 448.54 476.75 520.94 19 19.2 20 9.09 9.57 11.02 13 14.0 15

A2 6.31 9.91 32.54 19 20.2 22 0.80 0.91 1.12 14 17.0 19

A3 5.83 9.81 41.62 19 19.8 21 0.84 0.99 1.30 14 14.9 16

A4 5.69 9.77 43.83 19 19.7 21 0.81 0.99 1.31 14 14.9 16

L 668.19 694.63 747.21 — — — 19.30 19.65 20.73 — — —

10
6

A0 126.01 128.91 135.84 45 54.6 70 17.32 18.39 18.79 34 42.2 54

A1 — — — — — — 427.00 434.40 465.09 17 17 17

A2 124.02 143.02 254.55 21 22.4 24 18.93 19.82 21.71 17 21.0 24

A3 137.08 168.69 328.82 21 21.0 22 20.12 21.35 24.55 16 16.3 17

A4 136.23 165.19 306.11 20 21.0 22 19.85 21.07 24.2 16 16.44 17

L — — — — — — — — — — — —

10
7

A0 1,684.59 2,122.15 2,809.04 50 57.9 68 431.54 459.64 485.31 36 46.3 63

A1 — — — — — — ~39,654.42 39,922.79 40,136.91 17 17.0 17

A2 1,287.45 1,915.42 4,908.04 22 24.4 26 423.87 466.23 504.79 20 26.2 32

A3 1,599.44 2,422.43 6,690.78 21 21.3 23 468.92 491.24 536.21 18 18.1 19

A4 1,611.95 2,413.61 6,880.00 21 21.3 23 456.67 482.73 522.69 17 18.0 19

L — — — — — — †63,936.51 67,937.70 70,214.80 — — —

While A2 and A0 perform well in general, A0 car-

ries the risk of an unbalanced tree, as reported in Fig-

ure 6(d), where tree depth is shown to be up to 3.5

times worse than the best. Algorithms A3 and A4 have

the best performance in terms of maximum tree depth,

which, however, reflects in poor time performance as

shown in Figure 6(b).

As shown in Tables 1–3, with approaches A0, A2,

A3, and A4, the BoT is able to process inserted solu-

tions much more quickly than the dynamic list; A1 is

more efficient than the list, but far slower than the other

approaches. The performance difference growswith N .

Also, for most values of N and µ, A0 typically per-

forms the best in terms of running time, followed

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
332 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

Table 2. Time and Depth of the Tree for the Random Points Test (µ � 0.01, 0.1)

Time (s) Depth Time (s) Depth

Rebal

N type Min Avg Max Min Avg Max Min Avg Max Min Avg Max

µ � 0.01 µ � 0.1
10

4

A0 0.02 0.02 0.02 14 21.6 36 0.01 0.01 0.02 11 12.8 16

A1 0.11 0.11 0.13 10 10.2 11 0.05 0.05 0.05 8 8.7 10

A2 0.03 0.03 0.03 10 12.2 16 0.02 0.02 0.02 8 10.5 14

A3 0.03 0.03 0.03 10 11.1 12 0.02 0.02 0.02 9 9.4 11

A4 0.03 0.03 0.03 10 11.1 12 0.02 0.02 0.02 9 9.4 11

L 0.11 0.12 0.14 — — — 0.04 0.04 0.06 — — —

10
5

A0 0.34 0.36 0.39 18 25.4 47 0.23 0.23 0.24 13 15.1 21

A1 3.14 3.22 3.35 12 12.1 13 1.18 1.20 1.30 10 10.1 12

A2 0.41 0.43 0.47 13 15.9 20 0.26 0.26 0.27 10 14.2 18

A3 0.47 0.50 0.55 12 13.0 14 0.33 0.34 0.36 10 11.1 12

A4 0.48 0.50 0.56 12 13.0 14 0.34 0.34 0.37 10 11.1 12

L 4.12 4.27 4.47 — — — 1.25 1.31 1.37 — — —

10
6

A0 6.61 7.07 7.88 21 29.6 43 3.50 3.58 3.76 16 18.0 21

A1 91.56 96.47 105.81 13 13.9 15 32.01 32.41 32.85 12 12.1 13

A2 6.92 7.37 7.84 16 19.8 25 3.69 3.78 3.92 14 17.7 20

A3 8.31 8.83 9.56 14 14.9 16 4.89 5.03 5.25 12 13.0 14

A4 8.24 8.72 9.14 14 14.9 16 4.90 5.04 5.21 12 13 14

L 211.81 215.19 224.98 — — — — — — — — —

10
7

A0 94.29 184.30 188.04 23 33.2 48 68.06 70.71 74.91 19 20.9 24

A1 1,874.98 4,396.94 6,018.77 15 15.1 16 948.30 1,027.48 1,132.85 13 13.9 15

A2 93.15 187.70 191.03 18 23.5 29 69.08 71.76 74.85 16 20.7 23

A3 108.64 206.37 210.70 16 16.3 17 85.63 88.87 93.43 14 14.8 15

A4 109.23 200.11 207.89 16 16.3 17 84.15 87.15 92.13 14 14.8 15

L 2,786.57 14,687.80 15,234.72 — — — 2,136.03 2,210.22 2,452.43 — — —

Table 3. Time and Depth of the Tree for the Random Points Test (µ � 1, 10)

Time (s) Depth Time (s) Depth

Rebal

N type Min Avg Max Min Avg Max Min Avg Max Min Avg Max

µ � 1 µ � 10

10
4

A0 0.01 0.01 0.01 9 11.2 16 0.01 0.01 0.01 9 10.9 17

A1 0.03 0.04 0.04 7 8.0 9 0.03 0.03 0.03 7 7.4 9

A2 0.01 0.01 0.02 8 9.8 13 0.01 0.01 0.01 7 8.9 12

A3 0.01 0.02 0.02 8 8.6 10 0.01 0.01 0.01 7 8.0 9

A4 0.01 0.02 0.02 8 8.6 10 0.01 0.01 0.01 7 8.0 9

L 0.03 0.03 0.04 — — — 0.03 0.03 0.04 — — —

10
5

A0 0.19 0.19 0.19 11 12.6 17 0.16 0.16 0.17 12 16.7 24

A1 0.55 0.56 0.61 8 8.8 10 1.31 1.40 1.49 8 8.53 10

A2 0.20 0.20 0.21 9 12.3 17 0.23 0.23 0.25 9 11.1 15

A3 0.25 0.25 0.26 9 9.3 10 0.28 0.29 0.31 8 9.0 10

A4 0.25 0.25 0.26 9 9.3 10 0.28 0.29 0.31 8 9.0 10

L 0.50 0.52 0.57 — — — 2.51 2.67 2.91 — — —

10
6

A0 2.39 2.42 2.47 14 15.3 19 1.92 1.94 1.96 11 12.6 20

A1 12.15 12.44 12.85 10 10.2 11 5.62 5.72 5.89 8 8.7 10

A2 2.47 2.50 2.57 13 15.2 19 1.96 1.98 2.01 10 12.5 20

A3 3.48 3.54 3.64 10 11.1 12 2.53 2.56 2.61 9 9.41 11

A4 3.48 3.55 3.63 10 11.1 12 2.54 2.57 2.62 9 9.41 11

L 13.18 13.44 13.87 — — — 5.20 5.38 5.54 — — —

10
7

A0 34.49 34.97 35.78 16 18.0 21 23.28 23.97 24.25 13 15.23 19

A1 317.90 321.25 329.82 12 12.1 13 121.22 124.55 126.14 10 10.1 12

A2 35.15 36.10 37.20 16 18.0 21 24.24 24.45 24.87 13 15.2 19

A3 48.55 49.79 52.08 12 13.0 14 34.57 35.44 36.21 10 11.2 13

A4 48.54 49.84 51.46 12 13.0 14 35.22 35.56 36.78 10 11.2 13

L 419.88 435.56 458.88 — — — 131.85 134.998 137.2 — — —

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 333

Figure 6. Performance Profiles of the Rebalancing Algorithms A0 (Solid Line), A2 (+), A3 (∗), and A4 (◦)

1.00 1.05 1.10 1.15 1.20 1.25
0

20

40

60

80

100

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
0

20

40

60

80

100

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
0

20

40

60

80

100

1.0 1.5 2.0 2.5 3.0 3.5
0

20

40

60

80

100

(a) Time, � = 0 (b) Time, � = 0.001

(c) Time, � = 1 (d) Depth, � = 0.001

Notes. All profiles are w.r.t. results for N � 10
7

. For each algorithm A, a point (x , y) on A’s curve indicates that for y% of the instances A’s

performance is at most x times worse than the best algorithm.

closely by A2. However, A3 and A4 perform the best

in terms of tree depth. Because an increasing µ implies

an increasing number of eliminated solutions at each

insertion (and, in general, fewer solutions stored in the

data structure at any time), the time taken to insert

solutions decreases as the value of µ increases. Fur-

thermore, the larger the value of µ, the smaller the

gap between the CPU time spent by the linked list

and the BoT. We conclude that the BoT is more scal-

able and performs better than a linked list for storing

randomly generated solutions. Of all rebalancing algo-

rithms tested, only A1 appears to be inefficient, while

no rebalancing at all (algorithm A0) seems to have a

limited impact on the performance. The results suggest

that A2 seems to combine good performance in terms

of time and maximum tree depth, and is therefore the

rebalancing algorithm of choice for our next tests.

4.2. Using a BoT in Branch-and-Bound Algorithms
To test the utility of a BoT more in depth when uti-

lized in a BB, we performed another set of tests in

which a variety of instances of BOMILP were solved

using branch and bound. To ensure the results were

not too dependent on one solver, we ran our tests on

two implementations, described in Belotti et al. (2012)

and Adelgren and Gupte (2016). The latter utilizes this

data structure not only for storing found solutions, but

also to check for domination of bound sets, and hence,

for fathoming. In addition, it uses warm starting, i.e., it
generates an initial set of points before the BB is started.

This BBwas able to solve larger instances in under eight

hours and also did not run into numerical difficulties

when solving instances of type II from Boland et al.

(2014). For both BB solvers, we have used approach A2

for rebalancing.

We used three classes of BOMILP instances: two sets

of instances described and used in Belotti et al. (2012)

and Boland et al. (2014), and one that we have created.

The latter set contains instances, which we call geomet-
rical, that, while of rather simple structure, contain by

design a large number of Pareto points. Testing these

instances forces the BB algorithms to create numer-

ous BB nodes and solutions, thus assessing a BoT in a

more realistic, large-scale setting where the number of

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
334 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

solutions inserted are closer to those of our first exper-

iment. These are very simple BOMILPs with a large

Pareto set for which a single BB node is solved very

quickly. The model is as follows:

max x
max y
s.t. y − si x ≤ bi − ai si ∀ i ∈ {1, . . . , k},

x − 0.1z ≤ 0.025,
x − 0.1z ≥ −0.025,
x , y ≥ 0, z ∈ �,

(4)

Table 4. BB Tests: Results for Algorithm of Belotti et al. (2012)

Time Time (insert)

#BBnodes #inserts Tree

Size M T L T L (×10
2) (×10

3) #nodes depth

Instances from Belotti et al. (2012) (averaged)

60 10 15.0 15.1 0.007 0.007 8.11 1.790 62.6 6.3

25 11.6 11.6 0.005 0.004 6.32 1.155 60.0 6.6

50 16.4 16.1 0.012 0.007 8.22 1.838 64.1 6.4

80 10 38.0 38.2 0.011 0.009 13.55 2.729 82.9 6.9

25 32.6 32.9 0.005 0.006 11.42 2.046 82.1 7.0

50 42.6 42.9 0.011 0.008 14.11 2.988 80.6 6.9

Instances from Boland et al. (2014), type 1

80 50 101 102 0.93 1.70 38 68 931 11

76 78 0.21 1.05 34 120 565 10

88 90 0.25 1.06 47 65 857 11

61 61 0.15 0.62 28 59 900 11

66 66 0.11 0.37 44 52 706 10

77 78 0.24 0.85 37 70 779 11
200 44 45 0.10 0.27 22 38 926 11

32 33 0.06 0.27 15 38 571 10

49 50 0.13 0.29 26 27 860 11

38 38 0.17 0.32 18 38 903 11

44 45 0.07 0.30 29 31 717 11

41 42 0.10 0.29 21 34 783 11
300 57 57 0.49 0.75 21 35 936 11

33 34 0.05 0.32 15 37 568 10

48 49 0.05 0.19 24 24 862 11

37 38 0.08 0.30 16 35 906 11

43 43 0.08 0.22 27 28 724 11

43 43 0.10 0.31 20 31 786 11
160 500 13,584 13,862 49.30 177.68 1,502 3,274 2,272 20

15,992 15,790 14.80 69.07 2,469 2,807 2,102 22

11,721 11,857 8.12 89.31 2,030 1,858 2,176 19

5,354 5,442 8.91 90.58 819 1,319 4,600 14

2,384 2,384 2.89 17.53 364 572 2,366 22

7,987 8,043 10.88 70.49 1,176 1,667 2,575 19
2,000 10,933 11,088 34.37 165.50 1,219 2,484 2,272 14

12,505 12,489 13.33 59.33 1,954 2,156 2,111 12

10,623 10,606 6.35 74.90 1,847 1,448 2,193 14

4,846 5,005 8.66 84.26 709 958 4,597 14

2,028 2,062 2.28 14.83 304 461 2,379 13

6,775 6,857 8.95 62.04 989 1,280 2,583 13
3,000 7,775 7,852 12.58 79.05 1,193 2,418 2,274 13

11,940 12,051 13.67 62.07 1,900 2,090 2,109 13

9,872 10,298 7.32 74.13 1,817 1,406 2,195 13

4,451 4,532 6.56 68.13 696 917 4,604 14

1,994 2,012 2.41 14.59 297 449 2,382 13

6,054 6,162 7.24 51.48 968 1,240 2,585 13

where a
1
�0, ai+1

�ai+N/k for i∈{1, . . . ,k}, bi�
√

N2−a2

i
for i ∈ {1, . . . ,k + 1}, si � (bi+1

− bi)/(ai+1
− ai) for i ∈ {1,

. . . ,k}, and N and k are parameters. All geometrical in-

stances and those of Belotti et al. (2012) are available

online at the aforementioned repository, https://github

.com/Nadelgren/ĲOC-Efficient. For the instances by

Boland et al. (2014), we refer to the same article.

The results from the branch-and-bound tests are

given in Tables 4–7. We use T and L to represent the

implementations using a BoT and the dynamic list,

respectively. From Belotti et al. (2012), 30 instances

https://github.com/Nadelgren/IJOC-Efficient
https://github.com/Nadelgren/IJOC-Efficient

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 335

Table 5. BB Tests: Algorithm of Adelgren and Gupte (2016)

Time Time (insert) Time (other) #inserts #nodes

Size T L T L T L #BBnodes T L T L Tree depth

Instances from Belotti et al. (2012) (averaged)

60 5 5 0.00 0.00 0.00 0.01 76 189 65 64 6

80 13 13 0.00 0.00 0.01 0.01 109 247 83 7

Instances from Boland et al. (2014), type 1

80 10 11 0.01 0.09 0.01 0.15 363 6,429 943 930 11

5 5 0.02 0.03 0.00 0.13 220 5,066 590 583 12

18 19 0.01 0.16 0.02 0.45 580 9,491 885 883 10

6 7 0.02 0.05 0.01 0.15 235 4,919 928 920 11

7 7 0.02 0.07 0.01 0.09 269 4,795 737 732 10

8 8 0.02 0.07 0.01 0.16 311 5,923 804 797 11
160 205 211 0.12 1.47 0.09 3.44 1,418 45,501 2,293 2,285 17

129 139 0.09 1.91 0.12 2.80 997 41,534 2,160 2,136 13

104 107 0.07 0.64 0.08 1.59 924 29,895 2,250 2,203 13

400 414 0.30 4.86 0.13 9.76 2,315 79,421 4,785 4,675 17

108 111 0.03 0.82 0.07 1.94 743 22,397 2,489 2,408 13

164 170 0.09 1.48 0.10 3.11 1,176 39,850 2,658 2,610 14
320 6,266 6,713 1.70 205.34 1.16 189.91 6,436 486,497 487,183 11,184 10,970 48

4,892 5,457 1.84 243.26 0.74 242.09 5,278 354,556 354,343 12,070 11,689 18

2,742 2,924 1.41 105.24 0.30 65.32 3,367 246,820 12,488 12,138 15

5,291 5,629 1.56 176.53 0.57 132.42 5,925 364,204 363,980 12,863 12,531 16

2,404 2,522 1.38 49.21 0.43 60.80 3,773 223,789 9,955 9,703 18

4,035 4,329 1.57 135.49 0.58 119.31 4,803 322,156 322,168 11,664 11,361 21
Instances from Boland et al. (2014), type 2

800 1 1 0.00 0.00 0.00 0.00 39 254 54 6

2 2 0.00 0.00 0.01 0.00 46 279 64 7

4 4 0.00 0.00 0.00 0.00 98 589 90 7

9 9 0.00 0.01 0.01 0.01 180 900 129 128 7

3 3 0.00 0.00 0.00 0.00 75 440 80 79 7
1,250 9 9 0.00 0.00 0.01 0.01 147 867 140 8

19 19 0.00 0.00 0.00 0.02 310 1,922 1,935 200 201 8

19 19 0.02 0.00 0.02 0.06 302 1,962 245 9

46 46 0.01 0.01 0.00 0.06 542 3,328 281 9

20 20 0.01 0.00 0.01 0.03 294 1,816 1,819 210 210 8
2,500 514 515 0.04 0.13 0.29 1.42 2,893 7,650 306 9

944 945 0.01 0.18 0.31 2.28 3,831 9,409 9,406 370 9

1,243 1,244 0.02 0.21 0.45 2.73 4,007 9,849 451 449 10

3,185 3,199 0.02 0.45 0.86 6.24 8,468 18,665 386 385 9

1,177 1,180 0.02 0.22 0.43 2.73 4,404 10,725 10,724 375 374 9

are available for each problem size; the set of points

encountered by the BB by the same authors in one

of these instances is depicted in Figure 7. There are

five (resp. four) instances from Boland et al. (2014)

for each problem size of Type I (resp. II). The BB by

Belotti et al. (2012) works by creating M initial Pareto

points via solving M single-objective MIPs; hence, we

tested using different values of M. In Tables 4 and 5,

we report geometric means of the results on instances

from Belotti et al. (2012), and provide results for every

instance from Boland et al. (2014) (with geometric

means reported in bold). We report the total solve time,

the time spent inserting solutions (Time (insert)), the

time spent doing other data structure operations such

as fathoming (Time (other), only reported for the BB

by Adelgren and Gupte (2016) as it is negligible oth-

erwise), the number of BB nodes, the number of inser-

tions, the number of nodes in the structure at termina-

tion (#nodes), and the depth of the BoT. Again, problem

sizes are reported as the number of variables, which in

most cases also equals the number of constraints (for

instances from Boland et al. 2014, Type II, the number

of constraints is slightly greater than the number of

variables).

In principle, a BB algorithm is expected to follow

the same path regardless of the data structure, with

the same number of BB nodes explored and of solu-

tions stored. While this is true for most tests, there

were discrepancies when using the BB by Adelgren

and Gupte (2016) for solving instances from Belotti

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
336 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

Table 6. BB Tests: Algorithm of Belotti et al. (2012) on Geometrical Instances

Time Time (insert)

#BBnodes #inserts #nodes Tree

N k T L T L (×10
2) (×10

3) (×10
3) depth

500 1 15 25 0.8 6.8 10 35 5 24

5 15 16 0.6 2.3 10 35 5 23

25 21 35 1.0 6.2 10 34 5 25

125 48 47 0.5 2.2 10 33 5 27

22 28 0.7 3.8 10 34 5 25
1,000 1 36 39 2.5 10.3 20 70 10 25

5 39 41 2.5 11.2 20 70 10 26

25 47 58 2.6 13.8 20 69 10 28

125 103 115 3.1 16.6 20 67 10 37

51 57 2.6 12.7 20 69 10 29
2,000 1 111 185 9.0 95.7 40 140 20 23

5 100 186 8.3 96.2 40 140 20 30

25 133 212 9.2 96.9 40 139 20 32

125 224 345 9.7 113.7 40 137 20 40

135 224 9.0 100.4 40 139 20 31
4,000 1 370 966 41.9 681.9 80 280 40 32

5 350 1,070 53.0 774.3 80 280 40 31

25 409 1,025 42.6 691.1 80 279 40 30

125 650 1,308 48.4 751.8 80 277 40 27

431 1,085 46.2 723.7 80 279 40 30
8,000 1 1,952 6,275 339.2 5,185.5 160 560 80 39

5 1,861 4,786 289.5 3,893.4 160 560 80 38

25 2,113 5,363 329.6 4,339.8 160 559 80 34

125 3,793 6,189 329.2 4,679.2 160 556 80 89

2,323 5,619 321.3 4,499.8 160 559 80 46
16,000 1 8,973 22,803 1,627.5 19,345.8 320 1,120 160 41

5 8,059 26,171 1,638.7 22,958.1 320 1,120 160 41

25 12,250 23,252 1,970.6 20,019.5 320 1,119 160 41

125 13,464 29,552 1,674.1 24,950.9 320 1,116 160 118

10,450 25,305 1,722.3 21,702.8 320 1,119 160 53

Table 7. BB Tests: Algorithm of Adelgren and Gupte (2016) on Geometrical Instances

Time Time (insert) Time (insert)

#BBnodes #inserts #nodes Tree

N k T L T L T L (×10
2) (×10

3) (×10
3) depth

500 1 12 56 1.93 16.13 0.09 23.85 10 20 5 16

5 119 158 1.08 11.37 0.16 21.86 10 20 5 15

25 131 160 0.85 9.59 0.12 18.19 10 20 5 15

125 163 200 0.93 13.19 0.14 20.78 10 20 5 14

75 130 1.13 12.34 0.12 21.07 10 20 5 15
1,000 1 39 273 5.31 90.61 0.16 104.85 20 40 10 16

5 458 707 3.13 60.20 0.45 133.60 20 40 10 15

25 511 762 3.09 66.47 0.38 135.67 20 40 10 15

125 619 895 3.08 69.18 0.38 149.48 20 40 10 16

273 603 3.55 70.77 0.32 129.83 20 40 10 15
2,000 1 133 1,346 14.91 389.46 0.50 546.32 40 80 20 17

5 1,837 3,314 16.28 349.33 1.45 756.48 40 80 20 18

25 2,032 3,251 13.38 305.68 1.54 607.06 40 81 21 20

125 2,298 3,725 13.47 316.52 1.68 760.57 40 81 20 18

1,034 2,711 14.46 338.72 1.17 660.93 40 81 20 18
4,000 1 996 6,695 80.32 1,596.64 3.07 2,645.33 80 160 40 18

5 8,530 15,352 106.16 1,518.61 8.59 3,974.04 80 160 40 18

25 8,273 14,081 99.59 1,423.79 5.36 3,189.86 80 162 42 18

125 10,466 16,394 91.13 1,386.03 7.60 3,239.40 80 160 40 18

5,208 12,411 93.79 1,479.00 5.73 3,228.40 80 160 40 18

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS 337

Figure 7. (Color online) Solutions Found by the BB Method

in Belotti et al. (2012) with 80 Variables and 80 Constraints

100

50

0

–50

–100

–150

–200

–250
–250 –200 –150 –100 –50 0 50 100

et al. (2012) and Boland et al. (2014). We show the num-

ber of BB nodes, of insertions, and of nodes in Table 5

when these differ, in general by a small amount but

up to 3% in a few cases. Extra tests suggest that these

discrepancies are due to small differences in the solu-

tions contained in either data structure: the insertion

of a solution π into a BoT and a list that have, initially,

the same set of solutions may result in different sets

if, for instance, the extremes of segment π.S are very

close to previous solutions, say within a tolerance of

10
−4

, since the operations of Algorithm 1 allow formul-

tiple changes in a subtree of the BoT. This effect can be

amplified as it may result in one BB node to be fath-

omed or explored, the latter resulting in an entire new

BB subtree being explored.

Tables 4 and 5 show that the time spent by the BoT is

much less than that spent using the linked list. Because

the total BB time is much greater than insertion time,

the performance advantage of the BoT over the list is

less influent yet clear. However, these results confirm

those of experiment 1: even within a BB, insertion into

a linked list often takes orders of magnitude longer

than for a BoT. For all instances of the two considered

classes, the number of insertions amounts to up to a

fewmillion, yet the final structure only has a few thou-

sand solutions (see e.g., Table 4, instances by Boland

et al. 2014, for size 160); this suggests a pattern similar

to that with larger values of µ (see Tables 1–3).

Both solvers that we used are rather rudimentary

implementations—the alternative method by Boland

et al. (2014) easily outperforms the BB solver by Belotti

et al. (2012). This explains why the BB times reported

can be hours even if the BB algorithms visit up to

only a few thousand BB nodes, well below the cur-

rent state-of-the-art BB algorithms for single-objective

MILP, where millions, or tens of millions, of nodes can

be explored in the same time for much larger instances.

The advantages of BoT over list are more apparent

on geometrical instances, which, albeit simple, allow

for a thorough stress test of both the BB solvers and

the data structures. For these instances, the time spent

by the data structures is a significant portion of the

total CPU time. All BB nodes are solved very quickly,

and as a result many solutions are found and many BB

nodes are explored in a short time. Inserting all of these

solutions, while efficient for a BoT, requires muchmore

computational effort for a linked list, to the point that

the amount of time spent inserting solutions in a large

linked list becomes a substantial percentage of the total

CPU time.

These results suggest that an efficient data struc-

ture will be essential when faster and more stable BB

solvers (for instance, using quicker fathoming rules as

in Belotti et al. 2016) become available: as the time for

each BB node decreases and the number of inserted

solutions increases, the data structure must be efficient

enough that the insertion function only takes a small

percentage of the total CPU time.

5. Concluding Remarks
We have introduced the biobjective tree, a variant of a

binary tree to efficiently store nondominated solutions

of BOMILPs. The BoT is equipped with an insertion

procedure for adding points and possibly eliminating

several other points that are dominated by the newly

inserted one. The BoT also has the desirable property

that an in-order pass produces a sorted list of nondom-

inated points. We tested the practical value of the BoT

with two experiments. The results show that a BoT pro-

vides a more efficient method for storing solutions to

BOMILP than a list of points. They also show that a

BoT is a very useful tool when used in BB methods for

solving BOMILPs.

It is worth noting here that we have focused on a

simple BST data structure, instead of one with bet-

ter balancing properties, because we wanted to avoid

the travails of studying and implementing complicated

rebalancing procedures, mixed with the already taxing

duty ofmaintaining other desirable properties of a BoT,

i.e., the aforementioned ability to hold nondominated

points at any step.

Data structures like the BoT are preferable over lists

when inserting large numbers of points in an unde-

fined order, such as in a BB algorithm. Because current

state-of-the-art BB algorithms for BOMILP can tackle

relatively small problems, one can observe the impact

of the data structure in those classes of problemswhere

BB node solution is fast; i.e., those problems that admit

a simple and compact structure yet contain a very large

number of nondominated points. We speculate that

future implementations of a BB algorithm for BOMILP

will expose even more clearly the advantages of a BST

data structure. However, algorithms that find solutions

Adelgren, Belotti, and Gupte: Efficient Storage of Pareto Points in BOMILP
338 INFORMS Journal on Computing, 2018, vol. 30, no. 2, pp. 324–338, ©2018 INFORMS

in a nonrandom order might benefit from more spe-

cific, and perhaps less sophisticated, data structures.

Acknowledgments
Part of the work was carried out at the Department of Math-

ematical Sciences, Clemson University (Nathan Adelgren).

References
Adelgren N, Gupte A (2016) Branch-and-bound for biobjective

mixed-integer programming. Accessed January 9, 2018, http://

www.optimization-online.org/DB_HTML/2016/10/5676.html.

Belotti P, Soylu B, Wiecek MM (2012) A branch-and-bound algo-

rithm for biobjective mixed-integer programs. Technical report,

Clemson University, Clemson, SC. http://www.clemson.edu/

ces/math/technical_reports/belotti.bb-bicriteria.pdf.

Belotti P, Soylu B, Wiecek MM (2016) Fathoming rules for biobjective

mixed integer linear programs: Review and extensions. Discrete
Optim. 22(B):341–363.

Boland N, Charkhgard H, Savelsbergh M (2014) The triangle split-

ting method for biobjective mixed integer programming. Lee J,

Vygen J, eds. 17th Internat. Conf. Integer Programming Combinato-
rial Optim. (IPCO), Lecture Notes in Computer Science, Vol. 8494

(Springer, Boston), 162–173.

De Loera JA, Hemmecke R, Köppe M (2009) Pareto optima of mul-

ticriteria integer linear programs. INFORMS J. Comput. 21(1):
39–48.

Dolan ED, Moré JJ (2002) Benchmarking optimization software with

performance profiles. Math. Programming 91(2):201–213.
Ehrgott M (2005)Multicriteria Optimization (Springer, Berlin).

Jozefowiez N, Laporte G, Semet F (2012) A generic branch-and-cut

algorithm for multiobjective optimization problems: Applica-

tion to the multilabel traveling salesman problem. INFORMS J.
Comput. 24(4):554–564.

Kiziltan G, Yucaoğlu E (1983) An algorithm for multiobjective zero-

one linear programming.Management Sci. 29(12):1444–1453.

Knuth DE (1998) The Art of Computer Programming: Sorting and Search-
ing, Vol. 3 (Pearson Education, London).

Lenstra HW Jr (1983) Integer programming with a fixed number of

variables. Math. Oper. Res. 8(4):538–548.
Mavrotas G, Diakoulaki D (2005) Multi-criteria branch and bound:

A vector maximization algorithm for mixed 0-1 multiple objec-

tive linear programming. Appl. Math. Comput. 171(1):53–71.
Overmars MH, Van Leeuwen J (1982) Dynamic multi-dimensional

data structures based on quad- and k-d trees. Acta Informatica
17(3):267–285.

Özpeynirci Ö, Köksalan M (2010) An exact algorithm for find-

ing extreme supported nondominated points of multiobjective

mixed integer programs. Management Sci. 56(12):2302–2315.
Przybylski A, Gandibleux X, Ehrgott M (2010) A two phase method

for multi-objective integer programming and its application to

the assignment problem with three objectives. Discrete Optim.
7(3):149–165.

Ralphs TK, Saltzman MJ, Wiecek MM (2006) An improved algo-

rithm for solving biobjective integer programs. Ann. Oper. Res.
147(1):43–70.

Sourd F, Spanjaard O (2008) A multiobjective branch-and-bound

framework: Application to the biobjective spanning tree prob-

lem. INFORMS J. Comput. 20(3):472–484.
Soylu B, Yıldız GB (2016) An exact algorithm for biobjective

mixed integer linear programming problems. Comput. Oper. Res.
72(Suppl C):204–213.

Stidsen T, Andersen KA, Dammann B (2014) A branch and bound

algorithm for a class of biobjective mixed integer programs.

Management Sci. 60(4):1009–1032.
Sun M (2006) A primogenitary linked quad tree data structure and

its application to discrete multiple criteria optimization. Ann.
Oper. Res. 147(1):87–107.

Sun M, Steuer RE (1996) Quad-trees and linear lists for identify-

ing nondominated criterion vectors. INFORMS J. Comput. 8(4):
367–375.

Vincent T, Seipp F, Ruzika S, Przybylski A, Gandibleux X (2013) Mul-

tiple objective branch and bound for mixed 0-1 linear program-

ming: Corrections and improvements for the biobjective case.

Comput. Oper. Res. 40(1):498–509.

http://www.optimization-online.org/DB_HTML/2016/10/5676.html
http://www.optimization-online.org/DB_HTML/2016/10/5676.html
http://www.clemson.edu/ces/math/technical_reports/belotti.bb-bicriteria.pdf
http://www.clemson.edu/ces/math/technical_reports/belotti.bb-bicriteria.pdf

	Introduction
	Biobjective Tree (BoT)
	Insertion
	Correctness
	Illustrative Example

	Computational Experiments
	Insertion of Large Number of Random Points
	Using a BoT in Branch-and-Bound Algorithms

	Concluding Remarks

