
Vol.:(0123456789)

Wireless Personal Communications
https://doi.org/10.1007/s11277-020-07245-x

1 3

Enabling Virtual Radio Functions on Software Defined Radio
for Future Wireless Networks

Wei Liu1 · Joao F. Santos2 · Jonathan van de Belt3 · Xianjun Jiao1 · Ingrid Moerman1 ·
Johann Marquez‑Barja5 · Luiz DaSilva2 · Sofie Pollin4

© The Author(s) 2020

Abstract
Today’s wired networks have become highly flexible, thanks to the fact that an increasing
number of functionalities are realized by software rather than dedicated hardware. This
trend is still in its early stages for wireless networks, but it has the potential to improve the
network’s flexibility and resource utilization regarding both the abundant computational
resources and the scarce radio spectrum resources. In this work we provide an overview of
the enabling technologies for network reconfiguration, such as Network Function Virtual-
ization, Software Defined Networking, and Software Defined Radio. We review frequently
used terminology such as softwarization, virtualization, and orchestration, and how these
concepts apply to wireless networks. We introduce the concept of Virtual Radio Function,
and illustrate how softwarized/virtualized radio functions can be placed and initialized at
runtime, allowing radio access technologies and spectrum allocation schemes to be formed
dynamically. Finally we focus on embedded Software-Defined Radio as an end device,
and illustrate how to realize the placement, initialization and configuration of virtual radio
functions on such kind of devices.

Keywords Software-Defined Radio · Softwarization · Virtualization · Virtual Radio
Function

 * Wei Liu
 wei.liu@ugent.be

1 Ghent University - imec IDLab iGent Tower Department of Information Technology,
Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium

2 CONNECT - Trinity College Dublin, Dublin, Ireland
3 Centre for Intelligent Power - Eaton, Dublin, Ireland
4 Department of Electrical Engineering, University of Leuven, 3001 Leuven, Belgium
5 Department of Electronics ICT - FTI, University of Antwerp - imec IDLab, Groenenborgerlaan

171, 2020 Antwerp, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-020-07245-x&domain=pdf

 W. Liu et al.

1 3

1 Introduction

Ever since the advent of computer networks, engineers have continued to improve the net-
work: not only is today’s network able to sustain significantly higher throughput, it is also
more flexible, in the sense that the network connection can be reprogrammed and con-
trolled by software, the primary motivation for Software Defined Network (SDNs). At
the same time, general purpose processors and commodity hardware have become more
powerful: many network functionalities, e.g., firewalls, routers and load balancers, that in
the past required dedicated hardware and firmware, can be now implemented entirely in
software. The advantage is that the functionalities running on commodity hardware can
be quickly deployed and scaled, and typically result in lower capital expenditures. This
approach is also called Virtualization of Network Functionalities.

SDN and Network Function Virtualisation (NFV) technologies are the results of the
softwarization and virtualization trends in wired networks. Their benefits include: (1) more
diversity of technologies and services, (2) increased resource utilization efficiency, (3) eas-
ier management of infrastructure, and (4) on average faster development and deployment
cycle.

In recent years, a similar trend is happening in wireless networks. For example, the
Cloud-Radio Access Network (RAN) (C-RAN) paradigm is gaining traction amongst
mobile operators. This paradigm proposes the decoupling between the radio hardware and
the radio functionality, where traditional base stations become a combination of a Remote
Radio Head (RRH) and a Baseband Unit (BBU). The BBUs run in the cloud and are con-
nected to the RRHs through high speed links. This architecture leads to the possibility
to have multiple distributed base stations managed in a centralized way, thus effectively
decreasing the operation cost, among other benefits. C-RAN presents one approach for
splitting the functions of Radio Access Technology (RATs) between dedicated hardware
and software instances. A more general view of the functional split is given in Fig. 1.
The functional split may happen anywhere in the communication stack. The more func-
tionalities are realized by software, the deeper the softwarization. The choice of where to
place the functional split is affected by many factors. It is typically subject to the trade-off
between flexibility and reaction speed. When the communication stack is fully softwarized
down to the physical layer, one has direct access to samples from the radio front end.

There are a variety of radio platforms that support complete programmability until
physical layer over the radio functionality: these are often referred to as Software-defined

Fig. 1 Functional split of radio communication stack, adapted from [4]

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

Radio (SDRs). Their capabilities have been improving over the years, supporting increas-
ingly wider RF bandwidth and higher processing power. For instance, about a decade ago
the popular USRP reconfigurable radio series could only provide sampling rates up to 25
Msps, and all processing functionalities were implemented in the host computer. Today
new generations of the USRP X series can support up to 160 Msps sampling rate, equipped
with a 10 times more powerful Field-Programmable Gate Array (FPGAs). In the near
future, an SDR with a mmWave front-end may take the bandwidth towards the order of
several GHz [9], and the baseband processing will likely be supported by multiple FPGA.
The abundance of RF bandwidth and computational power in a single SDR device calls for
a new paradigm of usage, shifting the processing loads towards the end SDR devices, with
the possibility of sharing the device by multiple RATs via virtualization.

Wireless networks can benefit from softwarization in the same way as wired networks,
e.g., with increased flexibility and reduced operational cost. Besides, softwarization of
wireless networks can also happen at the lower layers (PHY and MAC), rather than being
restricted to upper network layers as is typical in wired networks. Due to this difference, the
softwarization of radio communication has unique potential, enabling the creation of RATs
according to real-time requirements, e.g., coverage, capacity, reliability, or latency. This
extra level of flexibility of softwarization in wireless networks is empowered by the abun-
dant computational resources, which can enable virtualization for optimized resource man-
agement. In addition to computational resources, a radio also requires spectrum resources,
which are scarce and whose current use and management is not sufficiently flexible. The
softwarization and virtualization in the wireless domain should therefore: (i) unleash the
potential of constructing flexible PHY and MAC for radio communication in end devices,
(ii) enable sharing and, hence, more efficient management of both the abundant computa-
tional and the scarce radio spectrum resources.

In this paper, we provide an overview of the relevant enablers of softwarization and
virtualization in the wireless domain, introduce the concept radio function virtualization
and exploit its usage on SDR devices. The remainder of this work is organized as follows:
(i) we introduce the key definitions such as softwarization, virtualization, and how they
are used in deriving radio functionalities; (ii) we review the state of the art on how these
concepts are used in both wired and wireless networks today; (iii) we introduce the realiza-
tion of softwarization and virtualization on embedded resources of an SDR; (iv) finally we
make some concluding remarks.

2 Definitions

In this section, we propose a common understanding of softwarization, virtualization and
orchestration, as these domain-specific terms are sometimes used in ambiguous or conflict-
ing ways by experts with different backgrounds. Then, we introduce the concept of radio
functions, and how their softwarization and/or virtualization combined with orchestration
can benefit wireless networks.

2.1 Softwarization

The processing of communication functionality—be it on a server, switch, radio, etc.—
can be implemented through a wide range of equipment, such as (i) through dedi-
cated hardware which is built to execute specific functions, (ii) through domain-specific

 W. Liu et al.

1 3

programmable-logic chips, or (iii) through software running on general-purpose comput-
ers. In general, there is a trade-off between speed of execution and versatility, and so it is
important to use processing equipment appropriate to an application’s context.

Networks are increasingly required to be reconfigurable, and as such processing func-
tionality which was previously done on dedicated hardware is now being done in software
and programmable logic. The advantage of using software is that functions can be quickly
reconfigured, added or dropped, and updated in a flexible and dynamic manner. This move-
ment towards using software over hardware to perform the processing of network functions
is termed softwarization, a movement which can also be seen in other domains such as
automotive, manufacturing, transport, and in consumer products.

It may be useful to re-state the distinction between hardware and software, as summerized
in Fig. 2. We define software as processing occurring only in the abstract domain (which is
the realm of ideas, concepts, logic and mathematics), whereas hardware is defined as process-
ing occurring between the abstract domain and the physical domain (the world of physical
objects). The translation between the physical and the abstract domains occurs through a pro-
cess known as representation. More details about representation can be found in [18].

This definition of software also applies to functionalities running on programmable
hardware, whose compilation and execution process can be directly related to standard
software execution process, as seen in Fig. 3. For instance, a C program is compiled into
assembly, then into machine code, and executed on a processor. The processor itself is
hardware, whereas the C program, the assembly program, and the binary machine code
are all software representing the same functionality at different levels. Similarly a program
written in VHDL language is synthesized and translated into netlist, and compiled into a
bitstream for configuring logic gates, fabrics and memory resources an FPGA chip. The
FPGA chip is the hardware, whereas the VHDL program, the netlist and bitstream are rep-
resentations of functionality in software.

To ease the software development process, a programmable framework can be employed
to provide general functionality for a particular application domain, which can then be
selectively used to create specific implementations. Key features of programmable frame-
works are that they are modular, flexible, extensible, and reusable.

2.2 Virtualization

Virtualization is increasingly being employed as a means of managing software resources
in a manner appropriate to the application using the resources. We define virtualization
as a resource mapping in software by a hypervisor, which maps virtual resources, which

Fig. 2 Softwarization is the use
of software rather than hardware
to perform some functionality,
while virtualization is the tailor-
ing of software resource sizes to
specific contexts. Orchestration
is the placement of functionality
and management of resources for
particular purposes

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

can be flexibly sized depending on context, to real resources that are fixed in size. Virtual
resources are independent of each other and can be used by different users in whatever
manner desired. For example, virtualization allows underutilized hardware resources to
be used by multiple users independently, or alternatively, can combine multiple hardware
resources as if they were one large resource.

It is important to note however, that softwarization and virtualization are distinct and
separate processes, but that virtualization depends on softwarization, as it cannot be done
in hardware. Figure 2 illustrates the softwarization process, and the subsequent virtualiza-
tion of software resources. In this case the real hardware resource, R1

 , is an 8-bit memory
location, to which the hypervisor maps two independent 4-bit virtual software resources,
V
1
 , and V

2
.

Hypervisors interface directly with the software resources, but understand the limita-
tions of the real resources, which result from the underlying hardware. Therefore, hypervi-
sors are often specific to one type of hardware to accomplish virtualization effectively. We
later introduce how hypervisors can be implemented to virtualize radio spectrum resources.

2.3 Orchestration

So far we have described the softwarization and virtualization processes as they occur on a
single device. However, in a network there can be many devices which are cooperating to
perform some desired functionality. A device in a network is referred to as a node, whereas
the connection between nodes is referred to as a link. Orchestration is the management and
control of network resources, i.e. node and link resources, and the placement of functional-
ity in a network. Orchestration knows the purpose and specific requirements of a particular
functionality, and manages network resources accordingly. Sometimes, orchestrators are
known as controllers, but we prefer to use the term orchestrator for consistency between
network domains.

Referring again to Fig. 2, an orchestrator is used to place functionality on different
nodes A, B, C, etc. and interfaces directly with the hypervisor of each node to manage

Fig. 3 Extending the concept of softwarization to functionality running on programmable hardware

 W. Liu et al.

1 3

resources appropriately. Orchestrators must know the type of resources they are managing
(such as computing nodes in this example) to place functionality correctly, and typically
different orchestrators are used for different types of resources.

Orchestration can be done with or without virtualization, but the use of virtualization
greatly increases the effectiveness of orchestration, as the orchestrator can tailor virtual
resources to match functionality.

2.4 Radio Function

Given the previous definitions, this section explains what we consider as a radio function,
and how the different concepts explained previously are applied.

Radios typically consist of the following building blocks as depicted in Figure 4: (i) an
analog Radio Frequency (RF) front end including conversion between analog and digital
domains, (ii) processing functions at In phase/Quadrature (I/Q) sample level, (iii) process-
ing functions at symbol level, and (iv) processing functions at bit level.

The front end is the hardware that transmits or receives RF signals, converts the radio
frequency to and from an intermediate frequency, and either performs Analogue-to-Digital
Conversion (ADC) or Digital-to-Analogue Conversion (DAC), depending on transmission
or reception. At I/Q level, digitized I/Q samples are processed, including searching for pre-
ambles, estimating and removing a carrier frequency offset, and equalization of the signal.
Alternatively, I/Q level processing can also generate outcomes to indicate the energy level
of the targeted radio spectrum. At the symbol level, modulation or demodulation occurs, in
addition to processes such as sub-carrier mapping, and insertion of pilot signals. Bit level
processing refers to any further operations after symbols are mapped to bits, such coding
and decoding, forward error correction, and encryption.

A processing function at any of the above levels is referred to as a radio function, and
can be implemented in either hardware or software. Conventionally, radio functions have
been realized on dedicated hardware (i.e., commercial radio chipsets), and were optimised
for one particular radio standard such as Long-Term Evolution (LTE). However, although
dedicated hardware provides efficient implementation, it takes many iterations to mature
the hardware design, and inevitably prolonging the development cycle. Also, due to the
difficulty to change hardware, many choices need to be made at design time, resulting in
relatively limited runtime reconfigurability. Softwarization of radio functionalities thus
resolves both issues by (i) offering fast prototyping approaches and (ii) shifting hardware
design time choices to software runtime choices.

The softwarized radio functions can be executed in many different ways. A first
method of execution is on general purpose processors, such as servers in the cloud or
computers with direct connection to radio devices, commonly referred to as a “Host PC”.

Fig. 4 Typically, radios are comprised of an RF front end, and several processing blocks at I/Q sample
level, symbol level, and bit level. Increasingly, these blocks are being executed in software, rather than in
hardware

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

Alternatively, radio functions can be processed on micro-controllers or embedded proces-
sors on board; finally, it is also common to implement radio functions partially or com-
pletely in programmable hardware such as FPGA, using specific hardware description
language.

When radio functionalities are implemented in some form of software as described
above, virtualization can be used to ease the management of resources, through the use of
an orchestrator. A hypervisor should be present to enable the virtualization of radio func-
tions, taking into account the underlying resources, in terms of the radio spectrum, the
computational resources on a device (e.g., the size of an FPGA), and the capability of the
RF front end (e.g., the supported RF frequency range and sampling rate).

2.5 Summary of Definitions

– Abstract Domain: ideas, concepts, logic, mathematics.
– Physical Domain: the world of physical objects.
– Hardware: the objects that process abstract operations (maths, logic, etc.) in the physi-

cal domain.
– Software: the processing of abstract operations in the abstract domain. Dependent on

underlying hardware.
– Programmable Framework: a software environment that provides modular, extensible,

and reconfigurable functionality for a particular application domain.
– Softwarization: moving functionality from hardware to software.
– Virtualization: a mapping that tailors the size of software resources to context.
– Hypervisor: the entity responsible for virtualization.
– Orchestration: the placement of functionality and the management and control of

resources.
– Orchestrator: the entity that performs orchestration.
– Radio function: the processing functions at IQ sample, symbol or bit levels to realize

wireless communication.

3 An Overview of Related Work on Network Reconfigurability

Having clarified the concepts of softwarization, virtualization, and orchestration, in this
section we examine how these concepts are used in networks today. As illustrated in Fig. 5,
networks can be divided into three domains: the nodes (or servers), the wired network
(switches), and the wireless network (radios). We refer to increasing reconfigurability in
nodes as NFV, in wired networks as SDN, and in wireless networks SDR, since these are
the most commonly used terms in the literature. We consider radio today with reconfigur-
ability but not fully softwarized down to the physical layer as an intermediate step of soft-
warization of wireless network; this type of radio is referred to as Reconfigurable Radio
System (RRS). Although most commercial wireless devices today fall into this category, in
this discussion we only focus on the fully softwarized wireless network based on SDR. We
now discuss each of these domains with respect to the following aspects: the hardware, the
programmable frameworks (enablers for softwarization), hypervisors (enablers for virtual-
ization), and orchestrator.

 W. Liu et al.

1 3

3.1 Network Function Virtualization

In NFV, softwarization occurs through the use of off-the-shelf components (e.g., x86 or
ARM processors) rather than proprietary hardware, with the objective of reducing costs
and increasing reconfigurability. Typical network functionalities running on a node include
Network Address Translation (NAT) and firewalls. The virtualization of these functions
can be done through many different hypervisors, such as VMware, KVM, Xen, etc., which
provide customizable Virtual Machine (VMs), or containerization (a more limited form of
virtualization), such as provided by Docker. Modern containers or virtual machines can be
controlled and programmed by a set of common APIs, such as libvirt [3] and LXD [16].

There are also a large number of orchestrators that can be used, such as Open Source
MANO, OPEN-O, etc. The orchestrator typically manages the virtual infrastructure
through hypervisors, such as VMware as depicted in Figure 5, and at the same time config-
ures the individual functions, such as the address space of NAT or rules used by a firewall,
as depicted in Figure 5.

3.2 Software Defined Networking

Softwarization in SDN takes place through the use software-defined switches and rout-
ers such as switches that support the OpenFlow standard, which are reconfigurable and
reprogrammable. In addition to softwarization, virtualization can be used to create virtual
networks through the use of hypervisors such as FlowVisor, CellVisor, or Network Hyper-
visor [2]. Orchestrators include OpenStack (Neutron), NOX, ONOS, Beacon, etc.

In the example of Fig. 5, the hypervisor’s role is fullfilled by FlowVisor, and the
orchestrator is implemented in ONOS. ONOS, together with OpenDaylight, RYU are
amongst the best known programmable frameworks in the SDN field. The orchestrator
implemented in certain programmable frameworks usually has the capability to config-
ure a rich set of hardware, including various switches and network cards, using south-
bound protocols (e.g, Openfow or netconf combined with the YANG model). From
the device’s point of view, it must expose a proper northbound interface towards the

Fig. 5 Illustration of softwarization, virtualization and orchestration in end-to-end networking. The network
can be considered as consisting of three domains, namely: nodes, wired links, and wireless links. We refer
to the use of reconfigurability in these three domains as NFV, SDN, and SDR respectively

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

orchestrator, through the use of softwarization. Similar to the case of NFV, the orches-
trator also has the authority to configure both the virtual switches and the FlowVisor.

3.3 Software Defined Radio

SDR can rely on programmable frameworks running on general purpose processors,
such as GNU Radio and Labview, to define functionalities which comprise the radio
access technology, while the RF front ends are devices such as Zynq SDR, BladeRF,
and USRP [6, 8, 15]. Some programmable frameworks allow users to configure FPGAs
or other embedded resources close to the radio front end. For instance, GNU Radio
can be combined with RFNoC to distribute radio functionalities between the on-board
FPGA and the host PC. Alternatively, SDR applications can also be realized by stan-
dalone software without a programmable framework, such as srsLTE [7] and OpenAir-
Interface [14]. These are all means to softwarize radio functions.

Virtualization of radio functions is a rather new topic. For functionalities that are
running on a host PC or cloud servers, in principle all techniques from the NFV field
can be applied. For instance, one can run srsLTE or a GNU Radio flow graph inside
a virtual machine. However, this does not mean that radio functions can be placed,
initialized and configured as easily as a regular virtual network functions. There are
unique challenges to the execution of real-time radio functions: for example, samples
must be provided in time, sometimes even precisely time-stamped. These challenges
are typically not well handled by hypervisors designed for general NFV purposes. For
functionalities that run on embedded systems, we are not yet aware of any hypervisor
for embedded resources on an SDR. Therefore we present relevant solutions in Sect. 4.

A few hypervisors have been developed specifically for wireless networks, such as
Spectrum Virtualization Layer (SVL), MySVL, and HyDRA [10, 17]. Such hypervi-
sors generally allow samples coming from multiple radio networks to be combined and
transmitted by a single radio front end, the reverse process happening in the receiving
path. A hypervisor may split one signal into multiple parts in the frequency domain,
which can be transmitted by one or multiple radio front ends. The advantage of this
kind of virtualization is not only related to sharing the radio front end, but also better
utilization of the radio spectrum: By combining or splitting signals using such a hyper-
visor, spectrum allocation becomes more flexible, hence the name spectrum virtualiza-
tion layer. When splitting a signal into two separate parts in the frequency domain,
filters need to be carefully designed, and various synchronization issues need to be
resolved in case the two parts are transmitted by different radio devices. These kinds of
challenges are tackled by HyDRA [10].

Orchestration of SDR is also at its initial stage. One example of such an orchestrator
is SDN-R, an OpenDaylight controller extended by the SDN community to wireless
networks. XVL [17] is a service oriented controller above a radio hypervisor: it allo-
cates resources to create virtual radio front ends for an existing RAT communication
stack, but it does not have influence on the RAT itself.

To date, we are not aware of any orchestrator and hypervisor that can achieve the
placement and configuration at the level of radio functions, meaning that no solu-
tion can fully exploit the flexibility of SDR devices in an end-to-end communication
process.

 W. Liu et al.

1 3

4 Virtual Radio Function and Its Realization on SDR

Inspired by the NFV paradigm and the decomposition of network functions, we assess
how the operation of a RAT can be split into functions, and the placement of these
functions on SDR platform. In addition, we introduce a way to realize spectrum virtu-
alization layer with a combination of filter banks and mixers. We focus on embedded
SDR with FPGA on board.

4.1 Virtual Radio Functions

As shown in Sect. 2.4, the radio functionality can be split into the bit, symbol and IQ
level processing functions. Although many different RATs are in use today, they often
share similar building blocks. For instance, all Orthogonal Frequency Division Multi-
plexing (OFDM) based RATs use Fast Fourier Transform (FFT), and almost all packet
detection mechanisms rely on certain types of correlation. As such, we can model
previously monolithic RATs into chains of radio functions with different configura-
tions [1], akin to the NFV paradigm where services are defined as chains of Virtual
Network Function (VNFs).

Such functional decomposition of RATs enables a clear separation of the functional
blocks necessary for realizing a given RAT. The implementation of radio functions
has been conventionally done in hardware, which requires a distinct and specialized
radio device per RAT, with very limited configurability exposed by the driver API.
With the support of SDRs, radio functions can now be configured to form different
RATs during runtime. Hence, one radio device may switch between multiple RATs at
different times, or even act as multiple homogeneous or heterogeneous types of radio
interfaces simultaneously if there are sufficient computational resources and RF front
end capabilities.

The use of softwarization allows radio functions to be instantiated and placed at vari-
ous levels (i.e., cloud, host, micro-controller, FPGA). From cloud to FPGA, each of the
listed options has its own advantages: in general on the cloud end, there is more flexibil-
ity and ease of configuration, whereas at the FPGA side there is faster reaction speed.
Such trade-offs are crucial factors in the design and operation of radio functionality.
The functional split of RATs is already being explored in the context of C-RAN, where
mobile operators leverage the trade-offs of the placement of radio functions for realizing
RATs [13]. The mobile operator may place radio functions in the cloud, for achieving
better resource utilization and interference control, or in the edge, for achieving latency
requirements and reducing fronthaul traffic. The placement of radio functions only
affects the performance of the RATs and their computational resource utilization, while
the functionality of the RATs is agnostic to where their radio functions are placed [13].
In that regard, radio functions are actually virtual, i.e., they are Virtual Radio Function
(VRFs).

We believe that RATs can be realized using a composition of VRFs, analogous to the
realization of services using VNFs [11]. Part of the VRFs may be realized using physi-
cal devices, e.g., in a split-PHY approach, where part of the lower-level VRFs are real-
ized at the radio itself, but cannot be moved, akin to the placement of physical network
functions in the ETSI NVF MANO architecture. Figure 6 illustrates the parallel between
a RAN realized through VRFs and a Core Network (CN) realized through VNFs.

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

4.2 The Realization of VRF on Embedded SDR

In this section, we discuss the realization of VRF on embedded SDR. Mainstream SDR
devices today are composed of programmable logic (i.e., FPGA) and embedded proces-
sors. Some SDRs have hard processors (e.g., the ZYNQ SDR has a dual-core ARM
processor), whereas others have soft processors made out of the FPGA fabrics (e.g., the
USRP X300 series uses Kintex FPGA with a soft processor ZPU). We leverage existing
tools to partially reconfigure the FPGA on SDR devices, in order to achieve the place-
ment, initialization and configuration of VRFs. The mechanism is illustrated in Fig. 7.

A hardware module on an FPGA is termed as an Intellectual Property (IP) core. In
general, the SDR requires at least one IP core to interact directly with the radio front
end. This core is highly hardware-dependent, hence there is not much added value in
making it runtime configurable/replaceable. This type of IP core suits best the static part
of FPGA design. After this stage, the IP cores can act as processing engines for tasks at
IQ/symbol/bit levels: configuring or replacing some of the IP cores can form different
RATs or make improvements to the existing RAT. In this case, an IP core is actually
a VRF. Some levels of runtime configuration may be achieved at firmware level, such
as adapting filter coefficients or the length of the cyclic prefix, while some situations
require a total replacement of the IP core, such as changing the FFT size. If only a firm-
ware level update is required, the IP core acting as a VRF can still be placed in the static
part of an FPGA design; if an IP core needs to be replaced in runtime, it must be placed

VRF #1 VRF #2 VRF #N

VNF #1 VNF #2 VNF #N

Radio Access Network

Core Network

Transport Network

Fig. 6 Example of an E2E network where the CN’s functionality is realized through VNFs and the RAT is
realized through VRFs

Fig. 7 Partial reconfiguration of FPGA applied for VRF realization on embedded SDR, adapted from [12]

 W. Liu et al.

1 3

within a Reconfigurable Region (RR) of the FPGA. These two scenarios are represented
by VRF1 and VRF2 respectively in the example of Fig. 7.

The Partial Reconfiguration Controller (PRC) is an IP core offered by Xilinx that can
load a partial bitstream (noted as Ax.bit in Fig. 7) from a memory region to the target RR,
upon a trigger received from the processing system. The processing system is formed by
two processors and some memory resources, which can be either soft or hard processors.
One processor (referred to as Processor 0) interacts directly with VRFs and plays a role in
the RAT communication functionality, whereas the other processor (referred to as Processor
1) manages the partial reconfiguration and the software running on Processor 0. The tasks
of Processor 1 include: (i) fetching partial bitstream and firmware object files from remote
storage, (ii) storing the files in predefined memory regions, (iii) triggering the PRC to load
the partial bitstream into the RR, (iv) triggering Processor 0 to use the newly available VRF
via the updated firmware. The firmware update can be realized by dynamically linking the
object file, compiled from functions with a predefined signature. Given that these tasks can
be more easily handled by existing tools in the Operational System (OS), Processor 1 runs
embedded Linux with dedicated software developed for management purposes.

The network used for fetching the configuration files can be a backbone connection using
Ethernet, or the SDR radio interface itself. In both cases, the configuration files need to be
correctly obtained, verified and stored on board before the configuration takes place. This is
to prevent using incompatible configuration files. In case a backbone network connection is
present, the successful rate of the configuration is less critical. However, a restoration mech-
anism should always be present as a fall back, in case the radio function does not operate as
expected. The restoration is triggered by Processor 1 upon a time out condition.

4.3 Spectrum Virtualization Layer on Embedded SDR

In Sect. 3 we observe that several hypervisors exist for sharing the underlying radio front
end. Signals coming from multiple communication stacks can be allocated in such a way
that the bandwidth supported by the radio front end is optimally used. However, all these
solutions are running on host computer. When the RAT formed by chained VRFs is operat-
ing on embedded SDR, the hypervisor for the spectrum virtualization must also be realized
on the embedded resources.

This section introduces a way to realize the Spectrum Virtualisation Layer (SVL) on
embedded SDR by combining a series of mixers and filter banks. The architecture of the
receiving path is shown in Fig. 8. IQ samples coming from the radio front end are streamed
in parallel to an array of mixers. The purpose of these mixers is to perform frequency shift-
ing, so that target signals at different center frequencies can be moved to baseband. After
this stage, a gain module is present: it performs bit-shifting on the coming samples. The
output samples of this stage have reduced width, which is helpful to save FPGA resources.
The next stage is the filter bank with a certain decimation ratio; the output of this stage is
multiple streams of baseband IQ samples that are ready to be further processed by radio
functions in a given RAT. This combination of multiple frequency shifting mixers and fil-
ter banks is called Direct Down Converter (DDC) filter banks. The transmission path is
simply the reverse process, except that the mixers performs Direct Up Conversion (DUC),
and the filters perform interpolation rather than decimation.

In the example shown, IQ samples are provided by the radio front end at 40 Msps,
which is sufficient to cover 2 WiFi channels and 8 Zigbee channels, and by configuring

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

the frequency shifting in the mixers accordingly, the output of the filter bank is 8 streams
of baseband 2 MHz IQ samples (decimated by a factor of 10), and 2 streams of baseband
20 MHz IQ samples (decimated by a factor of 2). These streams of samples are ready to
be further processed by VRF chains. Although in principle one may use multiple chains of
radio functions to process the samples, in [5] a single preamble detector operating at high
speed is used to detect packets on all 10 channels.

By using a series of mixers and filters on an embedded SDR, one single radio front
end can be sliced among multiple homogeneous or heterogeneous radio access technolo-
gies. The frequency shift of the mixers can be configured in runtime by registers, meaning
the center frequency of each virtual radio can be configured. However the total number of
channels (depending on the number of filters and mixers) and the bandwidth of each chan-
nel (depending on the decimation/interpolation ratio of the filters) are not runtime config-
urable. As a remedy, we treat the DDC/DUC filter bank as a special VRF, and the entire
architecture can be runtime replaced by partial reconfiguration of FPGA. In this way, the
number of virtual radios and the individual bandwidth can also be runtime configured.

5 Conclusions

We have observed the softwarization and virtualization trend for both wired and wire-
less networks, enabled by the abundance of computational resources. Wireless networks,
however, present additional complexities: (i) they rely critically on the use of costly radio
spectrum, a resource that is physically constrained and hence subject to very different cost
and scaling laws, and (ii) the last mile access network can be served by many heteroge-
neous technologies, depending on the application requirements (e.g., wide coverage, high
throughput, or low latency). Because of this, there is a need to enable more flexible alloca-
tion of spectrum and dynamic usage of radio access technologies. In this paper, we define
softwarization and virtualization for network configuration, introduce the concept of chain-
ing virtual radio functions at runtime for dynamically constructing radio access technolo-
gies, and describe the realization of virtual radio functions on embedded SDR devices via
partial FPGA configuration. In addition, we apply DDC/DUC filter banks and mixers for
flexible allocation of spectrum to individual virtual radios on a wide-band SDR device.

Fig. 8 The architecture of DDC filter banks used for radio front end virtualization on embedded SDR

 W. Liu et al.

1 3

The DDC/DUC filter bank is regarded as a special virtual radio function that can be runt-
ime replaced when needed.

Acknowledgements This publication has emanated from research conducted with the financial support
from the European Horizon 2020 Program under the Grant Agreement No. 732174 (ORCA project). It was
also partially supported by Science Foundation Ireland Grant No. 13/RC/2077 (CONNECT).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless data-
plane. In Workshop on hot topics in software defined networks (pp. 109–114). ACM.

 2. Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2016). Survey on network virtualization hypervi-
sors for software defined networking. IEEE Communications Surveys & Tutorials, 18(1), 655–685.
https ://doi.org/10.1109/COMST .2015.24891 83.

 3. Bolte, M., Sievers, M., Birkenheuer, G., Niehörster, O., & Brinkmann, A. (2010). Non-intrusive virtu-
alization management using libvirt. In: Design, automation & test in Europe conference & exhibition
(DATE) (pp. 574–579). IEEE.

 4. Brown, G. (2017). Cloud RAN & the next-generation mobile network architecture. White Paper.
 5. de Figueiredo, F. A., Jiao, X., Liu, W., & Moerman, I. (2018). Radio hardware virtualization for soft-

ware-defined wireless networks. Wireless Personal Communications, 100(1), 113–126.
 6. Ettus. https ://www.ettus .com/.
 7. Gomez-Miguelez, I., Garcia-Saavedra, A., Sutton, P., Serrano, P., Cano, C., & Leith, D. (2016).

srsLTE: An open-source platform for LTE evolution and experimentation. In International workshop
on wireless network testbeds, experimental evaluation, and characterization (pp. 25–32). ACM.

 8. Harikrishnan, B., Raghul, R., Shibu, R., & Nair, K. R. (2014). All programmable SOC based stan-
dalone SDR platform for researchers and academia. In International conference on computational sys-
tems and communications (ICCSC) (pp. 384–386). IEEE.

 9. Introduction to the NI mmwave transceiver system hardware-national instruments. http://www.ni.com/
produ ct-docum entat ion/53095 /en/.

 10. Kist, M., Rochol, J., DaSilva, L. A., & Both, C. B. (2017). Hydra: A hypervisor for software defined
radios to enable radio virtualization in mobile networks. In Conference on computer communications
workshops (INFOCOM workshops) (pp. 960–961). IEEE.

 11. Kist, M., Wickboldt, J., Granville, L., Rochol, J., DaSilva, L., & Both, C. (2019). Flexible fine-grained
baseband processing with Network Functions Virtualization: Benefits and impacts. Computer Net-
works, 151, 158–165.

 12. Liu, W., Jiao, X., & Moerman, I. (2018). Live reprogramming of SDR at FPGA and processor level
(2018). https ://www.orca-proje ct.eu/live-repro gramm ing-of-sdr-at-fpga-and-proce ssor-level /.

 13. Maeder, A., Lalam, M., De Domenico, A., Pateromichelakis, E., Wubben, D., Bartelt, J., Fritzsche, R.,
& Rost, P. (2014). Towards a flexible functional split for cloud-RAN networks. In European confer-
ence on networks and communications (EuCNC) (pp. 1–5).

 14. Nikaein, N., Marina, M. K., Manickam, S., Dawson, A., Knopp, R., & Bonnet, C. (2014). OpenAir-
Interface: A flexible platform for 5G research. ACM SIGCOMM Computer Communication Review,
44(5), 33–38.

 15. Nuand. https ://www.nuand .com.
 16. Rosen, R. (2014). Linux containers and the future cloud. Linux Journal, 240(4), 86–95.
 17. Santos, J. F., Kist, M., van de Belt, J., Rochol, J., & DaSilva, L. A. (2019). Towards enabling RAN as

a service: the extensible virtualisation layer. In IEEE International Conference on Communications
(ICC) (pp. 1–6). IEEE.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/COMST.2015.2489183
https://www.ettus.com/
http://www.ni.com/product-documentation/53095/en/
http://www.ni.com/product-documentation/53095/en/
https://www.orca-project.eu/live-reprogramming-of-sdr-at-fpga-and-processor-level/
https://www.nuand.com

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

 18. van de Belt, J., Ahmadi, H., & Doyle, L. (2017). Defining and surveying wireless link virtualization
and wireless network virtualization. IEEE Communications Surveys & Tutorials, 19(3), 1603–1627.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Wei Liu received her master’s degree in Electronical Engineering in
2010, and obtained her Ph.D. degree from Ghent University in 2016.
During her doctoral education, she participated in multiple research
projects related to next generation wireless technologies, she became
familiar with several software-defined radio platforms, and gained
experiences in testbed operations. She is currently a Post-Doctoral
Researcher with IDLab, Ghent University, leading H2020 ORCA pro-
ject. Her research is in the field of cognitive radio and Software-
Defined Radio, focusing on spectrum analysis, interference prevention,
reconfigurable and flexible radio architectures.

Joao F. Santos is pursuing a Ph.D. on wireless networks at the CON-
NECT Telecommunications Research Centre, headquartered at Trinity
College Dublin. He holds a B.Sc. in Telecommunications Engineering
from Universidade Federal Fluminense. He worked at Rede Nacional
de Ensino e Pesquisa (RNP) as the lead developer of the FIBRE test-
bed federation’s Clearinghouse. His research interests include network
slicing, radio virtualisation, and end-to-end network orchestration.

Jonathan van de Belt received a Ph.D. in Electronic Engineering from
Trinity College Dublin (TCD) in 2018, and is now working at the Cen-
tre for Intelligent Power at Eaton. Previously, he was a research fellow
at CONNECT, TCD, working with Professor Luiz DaSilva on the
ORCA project. Before joining Professor DaSilva’s group, Jonathan
investigated industrial cyber-physical systems at Intel Labs Europe,
and briefly worked at Xilinx Research Laboratory, Ireland. Jonathan
received the B.A.I. degree in engineering and the B.A. degree in math-
ematics from TCD in 2012. His research interests include machine
learning, software-defined radio, digital signal processing, wireless
network virtualization, and embedded systems.

 W. Liu et al.

1 3

Xianjun Jiao received his bachelor degree in Electrical Engineering
from Nankai university in 2001 and Ph.D. degree on communications
and information system from Peking University in 2006. After his
studies, he worked in industrial research departments and product
teams in the domain of wireless technology, such as Radio System Lab
of Nokia Research Center, devices department of Microsoft and Wire-
less Software Engineering department of Apple. In 2016, he joined
IDLab, a core research group of imec with research activities embed-
ded in Ghent University and University of Antwerp. He is working as
senior researcher at imec on flexible real-time Software Defined Radio
(SDR) platform. His main interests are SDR, signal processing and
parallel/heterogeneous computation in wireless communications. On
his research track, 30+ international patents/papers have been granted/
published.

Ingrid Moerman received her degree in Electrical Engineering (1987)
and the Ph.D. degree (1992) from the Ghent University, where she
became a part-time professor in 2000. She is a staff member at IDLab,
a core research group of imec with research activities embedded in
Ghent University and University of Antwerp. Ingrid Moerman is Pro-
gram Manager of the ’Deterministic Wireless Networks’ track at imec.
Ingrid Moerman is also coordinating the research activities on mobile
and wireless networking at Ghent University, where she is leading a
research team of more than 30 members. Her main research interests
include: collaborative and cooperative networks, intelligent cognitive
radio networks, real-time software defined radio, flexible hardware/
software architectures for radio/network control and management,
Internet of Things, Next generation wireless networks (5G/6G/…),
and experimentally-supported research. Ingrid Moerman has a long-
standing experience in running and coordinating national and EU
research funded projects. At the European level, Ingrid Moerman is in
particular very active in FP7/H2020 programs, where she has coordi-

nated and is coordinating several projects (CREW, WiSHFUL, eWINE, ORCA). Ingrid Moerman was lead-
ing team SCATTER, consisting of researchers from IMEC-IDLab and Rutgers University, in the DARPA
Spectrum Collaboration Challenge (SC2). The SCATTER team has been awarded with two prizes of
750,000 USD each in Phase 1 and Phase 2 of the DARPA SC2 competition, and was one of the 10 finalist at
the DARPA SC2 championship event organized at Mobile World Congress in LA (October 2019). Ingrid
Moerman is author or co-author of more than 750 publications in international journals or conference
proceedings.

Johann Marquez‑Barja currently is an Associate Professor at Univer-
sity of Antwerpen and imec. He is the Head of the Wireless Cluster at
imec IDLab UAntwerp. He was and is involved in several European
research projects, being Principal and Co-Principal Investigator for
many projects. He is an ACM member, and a Senior member of the
IEEE Communications Society as well as the IEEE Education Society,
where he participates in the Standards Committee. His main research
interests are: 5G advanced architectures including edge computing;
flexible and programmable future end-to-end networks; IoT communi-
cations and applications. He is also interested in vehicular communica-
tions, mobility, and smart cities deployments. Prof. Marquez-Barja is
co-leading the Citylab Smart City testbed, part of the City of Things
programme, located in Antwerpen, Belgium. Prof. Marquez-Barja has
been given several keynotes and invited talks in different major events,
as well as received 25 awards in his career so far, and co-authored
more than 100 articles. He is also serving as Editor and Guest editor
for different International Journals, as well as participating in several

Technical Programme and Organizing Committees for several worldwide conferences/congresses.

Enabling Virtual Radio Functions on Software Defined Radio…

1 3

Luiz DaSilva holds the chair of Telecommunications at Trinity College
Dublin, where he is the Director of CONNECT, the Science Founda-
tion Ireland Research Centre for Future Networks and Communica-
tions. Prior to joining Trinity College, Prof DaSilva was a tenured pro-
fessor in the Bradley Department of Electrical and Computer
Engineering at Virginia Tech. His research focuses on distributed and
adaptive resource management in wireless networks, and in particular
radio resource sharing and the application of game theory to wireless
networks. Prof. DaSilva is a principal investigator on research projects
funded by the Science Foundation Ireland and the European Commis-
sion. Prof DaSilva is a Fellow of Trinity College Dublin, and a Fellow
of the IEEE, for contributions to cognitive networks and to resource
management in wireless networks

Sofie Pollin obtained her Ph.D. degree at KU Leuven with honors in
2006. From 2006–2008 she continued her research on wireless com-
munication, energy-efficient networks, cross-layer design, coexistence
and cognitive radio at UC Berkeley. In November 2008 she returned to
imec to become a principal scientist in the green radio team. Currently,
she is associate professor at the electrical engineering department at
KU Leuven. Her research centers around Networked Systems that
require networks that are ever more dense, heterogeneous, battery
powered and spectrum constrained. Prof. Pollin is BAEF and Marie
Curie fellow, and IEEE senior member.

	Enabling Virtual Radio Functions on Software Defined Radio for Future Wireless Networks
	Abstract
	1 Introduction
	2 Definitions
	2.1 Softwarization
	2.2 Virtualization
	2.3 Orchestration
	2.4 Radio Function
	2.5 Summary of Definitions

	3 An Overview of Related Work on Network Reconfigurability
	3.1 Network Function Virtualization
	3.2 Software Defined Networking
	3.3 Software Defined Radio

	4 Virtual Radio Function and Its Realization on SDR
	4.1 Virtual Radio Functions
	4.2 The Realization of VRF on Embedded SDR
	4.3 Spectrum Virtualization Layer on Embedded SDR

	5 Conclusions
	Acknowledgements
	References

