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Abstract: Microorganisms represent most of the biodiversity of living organisms in every ecological
habitat. They have profound effects on the functioning of any ecosystem, and therefore on the
health of our planet and of human beings. Moreover, microorganisms are the main protagonists in
food, medical and biotech industries, and have several environmental applications. Accordingly, the
characterization and preservation of microbial biodiversity are essential not only for the maintenance
of natural ecosystems but also for research purposes and biotechnological exploitation. In this
context, culture collections (CCs) and microbial biological resource centres (mBRCs) are crucial for
the safeguarding and circulation of biological resources, as well as for the progress of life sciences.
This review deals with the expertise and services of CCs, in particular concerning preservation
and characterization of microbial resources, by pointing to the advanced approaches applied to
investigate a huge reservoir of microorganisms. Data sharing and web services as well as the
tight interconnection between CCs and the biotechnological industry are highlighted. In addition,
guidelines and regulations related to quality management systems (QMSs), biosafety and biosecurity
issues are discussed according to the perspectives of CCs and mBRCs.
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1. Introduction

Microorganisms and their activities have pervasive, extraordinarily profound effects on the
functioning of any ecosystem, and therefore on the health of our planet and of human beings [1].
Microorganisms are everywhere; they represent most of the biodiversity of living organisms in every
ecological habitat. In basic sciences, they are fundamental for the understanding and interpretation of
biochemical reactions and metabolic pathways in microbial ecology research in relation, for example,
to global climatic changes or societal emergences.

The coined term “microbial resources” denotes taxonomically defined, physiologically
well-characterized, genetically stable, authenticated, well-documented, quality-controlled and
long-term preserved strains of viruses, bacteria, archaea, fungi or protists [2].

Actually, the study and the preservation of microbial diversity are recognized as essential not
only for the maintenance of natural ecosystems but also for research purposes and the development of
applications in the biotech and food industries.

In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) play
a pivotal role in the safeguarding and circulation of biological resources and are fundamental for
the progress of life sciences. Both are ex-situ repositories for biodiversity and providers of useful
microorganisms (living cells and their replicable parts) and related information, for research and
environmental and industrial application [3,4].

CCs reach mBRC status after having implemented both the Best Practice Guidelines defined by
the Organization for Economic Cooperation and Development (OECD) and certified and/or accredited
quality-assurance processes, according to dedicated standard norms [5].

Thus, mBRCs operate in a quality-controlled manner [2] and fulfil the quality standards required
by the industry and by the scientific community [6]. This makes mBRCs key elements in sustainable
international scientific infrastructures for the development of biotechnologies and the bioeconomy as
well as in facing societal challenges.

This review deals with the services and expertise of public CCs, in particular concerning the
preservation and characterization of microbial resources, by pointing to the advanced approaches
applied in order to investigate a huge reservoir of microorganisms, including those that still need to be
disclosed and exploited. Data sharing and web services as well as the tight interconnection between
CCs and the biotechnological industry are also highlighted. In addition, guidelines and regulations
related to quality management systems (QMSs), biosafety and biosecurity are discussed according to
the perspectives of CCs and mBRCs.

2. Culture Collections and Biological Research Centre Networks: the European and Italian
Scenarios

Europe has played a pioneering role in the preservation of biological resources. The first public
CC was created at the end of the 19th century at the German University of Prague. Within a few years,
numerous other important collections arose in several European countries, which currently support a
high number of CCs and host the largest and most diverse mBRCs. Most of these CCs are corporate
members of the European Culture Collections Organisation (ECCO, https://www.eccosite.org/) that
was established in 1981 with the aim of promoting collaboration and exchange of ideas and information
about all aspects of the activity of CCs. Actually, 250 European CCs are registered in the World Data
Centre for Microorganisms (WDCM, http://www.wfcc.info/ccinfo/), whose collections house more than
1.2 million strains.

Similar initiatives are underway in the USA [7–9], Asia [10] and South America [11]. The global
CC community mainly interacts through the activities of the World Federation for Culture Collections
(WFCC, https://www.wfcc.info), which actually involves 789 CCs from 77 Countries.

These networking activities are fundamental to increase the quality and efficiency of the
management of CCs; most of these, indeed, have to face common challenges, i.e., the adoption of
appropriate quality control, safety, security and legal procedures (although the latter may differ among

https://www.eccosite.org/
http://www.wfcc.info/ccinfo/
https://www.wfcc.info


Microorganisms 2019, 7, 685 3 of 18

different countries), as well as the need for taxonomic, systematic and bioinformatic expertise. Often,
these challenges must be faced with limited staff resources and an insufficient financial commitment,
which makes it difficult to maintain high standards and to guarantee excellent services [2,8].

Examples of these networking activities are the Microbial Information Network Europe (MINE),
Common Access to Biological Resources and Information (CABRI), European Biological Resource
Centre Network (EBRCN) and the European Consortium of Microbial Resource Centres (EMbaRC),
at European level, and the Global Biological Resource Centre Network (GBRCN) at global level.
These networks developed strategies to transform CCs into mBRCs. They made many efforts, with
some relevant results, for the establishment of a suitable accreditation system, the definition of common
standards and procedures, and the implementation of integrated on-line catalogues to facilitate
consultation by the stakeholders.

The most recent and important activity of collections and research institutions in Europe is
MIRRI (Microbial Resource Research Infrastructure, http://www.mirri.org), which was launched
in 2010 as biomedical research infrastructure within the European Strategy Forum on Research
Infrastructures (ESFRI, https://www.esfri.eu/) initiative. MIRRI seeks to improve access to high quality
microbial resources and to associated services and (meta) data by creating a pan-European, distributed
infrastructure of CCs, mBRCs and stakeholders [4,12–14].

MIRRI, in November 2018, applied for its implementation in a European Research Infrastructure
Consortium (ERIC) able to bring mBRC partners under a single legal umbrella supported by interested
European member states. The foreseen configuration of MIRRI-ERIC currently involves 10 countries
that have already signed a memorandum of understanding (Belgium, France, Greece, Italy, Latvia,
Poland, Portugal, Russia, Spain and The Netherlands). They are called to provide financial support to
the implementation of the Central Coordination Unit (CCU) that will serve as the executive management
office, as well as, on a national level, their own national node (NN) and serve the needs of the national
community. While the CCU is clearly defined at the European level by an agreement among interested
countries, the NNs may follow various forms in order to adapt to the national context.

Regarding the Italian scenario, there are numerous CCs, which preserve a huge amount of
biological resources that include bacteria, yeasts, filamentous fungi, microalgae, protozoa, plasmids,
cyanobacteria, archaea, virus, phages and cell lines. However, many of these collections, including
some hosted by universities and research centres, do not follow relevant international standards,
and their databases are not always accessible on-line. In some cases, their existence is known solely
through publications, conferences or just personal contacts. Some collections are constituted for special
purposes or within the frame of specific projects and sometimes their maintenance is strictly dependent
on research targets, resources and facilities, as well as specific interests of the scientists involved. Up to
now, coordination among these collections has still been limited.

In September 2017, a joint research unit (JRU), named MIRRI-IT (Microbial Resource Research
Infrastructure – Italy, http://www.mirri-it.it), was founded by the Universities of Torino, Perugia,
Modena and Reggio Emilia, the San Martino University Hospital of Genoa, and the Italian National
Research Council (CNR). Actually, sixteen new associated members harbouring distinct collections
joined the MIRRI network afterwards (Table 1).

The mission of MIRRI-IT is to overcome fragmentation in availability of resources and services
offered by the Italian system of mBRCs and CCs, while enhancing the quality management system of the
collections, focusing on the needs and challenges of the stakeholders interested in the biotechnological
transfer of these resources. The main activities of MIRRI-IT are indicated in Scheme 1.

http://www.mirri.org
https://www.esfri.eu/
http://www.mirri-it.it
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Table 1. Partners and associated member of the joint research unit MIRRI-IT.

MIRRI-IT* Partners 1 and Associated Members 2 Culture Collections Biological Resources (Main Taxa) Isolation Sources (Category)

Research Centres:

Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico
sostenibile (ENEA) 2 ENEA collection Bacteria, Fungi, Microalgae, Microbial consortia, Virus

Contaminated sites, Hypogea and archaeological
sites, Food, Lake sediments, Sea, Soil,
Rhizosphere, Water

Agenzia regionale per la ricerca in agricoltura, (Agris Sardegna) 2 Bonassai (BNSS) Bacteria (Actinobacteria, Bacteroidetes, Firmicutes,
Proteobacteria) Animals, Food

Consiglio Nazionale delle Ricerche (CNR) 1 Agro-Food Microbial Culture Collection (ITEM) Bacteria, Filamentous fungi, Yeasts Air, Insects, Food, Plants, Soil
Plant Viruses Italy (PLAVIT) Mycoviruses, Phytoplasmas, Phages Plant viruses Fungi, Plants

IRCCS Ospedale Policlinico San Martino of Genoa 1 Interlab Cell Line Collection (ICLC) Cell lines
Istituto Nazionale Malattie Infettive (INMI) “Lazzaro Spallanzani”, Roma 2 INMI collection Bacteria, Yeasts Humans, Clinical isolates

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste (OGS) 2 Collection of Sea Microorganisms (COSMI) Microalgae (predominantly
Bacillariophyceae, Dinophyceae,) Marine environments

Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia
Romagna (IZSLER) 2 Biobank of Veterinary Resources (BVR) Cell lines, Bacteria, Fungi, Parasite, Virus Animals, Feed, Food, Environments

Istituto Zooprofilattico Sperimentale delle Venezie (IZSVE) 2 European Union Reference Laboratory (EURL) Biobank Viruses, Antigens, Polyclonal antisera Animals

Universities:
Sapienza University of Rome, Department of Environmental Biology 2 Fungal Biodiversity Laboratory (FBL) Saprotrophic fungi Litter, Contaminated sites, Soil, Water
University of Cagliari 2 DSMSP Collection Bacteria, Moulds, Yeasts Beverages, Environments, Food
University of Basilicata, School of Agricultural, Forestry, Food and
Environmental Sciences 2 UNIBAS Yeast Collection (UBYC) Yeasts Beverages, Food

University of Genoa 2 Collection of DISTAV (ColD) Bacteria, Fungi, Yeasts Extreme environments, Human cadaver
University of Milano-Bicocca 2 MicroMiB collection (MicroMib) Bacteria, Yeasts, Virus Humans, Environments, Food

University of Modena and Reggio Emilia 1 Unimore Microbial Culture Collection (UMCC) Bacteria (Lactic Acid Bacteria, Proteobacteria),
Yeasts (Ascomycota) Beverages, Food

University of Naples “Federico II”, Department of Biology 2 Algal Collection University Federico II (ACUF) Cyanobacteria, Microalgae Aeroterrestrial habitats, Environments
University of Palermo, Department of Agricultural, Food and Forest Sciences 2 Herbarium SAF (SAF) Macrofungi Ascomata, Basidiomata
University of Pavia, Department of Earth and Environmental Sciences 2 Amico Fungo Filamentous Fungi, Yeasts Soil, Contaminated sites
University of Perugia 1 Industrial Yeasts Collection (DBVPG) Yeasts, Yeast-like organisms Beverages, Environments, Food

University of Sassari 2 Microbial Culture Collection of University of
Sassari (UNISS)

Bacteria (Firmicutes, Proteobacteria), Filamentous fungi,
Yeasts (Ascomycota, Basidiomycota)

Agricultural by-products, Animals, Beverages,
Environments, Food, Plants, Humans

University of Turin 1 Turin University Culture Collection (TUCC) including
Mycotheca Universitatis Taurinenesis (MUT)

Bacteria (Firmicutes, Lactic Acid bacteria,
Proteobacteria) Filamentous fungi (Ascomycota,
Basidiomycota, Mucoromycota), Yeasts

Animal and human clinical Samples, Extreme
environments, Food

University of Tuscia, Department of Ecological and Biological Sciences 2 Culture Collection of Fungi from Extreme
Environments (CCFEE) Filamentous and Meristematic fungi, Lichens, Yeasts Monuments, Contaminated sites, Rocks, Soil

* www.mirri-it.it; 1 = partners of MIRRI-IT; 2 = associated members of MIRRI-IT.

www.mirri-it.it;
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Scheme 1. Main activities of the joint research unit MIRRI-IT.

3. Services and Expertise of mBRCs

The central and crucial goals of mBRCs are the collection, preservation and distribution of
microbial strains, together with the supply and exchange of related information [5]. These goals can
be achieved by directing resources towards fundamental services and expertise related to (i) specific
conservation and quality assurance; (ii) identification, authentication and taxonomic classification;
(iii) data management and sharing.

Modern approaches in research and development of biotechnology should suggest that the
cultures of microorganisms described or mentioned in publications and patent applications should
be publicly available for independent studies [4]. It is thus strategic for mBRCs to keep and preserve
representative and type microbial strains, as well as their potential value, for industry, medicine,
agriculture and other scientific activities. Moreover, mBRCs should be able to attract investments in
the biotechnological sector and support the development of the regions to which the mBRCs belong.
Accordingly, safe deposit facilities and screening services are included in the core capabilities of
mBRCs [15].
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Moreover, mBRCs recognized as an international depositary authority (IDA) are repositories of
microorganisms for patent purposes. The IDAs must comply with uniform rules and regulations
including forms recommended under the international treaty signed in Budapest (Hungary) in 1977 [16].

Education and training (E&T) are other relevant services offered by mBRCs. Despite the widely
recognized importance of E&T in technology transfer and innovation, multiple factors undermine the
effective transfer of the know-how and expertise provided by mBRCs to academic and industrial users.
However, since the demand for E&T has increased, mBRCs should rely on more updated methods
and tools for improving the attractiveness of their content delivery while heightening awareness
and visibility through cost-efficient and targeted advertising [1]. Therefore, playing a pivotal role in
training new researchers, mBRCs may take a leading position in research infrastructures aimed at
technology innovation.

3.1. Preservation of Biological Resources

Different techniques are widely used for ex-situ preservation and maintenance of microbial
resources. These include sub-culturing on fresh media, preservation on agar beads or gelatine discs,
storage in sterile soil, mineral oil, silica gel storage, spray-drying, cryopreservation, lyophilisation,
liquid-drying, desiccation and vitrification [17].

According to WFCC and OECD guidelines, at least two techniques should be applied for the
preservation of each microbial culture and cell stocks (master and working stocks). In addition,
locally-redundant storage in separate places should be established to reduce the risk of accidental
loss [18,19]. Preferably, different preservation techniques should be used to guarantee long-term
maintenance and stability of the culture by reducing metabolic activity as much as possible.
Cryopreservation and lyophilisation (or freeze-drying) are considered the most valuable and reliable
methods for long-term maintenance of a wide range of biological resources [20]. However, they cannot
be applied so effectively in a few microorganisms; complete preservation failure or reduced viability
due to cell damage during the cooling and/or drying stages affects some bacteria, cyanobacteria and
fungi (in particular non-sporulating cultures) or microalgae [21,22].

Therefore, preservation methods and customized protocols must be achieved for specific
microorganisms by setting different parameters, e.g., suitable suspension media, cells concentration,
kind of protectant and cooling rates [23,24]. Generally, freeze-drying is the preferred method for
transporting and storing microbial cultures because it offers many advantages over other preservation
techniques, including the total sealing of the specimen and protection from infection [25]. Validation of
preservation protocols must also be carried out to ensure their reproducibility and reliability in order
to assess the viability, purity, identity and stability of the preserved biological material [6]. Indeed,
the composite contribution of both the adopted preservation techniques and genetic backgrounds of
preserved cultures may unpredictably modify (or even lose) important technological properties [26].
This aspect may pose a serious challenge to preserving copies of genetically identical strains in different
CCs [27,28]. Therefore, an extensive pre- and post-preservation characterization of cultures based on
morphological, physiological, metabolic grounds and DNA analysis is required [24,29].

Usually, CCs do not supply mixed cultures, microbial consortia or microbiome samples; there are
only minor exceptions relating to the provision of mycoparasites [9]. However, the MIRRI community
is aware that, despite the difficulty, the preservation of complex microbial communities represents a
challenge for the future. The difficulties are primarily due to the lack of an effective cryopreservation
regime to optimally store both freeze tolerant and sensitive components of microbial community.
CCs already face challenges related to the presence of viruses and/or bacteria within other organisms
(i.e., filamentous fungi): how they can affect the phenotype of the host from a morphological and
metabolic point of view [30]; how they can be quickly identified and how to characterize and conserve
these microbiomes. The proper conservation of complex samples (soil, sediment, water, etc.) including
their microbiomes is a future goal of the MIRRI community and, more in general, of the world
microbiology community.
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Indeed, several biological resources, e.g., strict anaerobes, archaea, extremophiles, fastidious
bacteria, newly discovered taxa, non-sporulating fungi and viruses still require more extensive research
in terms of growth optimization [29]. Furthermore, most of the microbiota occurring in some distinct
niches and habitats or in extreme ecosystems such as caves, desert soils, marine water, hypersaline
areas, and glaciers, cannot be cultured using standard laboratory techniques. This causes a great
limitation in the exploitation of those specific microbial consortia which can be of ecological, medical
or industrial interest [31].

Approximately only 1% of the actual microbial biodiversity is represented as cultured organisms,
while the characteristics and functions of the remaining 99% are unknown [31]. Thus, hiring of new
expertise and methodologies for cultivation of the recalcitrant microbial resources represents a crucial
challenge for MIRRI CCs [32].

Usually, nutrient-rich culture media are successfully used to enhance faster-growing
microorganisms at the expense of slow-growing ones. Therefore, nutrient poor media and extended
incubation times (20–24 weeks) are usually employed to increase the number of oligotrophic
microbes [33].

Some species can be isolated at lab scale only if co-cultivated with helper strains that release
signalling molecules or specific growth-promoting factors. These molecules, when recognized, are
added to the medium in order to isolate the single strain from the syntrophic species [34].

Furthermore, several advances have been made in cultivation techniques exploiting transwell
plates, optical tweezers and laser microdissection, microbioreactors, or, lastly, novel diffusion bioreactors.
The latter are based on a diffusion chamber that allows for the passage of necessary elements from the
natural environments into the inner chamber containing the medium, which has been inoculated for
enrichment [34–36].

Improvements regarding viruses difficult or impossible to grow on cell culture have been made
with the advent of three-dimensional (3-D) cell culture methods [37–40]. In particular, “mini-intestines”
or intestinal organoids provide a powerful model to propagate enteric viruses and to study viral
infection, pathogenesis, and virus-host interaction [41,42].

3.2. Characterization of Biological Resources

The correct characterization of preserved microorganisms is one of the main issues of the CCs that
should guarantee both the authenticity and identity of the preserved microbial resources. MIRRI-ERIC
have taken the first solid steps towards the development of a coordinated strategy to ensure that
authentic high-quality microbial resources are available. In particular, suitable methods for the correct
identification of microbial strains rely on well-defined multiloci sequence analysis combined, for some
genera, with biochemical profile assessment (metabolites and/or extrolites). Concerning bacterial
identification, partial or full length gene sequencing of 16S rRNA is considered as the ‘gold standard’
since it allows reconstruction of a global phylogeny [43]. For fungal identification, the internal
transcribed spacer (ITS) region, has been defined as a general barcode sequence, but for a reliable
taxonomic resolution of both yeasts and filamentous forms, it needs to be supported by additional
gene sequencing (beta-tubulin, calmodulin, actin, elongation factor, RPB2, etc.) in relation to the
specific targeted genera [44–46]. Genome-wide genotyping techniques such as amplified fragment
length polymorphism (AFLP), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing
(MLST) can be also applied. In yeast species, the use of domains 1 and 2 (D1/D2) of the LSU rRNA gene
in association with the ITS region is widely accepted as a powerful tool for rapid species identification
and presumptive detection of previously unknown lineages [47]. Moreover, yeast identification in
clinical diagnostics is widely supported by commercial biochemical tools like API ID32C, AuxaColor,
and VITEK 2 systems [48]. However, in recent years matrix assisted laser desorption ionization-time of
flight mass spectrometry (MALDI-TOF MS) has been used as a potential tool for bacterial identification
and diagnosis [49,50]. Other interesting automatic techniques developed for the identification and
characterization of bacteria and yeast strains are Biolog and ribotyping [51,52].
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Besides characterization and authentication of the microbial resources, considerable impact on
new knowledge about microbial diversity comes from high-throughput sequencing techniques, which
highlight, at a faster rate than traditional methods, a large number of undescribed (often unculturable)
species from environmental samples.

Molecular tools, namely next-generation sequencing (NGS) technology, RNA seq, and
transcriptomic and metagenomic approaches, have exponentially increased the detection of microbial
biodiversity [53]. For instance, NGS has been used to uncover new fungal lineages not yet described [54].
The NGS data also increase the possibility to perform “whole genome comparison” for a better
assignment of closely related microbial taxa, improving the analysis of genotypic-phenotypic
relationships among different strains. In addition, the advent of NGS third generation (PacBio
and Oxford Nanopore) has increased the availability of complete genomes, especially in bacteria,
thus offering a valuable tool for the study of chromosomic rearrangements, repeats and translocations.
It is noteworthy that, with the progressive reduction in NGS costs, it is expected that identification of
novel species will be based on their entire genome [55]. In addition, genome sequences of correctly
described species can be used as reliable reference to infer taxonomic lineages of so-far-uncultured
microbial species in natural populations. For this reason, future taxonomic work should be conducted
in silico using approaches such as GBDP (Genome Blast Distance Phylogeny) [56,57].

Therefore, mBRCs will play a crucial role in the coordination of sequencing programs by providing
standardized and high-quality DNA of existing type strains. Other far-reaching advances evolved
from NGS DNA sequencing along with new high-throughput phenotyping technologies are based on
the use of large scale approaches to inspect how genetic instructions from a single gene or even the
whole genome translate into the full set of phenotypic traits of an organism, namely “phenomics” [58].
The area of phenomics is the acquisition of high-dimensional phenotypic data on an organism-wide
scale; for microorganisms, it could be performed through phenotype microarrays (PMs), or using
Biolog substrate utilization data or an additional large-scale phenotypic monitoring system. However,
phenomics is often hampered by the lack of good bioinformatics tools able to extract, organize in
searchable databases and compute these data. Recently, the microbial phenomics information extractor
(MicroPIE) was developed for extracting information from prokaryotic taxonomic and phenotypic
descriptors [59]. In this respect, it is critical that the community and especially the mBRCs must take an
active role in collecting, organizing and maintaining updated genotypic and phenomics data deemed
worthy of long-term storage.

Therefore, ideally, mBRC bionformatic facilities should implement in-house databases to host the
output from automated genome annotation pipelines and phenomics platforms along with software for
basic genomic/phenotypic comparison analysis. Nevertheless, the ability to integrate local inquiry with
those from publicly accessible bioinformatics platforms is advisable. Many bioinformatic platforms
have been developed in the last decade, containing multidisciplinary data collected from public
sequence data archives and enriched by direct submissions of external scientists. One of the most
complete and integrated platforms is the Integrated Microbial Genomes & Microbiomes system v.5.0
(IMG/M, https://img.jgi.doe.gov/m/); it contains annotated datasets categorized into archaea, bacteria,
eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts,
and metatranscriptomes. On this platform, a plethora of complex comparisons and analyses of
genomes, metagenomes and metatranscriptomes can be run by a registered user [60].

Networking among mBRCs themselves, with these platforms, will be fundamental in the future
to harmonize the information through ambiguity and redundancy removal.

These demands come within the much wider context of the effort in management of digital data,
so-called “big data”. Therefore, it is important, and the MIRRI project is addressing this, to revisit
and provide systems architecture that can cope with big data characteristics with the aim both to hide
accessing and managing data complexity and fulfil application requirements [61].

https://img.jgi.doe.gov/m/
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3.3. Databases and Data Sharing

Besides the issue related to big data management, data management itself has become an urgent and
fundamental issue. Indeed, the need for proper data management procedures has been a well-known
issue for mBRCs for decades. In this respect, the databases held by mBRCs with information on
cultured strains need efficient and well-adapted data infrastructures. A greater standardization of such
infrastructures is requested, since they are still mostly inhomogeneous, although often making reference
to information for which data have been described already in the past. The level of computerization
varies between mBRCs, ranging from data managed by use of relational databases to simple spreadsheet
software, and this makes standardization efforts difficult. It is also worth mentioning that these culture
collection information systems vary from simple collection of identification information to complex
analysis platforms including experimental data, able to perform some simple bioinformatic analyses.

Current databases mainly include information on the resources (identification, molecular
characterization, physio-chemical characterization), their history (provenance, acquisition, etc.) and
their practical management (aliquots, storage, etc.). These databases are the starting point for the
production of catalogues that can be offered on-line and made searchable or distributed, e.g., by allowing
users to download them. The main objectives of these databases are the internal management of
resources and the presentation of resources to potential customers for acquisition.

3.3.1. Data Modelling and Interoperability

Data modelling is fundamental for every database development. It consists of the initial and
detailed definition of all the information to be included in the database, their appropriate types and
formats and of the logical inter-relationships between them. Such definitions must specify single
data, their types (e.g., floating number, free or encoded text, date, enumeration), associated values
and insertion and validation methods. Also fundamental is the definition of relations between data
and additional information related to the management of data, so called metadata, which include,
e.g., information on the data acquisition procedure, information on the person who carried out the
insertion/update of data, and other management data.

For CCs, such data modelling has never been raised to a standard level, even if many standards
were developed for the definition of information to be included in a collection database for a proper
identification and characterization of resources effort [19,62–64]. In addition, a new ISO standard
is being developed by the Biotechnology Technical Committee (TC 276) on “Specification on data
management and publication in microbial resource centres” (https://www.iso.org/standard/71384.html).

As a result of lack of standard data models, information cannot be easily exchanged. Collections’
databases should not be considered as standalone information systems, but they must interact with other
bioinformatics systems, with the aim of achieving a global view of data available on strains, improving
access to collections’ databases and including detailed information on strains from bioinformatics
databases, e.g., experimental results.

Integration of databases mainly consists of identifying links among existing information, adopting
common formats for data interchange and implementing applications-driven data interchange [65].
Overall, mBRC information systems should allow access through integration software, such as
workflow management systems.

3.3.2. Recommendations for Collections

Some recommendations can be provided to CCs for improving the quality of their databases and
allowing the integration of their contents with other life sciences information sources on the basis of
the above considerations.

A special effort must be made for designing the data model and the procedures for data
management. The contents of the catalogue must be revised on the basis of shared data sets and
standards. It is essential that the information is encoded according to existing taxonomies and databases,

https://www.iso.org/standard/71384.html
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e.g., for scientific names. In order to allow the establishment of bidirectional links with bioinformatic
databases, it is necessary to identify all reference databases (e.g., taxonomy, chemical compounds,
molecular pathways) and include in the collection database the identifiers of all referenced information.

Due to the special knowledge and expertise of the community of collections’ curators, an effort
should be made to support the definition of standard formats for the information that is specific for the
description of all relevant organism types. Pushing for the widespread awareness of such formats and
for their adoption by managers of bioinformatics databases and tools would then be needed to make
appropriate description of resources in external information sources possible.

Finally, the adoption of standard formats for delivering information and the implementation of
state-of-the-art programming interfaces would allow a true and effective interoperability of collection
information systems with the bioinformatics environment of databases and software.

4. Exploitation of Biological Resources and Connection Between Industry and mBRC: A Focus on
Food Applications

Microbial resources are essential in numerous practical applications, among which are the
production of food and beverages, fine chemicals, enzymes, biofuels, vaccines, antimicrobials, antibiotics
and heterologous proteins. They also find application as biocontrol agents of plant and animal diseases,
as indicators of environmental quality and in bioremediation processes [15,66,67]. Additionally,
microbes and/or their enzymes play a vital role in transforming renewable raw materials, such as
biomass, residues and CO2, into a huge portfolio of products (Europabio, https://www.europabio.org/).

Some microalgae, for example, could reduce CO2 emissions, contribute to wastewater treatment,
or compete with environmental microbial contaminants, thus being useful for the realization of
sustainable industrial processes, and could also find application in the food industry [22].

Accordingly, microbial resources play a vital role in biotechnology innovation (Figure 1) and their
exploitation in food [68–70], industry [71], medicine [72–75], and the environment [76–78] is widely
reported in literature.

Microorganisms 2019, 7, x FOR PEER REVIEW 11 of 18 

 

Many papers dealing with the positive effects of fermented food and related microorganisms 
and compounds have been published, and a comprehensive overview of health-promoting activities 
and compounds, per raw food matrix and related fermenting microorganisms is reported in the 
review published by Melini and co-workers [83]. 

Actually, a few companies are approaching food technologies using a relatively small number 
of commercial starter strains, thus causing both the detriment of the natural microbial community 
and the flattening of flavour and taste of fermented products [86,87]. 

The loss of microbial biodiversity in fermented foods could have negative results both for the 
products’ peculiar sensory characteristics and for human health. Indeed, consumers have shown to 
be increasingly attracted by peculiar traditional foods and willing to go back to their ancient flavours, 
as opposed to standardized ones. The large-scale use of microorganisms preserved in CCs and 
coming from traditional fermentation processing is, therefore, now becoming extremely important. 

Indeed, it could not only allow the traditional taste of fermented foods to be recovered, but also 
new, natural fermented food and beverages to be obtained, able to provide health and nutrition 
benefits and preventing the loss of many species and strains useful for human health [82,83]. 

 
Figure 1. Main fields for the exploitation of microorganisms and examples of their applications. 

5. mBRC Regulations and Guidelines 

The management of biological material is regulated by several national and international laws, 
norms and regulations concerning, among them, biosafety and biosecurity, intellectual property 
rights, traceability and legality of the microbial resources acquired [6,26]. Thus, the establishment of 
a global CC and mBRC network is central for harmonizing the exchange and the use of microbial 
resources and data, both for basic and applied research purposes. During the last decades, new laws 
and regulations have been introduced to regulate and formalize the exchange and the exploitation of 
genetic resources, including microorganisms, according to the convention on biological diversity [88], 
the Nagoya Protocol [89] and the EU Regulation N. 511/2014 [90]. The aim is to ensure the maximum 
benefits for academic entities and countries from which resources come from, and people worldwide, 
thereby contributing to the conservation and sustainable use of biodiversity. Other important 
normative references that the CCs must take into consideration are, for example, the regulations 
90/219/EEC [91] and 98/81/EEC [92] concerning genetically modified organisms (GMOs), if they 
preserve this type of microorganisms within the collection, and the General Data Protection 
Regulation (GDPR) EU 2016/679 [93] related to the protection of personal data. The privacy regulation 
is particularly relevant for all CCs that preserve microorganisms isolated from human samples. 

5.1. Quality Management System 

Figure 1. Main fields for the exploitation of microorganisms and examples of their applications.

Indeed, the availability of certified microbial strains has to be the starting point of the selection of
microorganisms exploitable in modern biotechnologies [15,79,80]. In this context, the role of mBRCs
and CCs is fundamental, even the small ones, in preserving bioresources and related data to be
provided for study, innovation and development [81]. In fact, the vast biodiversity preserved in CCs
virtually ensures the probability of finding exceptional strains with desired properties [5].

Moreover, an increasing number of researchers are using microbial collections for large screening
programs with the common intention of exploring the potential of bioresources herein preserved [15].

https://www.europabio.org/
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Therefore, industry should be persuaded to favour a long-term in-situ preservation of microbial
strains by offering core support for mBRCs. Accordingly, CCs should move beyond their historical
(“botanical”) context by developing commercial products and biotechnological solutions, through
the screening and selection of suitable strains, and funding them through public/private investment,
as well as establishing spin-off companies [5].

A global research plan, investigating microbiomes in soil, water, plants, animals, food, and
human gut, would also be desirable to improve knowledge and exploitation of natural resources, share
expertise and infrastructures, ensure microorganism use in research and innovation, and to promote
health [82].

The worldwide food industry widely exploits microorganisms for the production of fermented
food and beverages from different types of raw material, such as milk (e.g., yogurt, kefir, cheese),
vegetables (e.g., pickles, sauerkraut, kimchi, tempeh, kombucha), fruit (e.g., wine, table olives), cereals
(e.g., sourdough bread, beer, miso), meat (e.g., salami, sausages), and fish (e.g., fish paste) [83].

Recently, fermented food consumption has been getting a new boost, even in most developed
countries, because of the health-promoting functions attributed to live microorganisms (bacteria, yeasts,
and moulds) colonising these kinds of products and/or their metabolites [84]. Indeed, fermented
foods can be considered as a reservoir of beneficial viable microorganisms able to survive the passage
through the human gastro-intestinal tract and colonise the gut, exerting an important role in health
preservation and promotion [85].

Many papers dealing with the positive effects of fermented food and related microorganisms and
compounds have been published, and a comprehensive overview of health-promoting activities and
compounds, per raw food matrix and related fermenting microorganisms is reported in the review
published by Melini and co-workers [83].

Actually, a few companies are approaching food technologies using a relatively small number of
commercial starter strains, thus causing both the detriment of the natural microbial community and
the flattening of flavour and taste of fermented products [86,87].

The loss of microbial biodiversity in fermented foods could have negative results both for the
products’ peculiar sensory characteristics and for human health. Indeed, consumers have shown to be
increasingly attracted by peculiar traditional foods and willing to go back to their ancient flavours, as
opposed to standardized ones. The large-scale use of microorganisms preserved in CCs and coming
from traditional fermentation processing is, therefore, now becoming extremely important.

Indeed, it could not only allow the traditional taste of fermented foods to be recovered, but also
new, natural fermented food and beverages to be obtained, able to provide health and nutrition benefits
and preventing the loss of many species and strains useful for human health [82,83].

5. mBRC Regulations and Guidelines

The management of biological material is regulated by several national and international laws,
norms and regulations concerning, among them, biosafety and biosecurity, intellectual property rights,
traceability and legality of the microbial resources acquired [6,26]. Thus, the establishment of a global
CC and mBRC network is central for harmonizing the exchange and the use of microbial resources and
data, both for basic and applied research purposes. During the last decades, new laws and regulations
have been introduced to regulate and formalize the exchange and the exploitation of genetic resources,
including microorganisms, according to the convention on biological diversity [88], the Nagoya
Protocol [89] and the EU Regulation N. 511/2014 [90]. The aim is to ensure the maximum benefits for
academic entities and countries from which resources come from, and people worldwide, thereby
contributing to the conservation and sustainable use of biodiversity. Other important normative
references that the CCs must take into consideration are, for example, the regulations 90/219/EEC [91]
and 98/81/EEC [92] concerning genetically modified organisms (GMOs), if they preserve this type
of microorganisms within the collection, and the General Data Protection Regulation (GDPR) EU
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2016/679 [93] related to the protection of personal data. The privacy regulation is particularly relevant
for all CCs that preserve microorganisms isolated from human samples.

5.1. Quality Management System

The implementation of a quality management system (QMS) is one of the major challenges of
MIRRI, which is operating actively on the design of standard guidelines [94]. Indeed, CCs are advised
to start with the WFCC guidelines for the establishment and operation of collections of microorganisms.
Once these principles are established, CCs should move on to apply the requirements of the OECD
best practice guidelines or of specific certifications with different levels of compliance [95,96].

The International Standards Organization norm ISO 9001 (www.iso.org/iso/home/about.htm)
was the first universally recognized standard management system available for many kinds of
organizations (e.g., environmental, health and safety) [97]. This standard deals with the requirements
that companies and organizations have to fulfil when they wish to voluntarily comply with the
standard and helps them to ensure that their products and services consistently satisfy their customer
needs by maintaining regulatory compliance and focusing on continuous improvement. The ISO 9001
certification is frequently used to establish confidence and improve relationships between organizations
and their customers [94,98]. For these reasons, many CCs and mBRCs have introduced ISO 9001 series
(ISO9001:2008 with the new version ISO9001:2015) certification as a benchmark for quality, to achieve
preferred supplier status [12]. Among other general standards applied to microbiology laboratories
the most common are the Good Laboratory Practice (GLP), ISO 17025, ISO 17034:2016 [24,96].

More recently, the ISO 20387, specific for biobanks, was published (https://www.iso.org/standard/

67888.html). ISO 20387 has the objective to promote confidence in biobanking, defining the requirements
for competence in biobank operations, including the ability to provide biological materials and
associated data of appropriate quality for research and development. Several additional guideline
documents will be published in the near future to help the implementation of ISO 20387, regarding the
requirements for the validation and verification of methods used for the quality assurance of biological
materials deposited in biobanks and the requirements for the processing, storage, transportation
and data management of biological materials. In a few years, we will have a panel of documents
that will guide, on a voluntary basis, those CCs/biobanks that want to be accredited and reach a
high-quality status.

5.2. Guidelines on Biosecurity and Biosafety

A globally applicable code of conduct, specifically dedicated to biosecurity was introduced at the
Seventh Review Conference at the Biological and Toxin Weapons Convention (BTWC), United Nations,
Geneva, 2011 [63].

More recently, MIRRI-ERIC has proposed a biosecurity policy to support mBRCs with information
on addressing biosecurity issues. The MIRRI strategy for implementation of biosecurity measures
is based on the risk assessment and the establishment of an institutional biological risk policy with
relevance to risk prevention. These elements lead to measures in biosecurity, which need to be
implemented through harmonized procedures and monitored within a continuous improvement
process [14].

To ensure biosecurity and biosafety, a global approach regarding biological risk management
systems is mandatory for mBRCs. Accordingly, mBRCs must assure adequate oversight of both
personnel and facilities where dangerous biological agents are located. Special precautions must
be taken during collection, processing and storage of the infectious biological materials used for
biobanking, and the laboratories must adopt biological safety level II or III, according to the pathogens
handled [21]. Actually, any kind of activities, not only within but also outside the laboratories,
for instance during the exchange of biological materials, must be taken into account.

Certainly, the degree of control that the mBRCs housing CCs should observe varies and depends on
the type of biological material preserved [99]. Useful guidelines related to biosafety issues are available

www.iso.org/iso/home/about.htm
https://www.iso.org/standard/67888.html
https://www.iso.org/standard/67888.html
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from the Centre for Disease Control (Biosafety in Microbiological and Biomedical Laboratories, V Edition;
https://www.cdc.gov/labs/pdf/CDC-BiosafetyMicrobiologicalBiomedicalLaboratories-2009-P.PDF) and
from the World Health Organization (Laboratory Biosafety Manual, II Edition; https://www.who.int/
csr/resources/publications/biosafety/Labbiosafety.pdf?ua=1).

6. Conclusions and Future Prospects

Since microorganisms play a fundamental role in maintaining natural ecosystems and in
developing valuable applications in the biotech and food industries, the loss of microbial biodiversity
must be opposed and prevented from both an ecological and a socio-economical point of view.
However, despite its undeniable intrinsic value, microbial biodiversity is largely ignored in debates on
the conservation and management of global diversity, possibly due to a generalized misperception of
the microbial world. In fact, on the one side microorganisms are invisible to the naked eye. Thus, their
essential role in the functioning and health of all forms of life on our planet can be easily overlooked.
On the other side, they are often perceived as agents of diseases more than fundamental resources.

CCs and mBRCs have a vital role in the preservation, characterization, management and
exploitation of microbial biodiversity to address societal challenges. Moreover, by guaranteeing the
distribution of high-quality microbial resources they ensure reproducibility and therefore the quality
and credibility of science. In the near future, they will be in charge of the conservation of uncultivable
microorganisms, microbial consortia and microbiome samples, all important challenges that must be
faced in order to safeguard irreplaceable microbial resources to be delivered to future generations.

The organizations involved in mBRC networking activities at the national and supranational
levels are fundamental to increase and harmonize the management of ex situ microbial repositories,
for the circulation of related data and for the standardization of norms and regulations concerning
biosafety and biosecurity, intellectual property, traceability and legality of the microbial resources.

Indeed, all the actors involved at the different levels in the accomplishment of these tasks have to
face problems connected to limited human and economic resources. Thus, it is mandatory to stimulate
the public debate and involve an increasing number of countries in this virtuous process in order to
form enlarged partnerships and also for the achievement of new funding opportunities. MIRRI-ERIC
can serve as a catalyst for this process at both the European and global level.
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