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Abstract
Usage of high-level intermediate representations promises

the generation of fast code from a high-level description,

improving the productivity of developers while achieving

the performance traditionally only reached with low-level

programming approaches.

High-level IRs come in two flavors: 1) domain-specific IRs

designed only for a specific application area; or 2) generic

high-level IRs that can be used to generate high-performance

code across many domains. Developing generic IRs is more

challenging but offers the advantage of reusing a common

compiler infrastructure across various applications.

In this paper, we extend a generic high-level IR to enable

efficient computation with sparse data structures. Crucially,

we encode sparse representation using reusable dense build-

ing blocks already present in the high-level IR. We use a form

of dependent types to model sparse matrices in CSR format

by expressing the relationship betweenmultiple dense arrays

explicitly separately storing the length of rows, the column

indices, and the non-zero values of the matrix.

We achieve high-performance compared to sparse low-

level library code using our extended generic high-level code

generator. On an Nvidia GPU, we outperform the highly

tuned Nvidia cuSparse implementation of SpMV (Sparse-

matrix vector multiplication) multiplication across 28 sparse

matrices of varying sparsity on average by 1.7×.

• Software and its engineering → Parallel program-
ming languages; Compilers.

Sparse Matrix, Code Generation, Dependent Types
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1 Introduction
Achieving high performance on modern parallel hardware

is a challenging task even for experienced programmers.

The trend towards specialized hardware fulled by the end

of Moore’s law makes this even more challenging: Program-

mers in low-level languages are now required to develop

specially optimized solutions for each new hardware target.

It is costly and not always feasible to manually develop op-

timized solutions for new hardware targets. High-level IRs

attempt to address this challenge. They allow the generation

of fast code from a high-level platform-independent program

description. They can target a wide variety of hardware, such

as multi-core CPUs, GPUs and FPGAs, This approach has

been pioneered by projects such as Delite [21], Halide [17],

Lift [19, 20], AnyDSL [13], or more recently in the domain

of machine learning XLA [10] and TWM [5].

Many high-level IRs are domain specific focusing on a

single application domain and exploit domain knowledge

embedded in the high-level programming abstractions gen-

erating optimized code. Examples of these are Halide [17] for

image processing and the tensor algebra compiler TACO [12]

for sparse tensor and linear algebra applications. These code

generators develop their own intermediate representation

geared towards the specific domain, such as iteration graphs
used as an intermediate representation by TACO to express

sparse tensor computations.

Developing specialized tools and infrastructure requires

significant effort for each new domain as reuse is severely

limited. Therefore, several projects attempt to simplify the

development of domain-specific compilers themselves by

providing a reusable high-level IR that is reused across many

domains. Delite [21] pioneered this approach together with

more recent projects such as Lift [19, 20] and AnyDSL [13].

Delite and Lift provide universal parallel patterns as building

blocks to describe computations.

https://doi.org/10.1145/3377555.3377896
https://doi.org/10.1145/3377555.3377896
https://doi.org/10.1145/3377555.3377896
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High-level IRs have to date mostly been used for fast com-

putations over dense data structures, such as higher dimen-

sional arrays known as tensors. While many essential appli-

cations operate on dense data, there are many others – such

as graph algorithms – that naturally operate on sparse data.

Furthermore, in some domains such as deep learning, there

is a push towards greater efficiency by investigating sparse

data representations. There is clearly a need to develop a

high-level IR for efficient computations on sparse data. While

TACO has demonstrated that this is possible using a custom-

designed domain-specific IR, we are interested in exploring

the extension of an existing generic high-level IR to for the

generation of efficient code for computations on sparse data.

In this paper, we show that it is possible to extend a Lift-

like pattern-based high-level IR for the generation of efficient

code computing on sparse data structures. We reuse the exist-

ing design and implementation to keep the extension small,

allowing us to take advantage of the existing infrastructure

as much as possible. Our approach follows the observation

that in low-level programming, programmers are explicitly

encoding sparse data structures in memory buffers storing

dense data. Crucially, sparse matrix formats such as com-

pressed sparse row (CSR) represent a single sparse matrix in

multiple memory buffers that relate to each other: the length

of rows and column indices stored in two dense arrays en-

ables to index the values that are stored in a third array.

We express these relationships in the types of our pattern-

based functional intermediate representation. For this, we

use a limited form of dependent typing, a typing discipline

where types are allowed to depend on runtime values – in

our case the length of arrays is allowed to be represented by

elements of a different array. This work builds upon prior

work [16] that has used dependent typing in a high-level IR

to representing irregularly shaped data structures such as

triangular matrices. This papers significantly extends the use

of dependent types to express relationships between mul-

tiple data structures, enabling the representation of sparse

data structures such as sparse matrices in CSR format.

Our experimental results demonstrate that the proposed

minor extension of the generic high-level IR enables the

generation of efficient code for sparse matrix vector mul-

tiplication on an Nvidia GPU across 28 sparse matrices of

varying sparsity.

In summary, this paper makes the following contributions:

• We describe sparse matrix data types with a limited

form of dependent types allowing to express computa-

tions with existing parallel patterns;

• we describe our compiler implementation generating

efficient OpenCL code for sparse matrix computations;

• we present a detailed performance evaluation demon-

strating the competitive performance of the code gen-

erated form our high-level IR when compared to opti-

mized low-level library code.

map : (T → U ) → [T ]N → [U ]N

reduce : (T → T → T ) → T → [T ]N → T

zip : [T ]N → [U ]N → [(T ,U )]N

split : N → [T ]N ·M → [[T ]N ]M

join : [[T ]N ]M → [T ]N ·M

Figure 1. Data parallel patterns

2 Pattern-Based High-Level Code
Generation

Parallel patterns, aka algorithmic skeletons [8], capture com-

putational patterns for which an efficient parallel implemen-

tation over container data types exists. A small set of generic

parallel patterns has proven to be sufficient as a flexible

and powerful way to represent data parallel computations.

Patterns such as map and reduce are nowadays common vo-

cabulary for describing applications at a high level. These

patterns have been used as the foundation for pattern-based

high-level IRs such as Delite [21] and Lift [19, 20].

Figure 1 shows the small set of data parallel patterns that

is sufficient to express a large class of algorithms across

multiple domains, as demonstrated by Lift.

Figure 2 shows the grammar of a small functional language

that is suitable as a compiler intermediate representation

and is close to the one used by Lift and described here [20].

The two crucial items for representing sparse matrices are

highlighted in the figure.

Expressions in this language are variables, literals, capa-

bility for indexing in arrays and handling pairs. Function

application is either written conventionally with parenthe-

ses or in reverse order using the pipe operator (:>>), finally
expressions can be annotated with their data type.

Functions in this language can be a data parallel pattern,

a function definition (also called a lambda expression), or a
dependent function definition. A dependent function defi-

nition is written as nFun(n => body) where the parameter

n is a variable over natural numbers that can appear in the

type of body or one of its sub expressions.

Data types are either scalar, pair or array types. Array

types are written as [T]N where T is an arbitrary data type

and N is a natural number representing the length of the array.

Note that arrays can be nested to represent arbitrarily deep

nested data structures. For supporting computations over

sparse matrices we add position dependent array types that
allow the data type of elements to depend on the position in

the array. These will be described inmore detail in section 3.1.

Natural numbers describe the length of arrays and are al-

gebraic formulas consisting of variables, literals and compu-

tations over them, including common arithmetic operations
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⟨expr⟩ ::= x variables
| 0 literals
| x @ ⟨expr⟩ indexing into arrays
| (⟨expr⟩,⟨expr⟩) pair construction
| ⟨expr⟩.1 | ⟨expr⟩.2 pair projection
| ⟨function⟩(⟨expr⟩) function application
| ⟨expr⟩ :>> ⟨function⟩ reverse fun. application
| ⟨expr⟩ : ⟨datatype⟩ type annotations

⟨function⟩ ::= map | reduce
| zip | split | join data parallel patterns
| fun(x => ⟨expr⟩) lambda expression
| nfun(n => ⟨expr⟩) dependent lambda expr.

⟨datatype⟩ ::= float | int scalar types
| (⟨datatype⟩, ⟨datatype⟩) pair type
| [⟨datatype⟩]⟨nat⟩ array type

| [i 7→ ⟨datatype⟩]⟨nat ⟩ position dep. array type

⟨nat⟩ ::= n | i variables
| 0 literals
| ⟨nat⟩ + ⟨nat⟩ | ⟨nat⟩ · ⟨nat⟩ arithmetic ops.

| Σ⟨nat⟩
i=⟨nat⟩ ⟨nat⟩ summation

| ⟨bool⟩ ? ⟨nat⟩ : ⟨nat⟩ ternary operator

| toNat(⟨expr⟩) expressions at the type level

Figure 2. Grammar for a data parallel function language

such as addition and multiplication. Notable is the summa-

tion operator, that allows to express formulas such as Σni=0i .
The ternary operator ? allows to express if-then-else style

conditional arithmetic expressions. Boolean expressions are

standard and not shown for brevity. In this paper, we add

the toNat construct allowing to embed expressions – such

as indexing into an array – at the type level. These will be

described in more detail in section 3.3.

Using this language we represent computations such as

the dense matrix vector multiplication as shown in Listing 1.

Here themap primitive is used to compute the dot product

between each row of the matrix mat with the input vector

xs. The dot product itself is expressed in line 4 using the zip,
map, and reduce primitives.

1 nFun(n => nFun(m =>
2 fun(matrix: [[ float]n]m => fun(xs: [float]n =>
3 matrix :>> map(fun(row =>
4 zip(xs , row) :>> map (*) :>> reduce(+, 0)
5 )) )) ))

Listing 1. Dense matrix vector multiplication

The Lift project has shown how this high-level program

can be transformed into high-performance code on a series

of hardware architectures by exploring optimization and im-

plementation choices expressed as rewrite rules. We are keen

to make us of these existing ideas and infrastructure and,

therefore, aim for reusing the same computational patterns

when expression computations over sparse matrices. In this

paper, we propose to use two extensions to the standard

pattern-based functional language for representing sparse

matrices. The two additional constructs are: position depen-

dent array types and toNat for embedding expressions at the

type level. We discuss these extensions in the next section.

3 Representing sparse data
There are many possible approaches for representing sparse

data structures at a high-level. TACO [6] proposed the use of

a specific abstraction for specifying sparse array formats.

This domain-specific representation allows the represen-

tation of many different formats, but requires a matching

domain-specific code generator. Mixing and integrating such

specialized representations with generic representations is

not obvious hindering the development of holistic code gen-

erators that allow to optimize entire applications or that

enable the smooth transition from dense to sparse code.

Generic high-level code generators have to stick to generic

data representations. In some high performance code genera-

tors, such as Accelerate [15], runtime information is injected

in the data structure directly to model irregularity [7]. While

this approach is very flexible, it introduces runtime computa-

tion that could be avoided, and it limits somewhat the range

of possible sparse formats expressed.

In this paper, we advocate an approach to represent sparse

matrix formats using position dependent array types [16]

and by using certain runtime values at the type level using

the toNat construct. We will show how these two additions

are sufficient to express popular sparse matrix formats.

3.1 Position Dependent Array Types
Traditionally, array type requires all elements to be homo-

geneous — they are all of the same type. This important

property guarantees that it is always possible to find the

address in memory of any element using the index of the

element and the element size, which is constant. When the

length of the array is part of the type, as presented in sec-

tion 2, this restricts nested arrays to regularly shaped tensors.

Often this is overly restrictive, but high-level code genera-

tors, like Lift, rely on the encoding of the length of arrays

in the type for generating efficient code.

Prior work [16] introduced the notion of position depen-
dent array types that are a generalization of traditional array
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1 2 0 0 5 0 7 0 9 values : [[float]3]3

1 2 5 7 9 values : [i↦[float]toNat(lengths@i])]3

0 1 1 0 2

2 1 2 lengths : [int]3

1 0 5 7 8 0 values : [i ↦ [float]i+1]3

1 2 5 7 9 values : [i↦[float]toNat(offsets@(i+1)-offsets@i)]3

0 1 1 0 2 col_indices : [i↦[int]toNat(offsets@(i+1)-offsets@i)]3

offsets : [int]40 2 3 5

values : [i↦[(int,float)]toNat(offsets@(i+1)-offsets@i)]3

offsets : [int]4

dense matrix [20]

LIL matrix

triangular matrix [16] 

CSR-unpacked matrix

CSR-packed matrix

0 2 3 5

(0,1) (1,2) (1,5) (0,7) (2,9)

a) static shape

b) dynamic shape

col_indices : [i↦[int]toNat(offsets@(i+1)-offsets@i)]3

Figure 3. Layout and data types for representing matrices.

types allowing a limited degree of heterogeneity. More pre-

cisely, the type of the elements is allowed to depend on their

position within the array itself. We write these arrays as:

[i 7→ T ]N

whereN is a natural number denoting the length of the array,

i is a natural number variable ranging from 0 up to N − 1,

representing the indices. Finally, T is a data type that might

contain i . As the only type containing natural numbers is

the array type representing the length of arrays, a form of

homogeneity is still maintained – one can not store elements

of different scalar types, such as ints and floats, in the

same array. This means that a position dependent array is still

implemented efficiently with a flat memory representation.

3.2 Statically-Shaped Matrix Representation
Position dependent arrays encode arbitrary statically shaped

data structures. Figure 3-a, shows an example of two stati-

cally shaped matrices. The first is a 3 × 3 matrix with a flat

representation in memory and its type on the right.

As shown in prior work [16], it is possible to define more

interesting matrix shape using position-dependent array

types. A lower triangular matrix can be represented using

this abstraction easily as shown in the example, where the

lengths of the inner array is a function of its position (e.g.,
first row has 1 element, the second has 2, and so on).

3.3 Expressions as Types: toNat
Position dependent arrays are not sufficient to implement

sparse data structures since their shape depends on a runtime

values. To express this dependence we extend the natural

number part of our language with a new construct we call

toNat. This constructs wraps an expression of type int,
and represents the results of evaluating that expression at

runtime. Using toNat, it is now possible to express an array

whose length is not statically determined at compile time,

but instead is read from another array by indexing into it.

3.4 Sparse Matrix Formats
Sparse matrix formats are encoded explicitly by explaining

how a sparse matrix is stored in usually multiple flat memory

buffers. Often one array contains the non-zero elements of

the matrix, supported by a number of additional arrays of

metadata, specifying the data structure’s logical layout and

access patterns. In a lower-level language, these details are

manually specified by the programmer explicitly in the code,

impacting every computation involving the sparse matrix.

With the introduction of toNat, we have all the necessary
components to describe the relationships between these mul-

tiple low-level arrays representing the sparse matrix in the

types of our high-level programming language. By doing so,

we define the sparse matrix concisely and locally and use the

regular patterns and abstractions transparently through the

rest of the code. We will now explore how the LIL (List of

Lists) and CSR (Compressed sparse row) formats for sparse

matrices are encoded at the type level, shown in Figure 3-b.

LIL Matrix Format
The LIL format uses 3 arrays: one for each row’s length, one

for column indices of non-zero elements and one for values.

As shown in Figure 3-b, the type of the values array is

position-dependent and dynamic. The length of each inner

array depends not only on the position, but also on the data

in the length array storing the length of each row.

CSR-Unpacked Matrix Format
Matrices in the CSR-unpacked format use 3 arrays [18]: an

offsets array pointing to the start of each row, one contain-

ing the column index of each non-zero element and one for

the values. The type of values contains the computation of

the length of each row by subtracting two successive offsets.

This format is usually preferred over LIL, as the start of each

row in memory is immediately accessible, which is useful

when parallelism is introduced since each thread knows its

rows offset. For LIL, inferring the start of a row involves

computing the sums of all the previous rows lengths. Section

5.2 introduces an optimisation for reducing this overhead.
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CSR-Packed Matrix Format
The last format we are discussing is CSR-packed, a variant of

the previous one. Instead of using two distinct arrays to store

the indices and values, these are fused into a single array.

The rational for this format is that the values and indices are

often accessed together, therefore, storing them contiguously

improves locality. As will see in the next section, packing

column indices with values simplify the high-level imple-

mentation of many programs. Secondly, it has a positive

impact on performance, as demonstrated in section 6.4

3.5 Summary
We have seen in this section how different matrix layouts can

be represented using our type system and abstractions. We

allow nested array element types to depend on their position

in the outer array. We combine this with the capability to

allow expressions computing integer values to represent the

length of arrays at the type level. These two additions enable

the representation of sparse matrix formats. The next sec-

tion shows how sparse-matrix multiplication is implemented

using these different data layouts.

4 Sparse Matrix Vector Product
In section 3, we showed how we could leverage the type

system to represent matrix formats. In this section, we show

how to express computations over these matrices.

We consider the case of matrix vector product, one of

the most common operations for sparse matrices. We shall

first see how to implement this for dense matrices, and then

explore what changes are needed to use sparse matrices.

Dense Matrix Vector Product
Listing 2 contains the code for dense matrix-vector multipli-

cation. Themap primitive is used to compute the dot product

between each row of matrix with the vector xs. The dot
product itself is expressed in line 4 using the zip,map, and
reduce primitives.

1 nFun(n => nFun(m =>
2 fun(matrix :[[ float]n]m => fun(xs:[ float]n =>
3 matrix :>> map(fun(row =>
4 zip(xs ,row) :>> map(*) :>> reduce(+,0)))))))

Listing 2. Dense matrix vector multiplication

LIL Matrix Vector Product
Listing 3 shows the LIL sparse matrix vector product. The

matrix parameter of the dense case has been split out in

three parameters: row_length is the array with the length

of each row, and col_indices is the array of column indices.

1 nFun(n => nFun(m =>
2 fun(row_length :[int]n =>
3 fun(col_indices :[i 7→ [int]toNat(lengths@i)]n =>
4 fun(values :[i 7→[float]toNat(lengths@i)]n =>
5 fun(xs:[float]m =>
6 zip(col_indices , values) :>>
7 map(fun(rowPair =>
8 zip(rowPair.1, rowPair .2) :>>
9 map(fun(x=>x.2*( xs@x .1))) :>> reduce(+, 0) )) ))))))

Listing 3. SpMV implementation for LIL matrix

The core of the program is similar to the dense case of

listing 2, with two critical changes. First, and additional top-

level zip, used to iterate in lockstep over the rows of both

the values and the index array. Secondly, we no longer use a

zip to pair matrix and vector elements for the multiplication.

Instead, we rely on pairing together row index and value

and use the row index to access the correct vector elements.

CSR-Unpacked Matrix Vector Product
The code for the unpacked CSR format is identical to that of

the LIL format, except for the definition of the values array,

which uses a different size formula that is shown in listing 4.

We also renamed row_length to offset for clarity.

values: [i 7→[float]toNat(offset@(i+1)-offset@i]n

Listing 4. SpMV implementation for CSR-unpacked matrix

CSR-Packed Matrix Vector Product
In section 3.4 we mentioned an alternative to storing column

indices in a separate array, using a structure of arrays to array
of structures transformation to pack the column index and

the value together. We mentioned that this transformation

has benefits both for performance and program clarity.

Listing 5 shows the code for the CSR format with this trans-

formation applied. As we can see, the code is much simpler,

not only due to the removal of the additional col_indices
array, but also of the applications to zip, as column index

and value are already associated.

1 nFun(n => nFun(m =>
2 fun(offset :[int]n+1 =>
3 fun(values :[i 7→[(int,float)]toNat(offset@(i+1)-offset@i)]n =>
4 fun(xs:[float]m =>
5 values :>> map(fun(row =>
6 row :>> map(fun(x=>x.2*( xs@x .1)))
7 :>> reduce(+, 0) )) ))))))

Listing 5. SpMV implementation for CSR-packed matrix

5 Code Generation
In a high-level code generator, operations over data struc-

tures are expressed with algorithmic patterns such asmap
and reduce . These operations abstract away aspects of a

low-level implementation, including iteration, parallelism
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⟨function⟩

Parameter collection

Translation of function

body to imperative code

Array access flattening

⟨nat⟩ expressions optimization

toNat translation

Generation of C code

C code

Figure 4. Steps for compiling programs with computations

over sparse matrices.

and data structure access, and use the type information of the

data they operate upon to generate the necessary implemen-

tation. In section 3, we showed how to represent the format

of sparse matrices by encoding the relationship between

multiple arrays in their types. In this section, we present the

transformation from a functional expression to C code.

5.1 Compilation Process
To illustrate the compilation steps necessary to implement

our proposed method, we use a simple example: summing

up every row of a sparse matrix encoded in the CSR format:

1 nFun(n=>
2 fun(offsets :[int]n + 1 =>
3 fun(values :[i 7→[float]toNat(offsets@(i+1)-offsets@i)]n =>
4 values :>> map(reduce(+, 0.0f)) ) ))

Listing 6. Sum of rows for CSR matrix

Figure 4 shows a diagram of the compilation steps. For

simplicity, here we illustrate the compilation process using

sequential C as our target. In reality, our implementation

produces parallel OpenCL code.

Parameter Collection
The first construct the compiler sees is the dependent func-

tion defining the arithmetic variable N

nFun(n= >...)

No code is generated: the compiler simply records that

the following expression is parametric in this variable. If

this expression is at the top-level of the program, then this

information will also be used to generate an input parameter

int n for the resulting kernel. Next, the compiler sees:

fun(offset :[int]n+1 => ...)

Then, another lambda definition is encountered

fun(values :[[ float]toNat(dict@(i+1)-dict@i)]n =>...)

Similarly to the prior lambda, the information is recorded

in the scope’s environment. The array values contains a

toNat node in its size, indicating it is a sparse matrix. As

this is considered as an ordinary symbolic expression, the

compiler treats it no differently that any other array.

Translation of Function Body to Imperative Code
Finally, we arrive at the function’s body:

values :>> map(reduce(+,0)

The first transformation performed is to translate this

functional expression into an abstract imperative language.

1 for i in 0...n
2 float accum = 0.0f
3 for j in 0...toNat(offset@(i+1)-offset@i)
4 accum += (matrix@i)@j
5 output@i = accum;

We replace themap and reduce patterns with a for loop

and explicit array accesses. Additional memory buffers im-

plied in the functional expressions are generated. Multiple

methodologies exist for this transformation, e. g. [2, 20].

Array Access Flattening
At this point, the abstract language still supports the no-

tion of nested arrays. In the next step, all array accesses are

flattened. Using the typing information, the compiler can

generate the appropriate symbolic formula for flattening

chains of accesses. In our case, we are accessing the two

dimensional dependent array values at indices (i, j). The
resulting flattened access formula is thus

(

N−1∑
i=0

toNat(offset@(i+1)-offset@i)) + j

Notice that the summation is necessary due to the usage of

a dependent array: as every element has different size, we

cannot simply multiply the index by the inner dimension as

is the case for homogeneous arrays.

⟨nat⟩ Expressions Optimization
We now have an imperative program that is not too far

from our C target. The last step necessary is to translate the

various algebraic formulas, that currently contain constructs

such as toNat and the
∑
, into an imperative implementation.
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Translate
∑

For

∑
we adopt one of three strategies:

• Naively implement it as a sequential for loop. This

solution has very poor performance: it would imply

computing a prefix sum for every array access.

• If possible, use algebraic properties of

∑
to express it

in an equivalent closed form formula.

• Offload the responsibility to compute the prefix sum to

the host code, memorizing the result into a temporary

array, and replacing

∑
with lookups.

For our running example, we can rely on properties of the

lookup function to eliminate the

∑
. We will explore the case

of memorization on the host in section 5.2.

Closed Form of
∑

In order to simplify the index access for-

mula, we notice that the toNat(offset@(i+1)-offset@i),
being a lookup into a array of offsets as specified by the CSR

format, can never be a negative number. We notice that for

any such never-negative function f , we have that

j∑
i=c

f (i + 1) − f (i) = f (j + 1) − f (c)

The compiler uses this rule, matching f (i+1) to offset@(i+1)
and f (i) to offset@i, to replace the summation with the

closed form formula toNat(offset@(i+1)-offset@0).

Additional ⟨nat⟩ ExpressionOptimizations Using knowl-

edge about the CSR algorithm, we could further optimize

the generated code removing the access to offset@0, as it is

always known to be 0. To enable this additional optimization,

we do not rely on an ad-hoc method. Instead, we can further

refine the expression of the values array to be

values :[[float]toNat(offset@(i+1)) - i == 0 ? 0 : toNat(offset@i)]n

In this more advanced version, we split the index com-

putation in two different calls to toNat , and guard the sec-

ond call with the conditional operation if i == 0 ? 0
: toNat(offset@i). As our symbolic algebra engine can

reasoning with conditional branches when this expression is

matched to f (0), constant propagation evaluates the whole

branch to a constant 0, thus reducing the whole offset com-

putation to a single lookup.

toNat Translation
Having removed

∑
terms, the last step is the translation of

toNat nodes into imperative code. This process is relatively

straightforward: because of scoping rules, we know by con-

struction that all information necessary is already in scope.

We then recursively start the code generation process for

the expression embedded in the toNat node and inline the

results.

Generation of C Code
Having removed all remaining level abstractions, the result-

ing C code can be trivially generated

1 for(int i=0;i<n;i++) {
2 float accum = 0.0f
3 for(int j=0;j<offset[i+1]- offset[i];j++) {
4 accum += values[offset[i+1]+j] }
5 output[i] = accum; }

5.2 Precomputation of
∑

formulas
In the previous section we have shown one possible strategy

for removing

∑
from arithmetic formulas by symbolic sim-

plification. In general, however, this is not possible. Consider

for example the case of a sparse matrix in LIL format:

1 values: [i=>[float]toNat(lengths@i)]n

Accessing this array at index (i, j) is expressed as:

(

i−1∑
0

toNat(lengths@i)) + j

Unlike for the CSR case, there is no closed form formula for

this summation, the

∑
cannot be simplified away . We pre-

viously mentioned the possibility of implementing

∑
with a

sequential for loop. Such an implementation is very ineffi-

cient when implemented naively, leading to much redundant

computation in every array access computation.

An alternative implementation is to compute all values

of the

∑i
in a single pass and cache the results. Then, every

instance of

∑j
0
ej is replaced by a lookup into the generated

data structure at index j. As a further optimization, as our

work is in the context of the generation of GPU kernels, we

move the computation from the GPU to the host side, where

it can be efficiently computed once, and then is passed onto

the GPU as an additional parameter.

Host Side Computation The computation of the concrete

values for each memorized expression happens on the host

runtime, before the GPU kernel is launched. At that time,

the host runtime has access to all kernel arguments, and

thus can derive the exact iteration spaces and values of every

index in the program. In our implementation, these arrays are

computed by interpreting the algebraic formula, including

the programs used to compute runtime arithmetic values.

Automatic Derivation of CSR from LIL The precompu-

tation of

∑
formulas is a generic mechanism, that is not

specific to sparsity. We apply this generic technique in the

context of sparsity to automatically derive the CSR formats

from the LIL format. Generally, it is easier to work in the LIL

format, that directly captures the intuition of sparse matrix

formats that the length of rows is computed by a function l :
[i=>[T]l (i)]N . Where l looks up the length in some helper

data structure. Accesses tomatrix at index (i, j) would then

yield the arithmetic formula

(

i−1∑
k=0

l(k)) + j
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There is no simplification rule for this general formula. In-

stead, we precompute the prefix sum of l(i) for i ∈ [0;N ],

that is, for all possible values that the sum could take in our

program. As it turns out, the resulting metadata is the same

as the array of offsets that the CSR format expects.

5.3 Summary
This section has described the compilation from a functional

expression to C code. We discussed optimizations for gener-

ating efficient code by simplifying or precomputing algebraic

formulas. Next, we will evaluate our approach on 28 matrices

using the sparse matrix vector product as our case study.

6 Evaluation
In this section we evaluate our approach using SpMV (Sparse-

matrix vector multiplication). We first investigate the effect

of different optimizations discussed in section 5 and different

matrix formats. Then, we compare the performance of the

generated code against Nvidia’s cuSparse library.

6.1 Experimental Setup
We conducted an experimental evaluation using single preci-

sion floats on a GeForce GTX TITAN X with CUDA version

10.0, driver version 375.66. All runtimes are themedian of 100

executions. Measurements are reported using the OpenCL

and CUDA profiling APIs. We ignore data transfer times

since we focus on measuring the quality of the generated

kernel code. We used 28 sparse matrices obtained from the

SuiteSparse Matrix Collection [1] that cover a range of den-

sity and sizes, as detailed in table 1.

6.2 Closed Form of
∑

Section 5.1 discussed the challenges faced while generating

code for symbolic expressions containing

∑
terms. We no-

ticed that the naive implementation of generating a sequen-

tial for-loop for each such term had prohibitive performance

costs, and have highlighted the need for optimising the cal-

culation of

∑
terms. Figure 5 shows the speedup for using

algebraic simplification to replace the

∑
with a closed form

expression for CSR SpMV. The speedup correlates with ma-

trix size, as the more rows, the more

∑
iterations need be

computed. The high speedup obtained demonstrates that the

for-loop strategy is not viable in practice.

6.3 LIL vs CSR
Section 3 demonstrated how the LIL and CSR formats can

be represented using our technique. Figure figure 7 shows

the relative performance of the version compared with LIL.

Without the

∑
precomputation from section 5.2, the LIL

version has abysmal performance. Using this optimisation

the performance characteristics of LIL becomes much closer

to CSR. While CSR uses the array of offsets for both loop

iteration and indexing, the optimised LIL version uses the

Matrix Name Group Rows Non-zero

entries

soc-sign-bitcoin-alpha SNAP 3.7K 24M

Goodwin_030 Goodwin 10K 312K

TSOPF_FS_b300_c1 TSOPF 29K 4.4M

GaAsH6 PARSEC 61K 3M

gupta2 Gupta 62K 4.2M

mip1 Andrianov 66K 10M

soc-Slashdot0902 SNAP 5K 948K

pkustk12 Chen 94K 7.5M

torso1 Norris 116K 8.5M

kron_g500-logn17 DIMACS10 131K 10M

engine TKK 143K 4.7M

Dubcova3 UTEP 146K 3.6M

gearbox Rothberg 153K 9M

SiO2 PARSEC 155K 11M

Goodwin_127 Goodwin 178K 5.7M

shipsec5 DNVS 179K 4.5M

kron_g50-logn18 DIMACS10 262K 21M

web-Stanford SNAP 281K 2.3M

amazon0505 SNAP 410K 3.3 M

kim2 Kim 456K 11M

rajat30 Rajat 643K 6.1M

web-Google SNAP 916K 5.1M

NACA0015 DIMACS10 1M 6.2M

com-Youtube SNAP 1.1M 2.9M

wikipedia-20051105 Gleich 1.6M 19M

wiki-Talk SNAP 2.3M 5M

FullChip Freescale 2.9M 26M

Freescale2 Freescale 2.9M 14M

Freescale1 Freescale 3.4M 17M

Table 1. Matrix benchmarks
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Figure 5. Speedup of CSR SpMV with closed form of

∑
optimisation vs a version where the for loops are generated

array of lengths for the former and the precomputed meta-

data for the latter. This differences in implementation are

responsible for the still measurable differences in runtime.

6.4 Packing Column Indices
Section 3.4 we discussed two approaches to dealing with

column indices in CSR formats: to explicitly handling of



Generating Fast SpMV from a High Level Generic IR CC ’20, February 22–23, 2020, San Diego, CA, USA

0.9

1.0

1.1

1.2

1.3

1.4

s
o
c
-s
ig
n
-b
it
c
o
in
-a
lp
h
a

G
o
o
d
w
in
_
0
3
0

T
S
O
P
F
_
F
S
_
b
3
0
0
_
c
1

G
a
A
s
H
6

g
u
p
ta
2

m
ip
1

s
o
c
-S
la
s
h
d
o
t0
9
0
2

p
k
u
s
tk
1
2

to
rs
o
1

k
ro
n
_
g
5
0
0
-l
o
g
n
1
7

e
n
g
in
e

D
u
b
c
o
v
a
3

g
e
a
rb
o
x

S
iO
2

G
o
o
d
w
in
_
1
2
7

s
h
ip
s
e
c
5

k
ro
n
_
g
5
0
0
-l
o
g
n
1
8

w
e
b
-S
ta
n
fo
rd

a
m
a
z
o
n
0
5
0
5

k
im
2

ra
ja
t3
0

w
e
b
-G
o
o
g
le

N
A
C
A
0
0
1
5

c
o
m
-Y
o
u
tu
b
e

w
ik
ip
e
d
ia
-2
0
0
5
1
1
0
5

w
ik
i-
T
a
lk

F
u
ll
C
h
ip

F
re
e
s
c
a
le
2

F
re
e
s
c
a
le
1

M
e
a
n

S
p
e
e
d
u
p

Figure 6. Effect of packing column indices in CSR matrix
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Figure 7. Speedup of CSR compared to LIL

them in terms of an additional metadata array as commonly

done in most low-level implementations, or to pack them

together with their referent values in the element array. This

latter approach may result in simpler code.

Figure 6 show the speedup of CSR-packed formats against

an CSR-unpacked baseline. The packed representation leads

to a speedup of up to 1.35×. By storing the index and the

value next to each other in memory, we increase cache uti-

lization. Moreover, by accessing a single array, we reduce

the number of index computations generated, which in pro-

grams may impose a measurable runtime cost.

6.5 Comparison with cuSparse
Finally, we are interested in the quality of the generated

kernels. We compare our SpMV implementation to the one

provided by cuSparse (CUDA sparse matrix library), NVidia’s

proprietary library for sparse computation on GPUs (Graph-

ics processing units). To have a fair comparison, our version

will an implementation of CSR-unpacked, rather the higher

performing CSR-packed, as that is the format cuSparse uses.

Listing 7 shows the code of our implementation. This

version is somewhat more complex than the code shown in

section 4, as it is an optimized version for targeting GPUs.The

primitivesmapWorkдroup andmapLocal are used to ex-

plicitly parallelize the computation for OpenCL, each cor-

responding to levels of the OpenCL parallel hierarchy [20].

split and join distribute the work among work-items, and

a two-stage reduction aggregates results.

Two parameters are configurable: the number of rows per
workgroup and the number of work-items per row. Each de-

termines slight variations in the generated code and, and

1 nFun(n => nFun(m => fun(offsets :[int]n+1 =>
2 fun(col_indices :[i 7→[int]toNat(offsets@(i+1)-offsets(i))]n =>
3 fun(values :[i 7→[float]toNat(offsets@(i+1)-offsets(i))]n =>
4 fun(xs:[float; m] =>
5 zip(col_indices ,values) :>> split(n) :>> mapWorkgroup(
6 split(ROWS_PER_WKGP) :>> mapWorkgroup(fun(rows =>
7 zip(rows.1, rows .2) :>>
8 split(NUM_SPLITS) :>> transpose :>>
9 mapLocal(map(fun(x=>x.2*( xs@x .1))) :>> reduce(+,0))
10 :>> reduce(x => x.1 + x.2))) :>> join)
11 :>> join
12 )))
13 )))

Listing 7. Functional code for parallel CSR Spmv

the computation’s scheduling. Since the benchmark matrices

vary significantly in size and density, no single configuration

is best performing across all of them. In the results below, we

will refer to two notable configurations for each benchmark:

• Per matrix best configuration - the configuration yield-

ing the best speedup for a given benchmark. This con-

figuration yields a 1.7× average speedup

• Overall single best configuration - the configuration

with the maximum average speedup across all bench-

marks. This configuration yields a 1.21× average speedup

Figure 8 shows a comparison of the throughput for each

benchmark matrix of both the specific and general configura-
tions, together with the cuSparse implementation, together

with the geometric mean over all benchmarks. As we can see

from the throughput and speedup results, the generated ker-

nels are competitive with cuSparse, often surpassing them,

even while using the general configuration.

7 Future Work
Additional Matrix Formats
In this work, we have shown how to express LIL and CSR

matrices. An important benefit of our approach however,

is that it is relatively easy to describe more sparse matrix

formats. For example, a BSR (Block Compressed Sparse Row)

matrix with block size (b,k) can be expressed as:

[i 7→[[[ float]k ]b ]toNat(blk_offsets@(i+1)-blk_offsets@i)]blk_n

In the future, we hope to explore these and other formats,

to fully take advantage of the versatility of the approach.

Automatic Generation of Sparse Implementation
form Dense Source
Another possibility is the automatic generation of sparse

matrix implementation from a dense matrix program. There

are a number of schemes for the derivation of a sparse imple-

mentation from a high-level description, such as described

in [9]. The high-level representation used throughout this

paper could be a good fit for these techniques.
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Figure 8. Comparison of the throughput of various configuration vs cuSparse, in input matrix elements read per second

8 Related Work
8.1 General Purpose High Level IRs
Languages such as Futhark [11], Halide [17], Accelerate [15]

and Lift [19, 20] use higher-level IRs modeling abstract

transformations, and rely on type system to generate fast

implementations. While these have been shown to be com-

petitive for algorithms over dense arrays, many of them lack

a systematic way to deal with sparse data structures.

8.2 Streaming Irregular Arrays
Streaming irregular arrays [7] represent a solution for ex-

pressing sparse data structure in the high-level code genera-

tor Accelerate [15]. Similarly to our approach, it use typing

information to model the shape of the sparse data structure,

but is more reliant on runtime support.

8.3 Domains Specific High Level IRs
Domain specific compilers such as Halide [17] for image

processing applications and the tensor algebra compiler

TACO [12] have specialised IRs for representing sparse data.

For instance, the TACO compiler has introduced a format ab-
straction for expressing sparse data [6] in a principled away.

Their domain specific nature however limits applicability:

by presenting a general solution, our work may be useful in

a wider number of contexts.

8.4 Dependent Types
Dependently typed languages such as Epigram [14] and

Idris [4], rely on their complex type systems to express so-

phisticated properties. Some of them, like Agda [3], are used

for theorem proving. Dependent typing adds a significant

complexity to a language, and compiling such languages into

efficient code is still an open area of research. Our solution

takes inspiration from the techniques pioneered in this area

in a controlled way that allows efficient code generation.

9 Conclusion
This paper presented a technique for the implementation of

sparse matrix formats via the use of dependent types in a

general purpose high-level IR. Generic IRs have focused on

computation over dense arrays. Domain specific IRs have

offered some solutions for expressing sparse matrix compu-

tation, but these are not reusable across application areas.

We have shown how to express sparsematrices in a generic

way using the the concept of position dependent arrays to-
gether with dependent typing. We have demonstrated how

to represent several commonly used sparse matrix formats

using this system, and how this extension composes well

with the existing algorithmic patterns model of computation.

We have detailed the compilation steps necessary to sup-

port our proposed additions, including a number of optimi-

sations reliant on a symbolic algebra system.

We have evaluated our approach using SpMV and com-

pared with NVidia’s highly optimized cuSparse implementa-

tion. We demonstrate the performance is comparable, with

an 1.7× average speedup over cuSparse. We also explore the

effects of a number of optimizations proposed in this paper,

such as measuring the effects of symbolic simplification and

measuring the effect of index packing.

In the future, we would like to extend our exploration to

more complex sparse matrix formats, and investigate the au-

tomatic derivation of sparse matrix programs from a higher-

level algorithmic description.



Generating Fast SpMV from a High Level Generic IR CC ’20, February 22–23, 2020, San Diego, CA, USA

A Artifact Appendix
A.1 Abstract
This artifact contains the experimental setup for re-running

the evaluation experiments for the SparseMatrix Vector GPU

implementation as presented in our paper, together with the

reference cusparse implementation.

Evaluators should have access to amachinewith anNVidia

GPU, preferebly an GTX Titan X. They should use a Unix-like

OS, (not Mac Os X). An installation of NVidia cuda version

10.0 is also necessary.

The intended goal is to compare the runtimes of a number

of SpMV variations generated by our compiler against the

cusparse reference implementation, on a number of datasets.

We expect results in line to the numbers presented in the

paper’s evaluation section graphs. We include said numbers

in a tabular form so as to simplify this step

A.2 Artifact check-list (meta-information)
• Algorithm: CSR and LIL Sparse Matrix Vector implemented

on a GPU

• Program:DPIA compiler and custom tersting harness around

cusparse

• Compilation: Relatively modern g++, scala compiler via

sbt

• Transformations:
• Binary:
• Data set: A selection of matrices from SuiteSparse Matrix

Collection

• Run-time environment: Unix-like, no Mac Os X

• Hardware: NVidia GeForce Titan X GPU

• Run-time state:
• Execution: Approximately 30 minutes

• Metrics: Runtimes

• Output: Log of runtimes for various configurations.

• Experiments: Driven by shell scripts

• How much disk space required (approximately)?: 20

GB

• How much time is needed to prepare workflow (ap-
proximately)?: 15 min

• How much time is needed to complete experiments
(approximately)?: 15 min

• Publicly available?: No

• Code licenses (if publicly available)?:
• Data licenses (if publicly available)?:
• Workflow framework used?:
• Archived?:
https://datadryad.org/stash/share/nK2KORXwlJT8nk3ms7MOS_
jSet8amipYb-4rzSfINis

A.3 Description
A.3.1 How delivered
The artifact can be downloaded from https://datadryad.org/stash/
share/nK2KORXwlJT8nk3ms7MOS_jSet8amipYb-4rzSfINis

A.3.2 Hardware dependencies
NVidia GPU. Preferably NVidia GeForce Titan X

The experiments consume a large amount of RAM. We recom-

mend having at least 8GB of free working memory when starting.

A.3.3 Software dependencies
You will need the following:

• A Unix-like system (not Mac Os X, confimred working on

Ubuntu and OpenSUSE)

• sbt

• OpenCL drivers for your NVidia GPU

• NVidia cuda 10.0

• Recent version of cmake, g++.

• JVM version 10

A.3.4 Data sets
As a Dataset, we use the selection of matrices presented in the

paper, available from SuiteSparse Matrix Colllection. The artifact

contains a script for fetching these automatically.

A.4 Installation
Compiling
First, build the DPIA compiler

1 > cd idealised -opencl
2 > git submodule update
3 > sbt compile

Then, build the csuparse testing suite

1 > cd cusparse_spmv -master
2 > make

If there are any errors, please ensure you have cuda 10.0 installed

in the location

1 /usr/local/cuda -10.0

If your version of cuda is located somewhere else, you will need

to update the makefile INCLUDE and LINK variables.

Download the Datasets

1 > cd benchmark
2 > ./get.sh

This script will automatically download the matrices from the

online repository, and do any pre-processing steps necessary for

the next steps. This process might take quite a long time (approx

15 min on our machine)

A.5 Experiment workflow
To run the cusparse reference experiments, from the benchmark

directory, run

1 > ./ run_cusparse.sh

and to run our compiler’s experiment,

1 > export LIFT_PLATFORM=N
2 > ./ run_dpia.sh

Where N is the index of the GPU as an OpenCL platform.

Through the run, the system will print to stdout various infor-

mation. A crucial point is to check for the line

https://datadryad.org/stash/share/nK2KORXwlJT8nk3ms7MOS_jSet8amipYb-4rzSfINis
https://datadryad.org/stash/share/nK2KORXwlJT8nk3ms7MOS_jSet8amipYb-4rzSfINis
https://datadryad.org/stash/share/nK2KORXwlJT8nk3ms7MOS_jSet8amipYb-4rzSfINis
https://datadryad.org/stash/share/nK2KORXwlJT8nk3ms7MOS_jSet8amipYb-4rzSfINis
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1 > [===== Device.cpp:80 XXXX INFO] Using device
`DEVICENAME ` with id: N from platform

PLATFORM

Make sure DEVICENAME corresponds to your GPU. If not, please

find the index and set it correctly as indicated in the previous step

A.6 Evaluation and expected result
In the paper, we present an evaluation measuring the runtimes of

cusparse and of our spmv implementation on our compiler (dpia). In

Step 3, we run the experiments and collected (part of) the runtimes.

Next, a short explanation is given on how to read these results.

cusparse
The cusparse results can befound in the cusparse_spmv-master/results

directory. One file is created for each matrix. The file countains the

stout of the benchmark program. At first, there are many irrelevant

lines. The part we are interested in is the last (massive) line.

This is a huge SQL query recording the results of the run into a

database table. However, it’s not necessary to actually have an SQL

system and setupthe database: instead, simply look at the many data

tuples. The first field of every tuple is the runtime of one execution

in ms. So, on my system for example, an example tuple is

1 (0.266176 , ' correct ','cuSPARSE ',-1,-1,'michel
','GeForce GTX TITAN X','amazon0505 ',0,0,'
RAW_RESULT ','DOESNOTMATTER -2019 -12 -19 T13
:12+0000 ')

0.266176 is the ms runtime of the experiment. The GPU used,

the name of te matrix, and other information is also recorded.

DPIA
The results generated by the scripts are appended to the result.csv

file in the benchmark folder. Each line records the median result of

a number of runs. Each line has the format:

1 MATRIX_FILE ,NUM_ROWS ,NUM_COLS ,NNZ ,LOCAL_SIZE ,
GLOBAL_SIZE ,FORMAT ,RUNTIME ms,DIFF

• MATRIX_FILE: Matrix file used

• NUM_ROWS, NUM_COLS and NNZ: statistics about he
matrix

• LOCAL_SIZE and GLOBAL_SIZE: OpenCL parameters

• FORMAT: the type of matrix format used - see below for

more info

• RUNTIME:the median runtime in ms

• DIFF:the number of floating points in the result which differ

from a gold sequential implementation (runs before the tests)

The format names are a different form the ones used in the paper.

The "translation" is as follows

• csrTwoArr 7→ Packed CSR

• lenTwoArr 7→ Packed LIL

• csrThreeArr 7→ Unpacked (Normal) CSR

• lenThreeArr 7→ Unpacked LIL

• crsThreeArrSplits 7→ The slightly more sophisticated imple-

mentation of csrThreeArr, which tries to be more efficient

on a GPU. Used as the benchmark vs cusparse.

Expected Result
Having completed the steps above, you will have collected numbers

for a number of Sparse Matrix Vector configurations generated by

our DPIA compiler, together with the reference cusparse CSR SPmV

implementation.

The expected result is for these numbers to conform to what is

shown in the graphs of the evaluation section. In particular:

• Figure 6 should be verified by the relative speeds of csrT-

woArr and lenTwoArr

• Figure 7 should be verified by the relative speeds of crsT-

woArr and csrThreeArr

• Figure 8 should be verified by the speeds of csrThreeArrSplits

and the cusparse reference implementation. Note the experi-

ment as given is configured to show numbers for the overall

single best configuration. For the per-matrix best, see exper-

iment customization

• Figure 5 See experiment customization

For ease of comparison, we have included the folder from which

all our plots are generated. That folder contains the data for the

plots in a tabular csv format: it might be easier to look up the

numbers there rather then inspecting the graphs.

Moreover,you can run the R script provided to gain some more

insight on the data, or use it as a starting point for further manipu-

lations of the results.

Allowable variation
We expect the specific numbers to vary somewhat with slightly

different setups. This might be especially the case if a different

NVidia GPU is used.Wewould consider the experiment successfully

replicated if relative performances of the experiments shown are

consistent with our findings.

A.7 Experiment customization
All modifications presented here are to be applied to the file at path:

1 idealised -opencl/src/main/scala/benchmarks/
sparse/Benchmark.scala

The experiment as provided is not configured to generate the

results of figure 5. This is because in the default setting, the

∑
simplification optimisation is enabled: figure 5 shows the effect of

this optimisation. To disable the optimisation, simply set line 21 to

be

1 PrecomputeSums.enabled = false

Be advised that turning off this optimisation will result in very

long runtimes (up to 10000× slower).

To fully reproduce figure 8, you will need to configure the ex-

periment to run each version with multiple local sizes. To do this,

change line 69 to be

1 val localSizes = Seq(8, 16, 32, 64, 128)

And for each matrix, use the fastest configuration for csrThree-

ArrSplits. (Since the above step is only relevant for the csrThree-

ArrSplits benchmark, you may want to comment out lines 123,

124, 165 and 167. This will disable the irrelvant versions and speed

things up).
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