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Abstract* 
 

This paper partially identifies population treatment effects in observational data 
under sample selection, without the benefit of random treatment assignment. 
Bounds are provided for both average and quantile population treatment effects, 
combining assumptions for the selected and the non-selected subsamples. We show 
how different assumptions help narrow identification regions, and we illustrate our 
methods by partially identifying the effect of maternal education on the 2015 PISA 
math test scores in Brazil. We find that while sample selection increases 
considerably the uncertainty around the effect of maternal education, it is still 
possible to calculate informative identification regions. 

 
JEL classifications: C21, C24, I2 
Keywords: Sample selection, Population treatment effects, Partial identification, 
Bounds, Observational data, PISA, Brazil 
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1. Introduction 
 
In observational data, the identification of causal effects is considerably complicated by treatment 

selection, that is, by the fact that sample units are observed having only one among all possible 

values of the treatment. If the treatment is not randomly assigned, or a quasi-experimental situation 

does not obtain, then it is difficult to justify projecting outcomes observed in a subsample receiving 

a particular treatment value to subsamples observed receiving different values. 

 Sample selection makes the identification of causal effects even more difficult in 

observational data because it adds to the problem of unobserved outcomes due to treatment 

selection the problem of unobserved outcomes and possibly unobserved treatments in the non-

selected subsample. As sample selection is often non-random (e.g., it can be due to a decision), 

ignoring it can lead to biased estimates of treatment effects in the population. 

 There are many situations in which researchers may be interested in treatment effects in 

the whole population, and not just in the selected subsample. This is especially true when the 

outcome is an important indicator of the state of the population, or when the size and composition 

of the selected subsample can change over time due to circumstances or policy changes.  

Labor economists may want to estimate the effect of education on earnings even for those 

not currently working, as the latter are still part of the labor force (if unemployed) or can be so in 

the future. If unemployment is involuntary, this is arguably the appropriate measure to compute 

the returns to schooling (Ashenfelter and Ham, 1979). In finance, researchers may want to know 

the effect of a change in capital gains taxation on the share of portfolios invested in stocks not only 

among actual stockowners but also among potential stock investors who take capital gains taxation 

into consideration when making their investment decisions. Trade economists may want to know 

if some policy intervention would affect exports not only among exporting firms, but also among 

potential exporters who are currently not engaged in trade.  

Sample selection can be a problem not only when analyzing observational data, but also 

data from randomized control trials. For example, randomized control trials often include subjects 

who volunteer to participate in them, who may form a non-random sample of the population of 

interest. It is also standard to exclude from a medical trial persons who suffer from multiple 

diseases, which can also generate a form of sample selection. 

 In this paper, we use partial identification (PI) methods to derive bounds on the average 

and quantile treatment effects (ATEs and QTEs, respectively) for the whole population under 
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sample selection in observational data, when the outcome is never observed in the non-selected 

subsample, while there are no restrictions on how often the treatment is observed in that subsample. 

We calculate identification regions of the treatment effect under various assumptions that are 

weaker, and thus more credible, than those used in the literature to achieve point identification of 

treatment effects (see, e.g., Gronau, 1973; Heckman, 1974, 1976, 1979; Lee, 1982; Das, Newey 

and Vella, 2003; Newey, 2009). Our approach can be viewed as providing a general framework 

for partially identifying treatment effects in observational data, with the cases of no sample 

selection discussed in Manski (1994, 1997) and Giustinelli (2011) being special ones. 

We apply our results to the estimation of the causal effect of maternal education on children 

math test scores in Brazil using data from the 2015 edition of the Programme for International 

Student Assessment (PISA; see OECD, 2017a). The estimation of the causal impact of parental 

education on children’s learning has been extensively studied in the literature (for a recent survey 

see Holmlund, Lindahl and Plug, 2011). The identification of this causal effect is hindered by the 

fact that children whose parents have different levels of education are likely to be systematically 

different in many other respects (e.g., socio-economic status, health, family networks), and these 

systematic differences make it hard to disentangle the impact of parental education on school 

performance. To address this problem, researchers have used twin studies, differences in school 

outcomes between biological and adopted children, and instrumental variable (IV) estimation, with 

varying degrees of success. 

 In our context, an additional obstacle to identification arises from sample selection due to 

children that: i) drop out of school before the completion of the legally compulsory education level, 

and in any case before age 15, which is the age at which the PISA math assessment is administered 

in the schools; or ii) lag behind in school badly enough not to be included in the PISA sampling 

frame, i.e., they attend school but are below grade 6 at age 15. This sample selection makes the 

subsample of children that take the PISA test likely not representative, as dropping out and lagging 

behind are unlikely to be random.  

 Using PI under weak assumptions, we provide identification regions for the effect of 

maternal education on math scores for the whole population of children at age 15, that is, 

irrespective of whether they actually attend school at grade 6 or above or not. Hence, this 

magnitude also incorporates the effect of maternal education on the decision to drop out and on 

lagging behind in school. We want to know what happens to the human capital of the whole 
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population of 15-year old children (as measured by the test scores) because children who have 

dropped out of school or lag behind by the time they are 15 years old are also going to be workers, 

entrepreneurs, and more generally decision makers in adulthood (or even earlier than that). 

Importantly, their human capital is going to be a crucial determinant of their productivity as well 

as of the quality of their decisions.  

 Our paper is related to various strands of the PI literature applied to observational data. In 

the absence of sample selection, Manski (1990, 1997), and Manski and Pepper (2000) partially 

identify ATEs, while Manski (1994) and Giustinelli (2011) partially identify QTEs. Manski (1989) 

and Blundell et al. (2007) provide identification regions for population descriptive statistics under 

sample selection. Molinari (2012) discusses identification when information on treatments is 

partially missing, while outcomes are always observed. Finally, De Haan (2011) estimates bounds 

for the effect of parental education on offspring years of schooling, abstracting from sample 

selection. 

There are also several papers that bound treatment effects in the context of randomized 

control trials. Horowitz and Manski (2000) bound the ATE under sample selection using a binary 

outcome, while Lee (2009) and Blanco, Flores and Flores-Lagunes (2012) bound it under sample 

selection for those always selected. Huber and Mellace (2015) bound ATEs under sample selection 

on the subsamples of compliers, defiers, and those whose outcomes are observed. Huber, Laffers 

and Mellace (2017) bound the ATE on the treated and other subpopulations using an exogenous 

IV. Chen, Flores and Flores-Lagunes (2018) bound the population ATE under no sample selection 

also using an exogenous IV. We, on the other hand, use observational data under sample selection, 

and thus our calculations are complicated by the lack of random treatment assignment. Moreover, 

we bound both ATE and QTEs for the whole population. 

 
2. Methodology 
 
2.1 Setup of the Problem 
  
Following Manski (1997), we assume that for each individual 𝑖𝑖 there is a response function 

𝑦𝑦𝑖𝑖(•):𝐷𝐷 → 𝑌𝑌 that maps mutually exclusive and exhaustive treatments 𝑑𝑑 ∈ 𝐷𝐷 into outcomes 

𝑦𝑦𝑖𝑖(𝑑𝑑) ∈ 𝑌𝑌. These response functions 𝑦𝑦𝑖𝑖(•) can differ across individuals in arbitrary ways. We posit 

a common infimum and supremum for all 𝑦𝑦𝑖𝑖(•),  denoted by 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆, respectively.  Let 𝑤𝑤𝑖𝑖 

denote the realized treatment (mother’s education in our case) received by 𝑖𝑖, and 𝑦𝑦𝑖𝑖 ≡ 𝑦𝑦𝑖𝑖(𝑤𝑤𝑖𝑖) the 
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associated observed outcome, which in our context is the PISA math test score. We denote by 

𝑦𝑦𝑖𝑖(𝑑𝑑) a latent potential outcome when 𝑤𝑤𝑖𝑖 ≠ 𝑑𝑑, and by 𝐺𝐺(𝑤𝑤) the realized treatment distribution. 

As regards sample selection, let 𝑆𝑆 be a binary indicator that is equal to one if the individual 

is part of the selected subsample (that is, takes the PISA test in our context), and equal to zero if 

not.  

Under sample selection, the data allow us to identify the probability distribution 𝐻𝐻(𝑆𝑆) of 

the selection indicator as well as the joint distribution of outcomes and realized treatments in the 

selected subsample 𝑇𝑇(𝑦𝑦,𝑤𝑤|𝑆𝑆 = 1).1 We make no assumptions about the observability of the 

distribution of the realized treatment in the non-selected subsample 𝐺𝐺(𝑤𝑤|𝑆𝑆 = 0).  Our aim is to 

identify the distribution of the response function 𝐹𝐹[𝑦𝑦(𝑑𝑑)] so as to estimate the ATEs and QTEs in 

the population. 

The population ATEs and QTEs record the differences in outcomes at the mean and at 

different quantiles in a particular kind of non-randomized experiment, namely one in which all 

population units take two different treatment values. This is clearly a counterfactual setup, as units 

in the selected subsample are actually observed taking only one treatment value at any given point 

in time. Non-selected units as well can take only one treatment value at any given point in time 

and, in addition, their outcomes are never observed. Hence, population outcomes are only partially 

observed.  

This setup has also some desirable features. First, the whole population is assumed to take 

two different treatment values; hence, control and treated groups coincide with the population. 

Thus, the problem of systematic differences not due to different treatment values between the 

control and treated groups is ruled out by construction (the distribution of all variables other than 

the outcome and the treatment is taken as given). Second, as this counterfactual non-randomized 

experiment takes place in a large sample that is representative of the population, external validity 

of results is less of a concern. 

 
  

                                                            
1 All results go through if we condition additionally on a vector of controls 𝑋𝑋; thus, we omit such conditioning to 
economize on notation. 
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2.1.1 Average Treatment Effects 
  
By the law of total probability, the mean potential outcome 𝐸𝐸[𝑦𝑦(𝑑𝑑)] is equal to 

 

𝐸𝐸[𝑦𝑦(𝑑𝑑)] = 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

                                     {𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) +  

                                       𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) +

                                       𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0).  

(1) 

  
There are two unobserved terms in (1), namely the counterfactual mean outcome 

𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] in the selected subsample, and the unobserved mean outcome 

𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0] in the non-selected subsample. In the first case, selection into treatment and sample 

selection imply that 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] ≠ 𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1], and thus it is not possible to 

substitute the latter term for the former. In the second case, there is no obvious candidate to put in 

place of 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0] without imposing further assumptions on the non-selected subsample. 

 The solution to the problem of estimating counterfactual and unobserved outcomes 

proposed by Manski (1989, 1990) is to bound them from above and below, thus also bounding 

𝐸𝐸[𝑦𝑦(𝑑𝑑)], which becomes partially identified. In our case, one can put a lower and upper bound on 

𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1] using a set of assumptions L (denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿(𝑑𝑑) and 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿(𝑑𝑑), respectively), 

independently from putting, using a set of assumptions M, a lower and upper bound on 

𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0] (denoted by 𝑁𝑁𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀(𝑑𝑑) and 𝑁𝑁𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀(𝑑𝑑), respectively). Then one can bound 𝐸𝐸[𝑦𝑦(𝑑𝑑)] 

as follows: 

 

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑) = 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 1) + 𝑁𝑁𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 0) 

≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ 

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑) = 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 1) + 𝑁𝑁𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 0). 

(2) 

 
Equations (1) and (2) show that one can use sample selection to separate the whole sample 

into two subsamples, the selected and the non-selected. We keep those two subsamples fixed 

throughout all our analyses and examine what happens to mean potential outcomes separately in 

each subsample. This in turn allows us to focus on terms that are not observed in each subsample 

independently of what happens to the other subsample and calculate the associated bounds. The 

population result at the mean is always a weighted average of the results in the two fixed 

subsamples, with the weights being the probability of selection and its complement. In other words, 
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observed selection outcomes 𝑆𝑆 are given (as is the case with actual treatments received 𝑤𝑤), and we 

use this fact to keep the conditioning in (1) and (2) constant throughout our analyses. 

Using a sample split by a given observed selection outcome does not imply, however, that 

selection does not depend on maternal education. We also note that the observed selection outcome 

is a different concept from the potential selection outcome (denoted by 𝑙𝑙(𝑑𝑑)). Unobserved potential 

selection outcomes 𝑙𝑙(𝑑𝑑) can differ from observed ones just as unobserved potential outcomes 𝑦𝑦(𝑑𝑑) 

can differ from realized ones. For example, selected children could have been non-selected had 

their maternal education been lower than the actual one, while non-selected children could have 

become selected ones had their maternal education been higher than the actual one. 

As we discuss below, when introducing assumptions about counterfactual outcomes 𝑦𝑦(𝑑𝑑) 

in both subsamples, we take into account how different (and potentially counterfactual) treatment 

values can affect 𝑦𝑦(𝑑𝑑) through their effect on 𝑙𝑙(𝑑𝑑). We stress, however, that this analysis is always 

carried out within each fixed subsample defined by the observed selection outcome 𝑆𝑆. For example, 

we can examine separately for the observed selected and non-selected children how lower maternal 

education can affect the probability of school attendance at grade 6 or above at age 15, and through 

it the associated possibly counterfactual test score. 

The ATE of a change in the treatment from 𝑑𝑑1 to 𝑑𝑑2 is defined as  

 𝐴𝐴𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) = 𝐸𝐸[𝑦𝑦(𝑑𝑑2)] − 𝐸𝐸[𝑦𝑦(𝑑𝑑1)]. (3) 

 
Using (2) and (3), the ATE(𝑑𝑑2,𝑑𝑑1) can be bounded from below and above as follows: 

 𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑2) − 𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀(𝑑𝑑1) ≤ 𝐴𝐴𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) ≤ 𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑2) − 𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀(𝑑𝑑1). (4) 

 
2.1.2 Quantile Treatment Effects 
  
Turning now to QTEs, we first note that the cumulative distribution of the response function 

𝐹𝐹[𝑦𝑦(𝑑𝑑)] is equal to  

 

𝐹𝐹[𝑦𝑦(𝑑𝑑)] = 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

                                       {𝐹𝐹[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) +  

                                         𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) +

                                         𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0).  

(5) 
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As with 𝐸𝐸[𝑦𝑦(𝑑𝑑)], we have a counterfactual term due to treatment selection 

𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] and an unobserved term 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0] due to sample selection. We 

denote the lower and upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1] using a set of assumptions L as 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐿𝐿(𝑑𝑑) and 

𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐿𝐿(𝑑𝑑), respectively. Moreover, we denote the lower upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0] using a 

set of assumptions M (denoted by 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀(𝑑𝑑) and 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀(𝑑𝑑), respectively). Then one can bound 

𝐹𝐹[𝑦𝑦(𝑑𝑑)] as follows: 
 

 

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑) = 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐿𝐿(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 1) + 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 0) 

≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)] ≤  

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑) = 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐿𝐿(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 1) + 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀(𝑑𝑑)𝑃𝑃(𝑆𝑆 = 0). 

 

(6) 

 

Once more, the lower and upper bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] are equal to the weighted average of the 

respective bounds in the two subsamples. 

 As Blundell et al. (2007) point out, to get the lower bound 𝑆𝑆𝑆𝑆𝛼𝛼
𝐿𝐿,𝑀𝑀(𝑑𝑑) on the 𝛼𝛼-quantile of 

𝐹𝐹[𝑦𝑦(𝑑𝑑)] (denoted by 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]) one needs to invert the upper bound 𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑) in (6), that is, 

𝑆𝑆𝑆𝑆𝛼𝛼
𝐿𝐿,𝑀𝑀(𝑑𝑑) is equal to the value of 𝑦𝑦 that solves the equation 𝑆𝑆𝑆𝑆𝐼𝐼

𝐿𝐿,𝑀𝑀(𝑑𝑑) = 𝛼𝛼. Correspondingly, the 

upper bound 𝑆𝑆𝑆𝑆𝛼𝛼
𝐿𝐿,𝑀𝑀(𝑑𝑑) on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] is equal to the value of 𝑦𝑦 that solves the equation 𝑆𝑆𝑆𝑆𝐼𝐼

𝐿𝐿,𝑀𝑀(𝑑𝑑) =

𝛼𝛼. We note that neither the lower bound 𝑆𝑆𝑆𝑆𝛼𝛼
𝐿𝐿,𝑀𝑀(𝑑𝑑) nor the upper bound 𝑆𝑆𝑆𝑆𝛼𝛼

𝐿𝐿,𝑀𝑀(𝑑𝑑) on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] is 

in general equal to the weighted average (with the weights equal to the probability of selection and 

its complement) of the corresponding bounds on the 𝛼𝛼-quantile in the selected and non-selected 

subsamples, as inverting the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] is a nonlinear operation.   

The 𝛼𝛼-QTE of a change in D from 𝑑𝑑1 to 𝑑𝑑2 is defined as  

 𝛼𝛼-𝑄𝑄𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) = 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑2)] − 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑1)], (7) 

 
where 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] denotes the 𝛼𝛼-quantile of the distribution of the response function 𝐹𝐹[𝑦𝑦(𝑑𝑑)]. Using 

(7), the 𝛼𝛼-QTE(𝑑𝑑2,𝑑𝑑1) can be bounded from below and above as follows: 

 𝑆𝑆𝑆𝑆𝛼𝛼
𝐿𝐿,𝑀𝑀(𝑑𝑑2) − 𝑆𝑆𝑆𝑆𝛼𝛼

𝐿𝐿,𝑀𝑀(𝑑𝑑1) ≤ 𝛼𝛼-QTE(𝑑𝑑2,𝑑𝑑1) ≤ 𝑆𝑆𝑆𝑆𝛼𝛼
𝐿𝐿,𝑀𝑀(𝑑𝑑2) − 𝑆𝑆𝑆𝑆𝛼𝛼

𝐿𝐿,𝑀𝑀(𝑑𝑑1). (8) 
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2.2  No Assumption Bounds2 
 
Starting with mean potential outcomes, if one is unwilling to make any assumptions about the 

bounds on the counterfactual and unobserved terms, then the most conservative solution is to put 

them equal to the infimum and supremum of 𝑦𝑦(𝑑𝑑), denoted by 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆, respectively. To 

make the no assumption (NA) bounds operational, we use two values for 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼. The first value, 

denoted by 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆, is equal to the observed minimum value of outcome (i.e., the PISA test score in 

our context) and is applied to the selected subsample. We put the second value, denoted by 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 

equal to zero, as we cannot rule out the possibility that children who do not actually take the PISA 

test would have had such a low score had they taken it. Correspondingly, there can be two different 

values for 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆, namely 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 for the selected and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 for the non-selected subsample, and 

there is little reason to rank them in our context, as the best the non-selected children could have 

done in the test might be better or worse than the best actual test takers can do. In practice, we put 

both 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 equal to the observed maximum test score. We consider the choice of the 

observed extrema to be conservative, as they bound counterfactual or unobserved mean outcomes 

rather than individual outcomes. 

 Given the decomposition of the unobserved mean potential outcome in (1), applying NA 

bounds to the selected and non-selected subsamples (denoted by NA,NA) bounds 𝐸𝐸[𝑦𝑦(𝑑𝑑)] as 

follows: 

 

{𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1)

+ 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃(𝑆𝑆 = 0) 

≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ 

{𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1)

+ 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑃𝑃(𝑆𝑆 = 0). 

(9) 

  
In the absence of any further assumptions, the bounds in (9) cannot be improved upon, that 

is, they are sharp. Moreover, if 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≤ 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 < 𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] < 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼, then (9) 

implies that the NA,NA lower (higher) bound under sample selection is smaller (larger) to the 

NA,NA bound under no sample selection (obtained by putting 𝑃𝑃(𝑆𝑆 = 1) = 1 in (9)). This is to be 

expected, as sample selection creates more uncertainty about 𝐸𝐸[𝑦𝑦(𝑑𝑑)]. 

                                                            
2 In the related literature, these bounds are also called worst case bounds, or bounds using no information or using 
only empirical evidence (see, e.g., Manski, 1997; Giustinelli, 2011). 
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Turning to the NA,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)], we use, as in Manski (1989: 346), the fact that 

a lower (upper) bound on probabilities (and thus cumulative distributions) that entails no 

assumptions is zero (one). Hence, and given (5), the NA,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] can be expressed 

as follows: 
 

 
𝐹𝐹[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) 

≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)] ≤ 

{𝐹𝐹[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0). 

(10) 

 
In the absence of any further assumptions, the bounds in (10) are sharp. The bounds on the 

𝛼𝛼-quantile are described in the following proposition. 
 

Proposition 1 Let 𝛼𝛼 ∈ (0,1). Define 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) and 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) as 

 

𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)

= �

𝑄𝑄
�1− (1−𝛼𝛼)

𝑆𝑆(𝑤𝑤=𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)�
(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) if 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) +

                                                                                               𝑃𝑃(𝑆𝑆 = 0) < 𝛼𝛼 < 1,
𝑚𝑚𝑖𝑖𝑚𝑚( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)                                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒,                                     

 

𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) =

�
𝑄𝑄� 𝛼𝛼

𝑃𝑃(𝑤𝑤=𝑑𝑑|𝑆𝑆=1)𝑃𝑃(𝑆𝑆=1)�
(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) if 0 < 𝛼𝛼 ≤  𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1),

                                                                  
𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼)                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒.                                                  

           

(11) 

 
Then, ∀ d ∈ 𝐷𝐷, 
 

 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≤ 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑). (12) 

 
In the absence of other information, these bounds are sharp. 

Proof. See Appendix A.1. 
  

The NA,NA bounds in (11) become equal to the NA bounds in Manski (1994) when there 

is no sample selection problem, that is, when 𝑃𝑃(𝑆𝑆 = 1) = 1. Thus, our approach can be viewed as 

providing a general framework for partially identifying treatment effects in observational data, 

with the case of no sample selection being a special one. 

 As is clear from the results in Manski (1994) for the case of no sample selection, the 

NA,NA bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] in (11) are more likely to be uninformative compared to the NA 
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bounds under no sample selection. Furthermore, even when the NA,NA bounds in (11) are 

informative, they produce wider identification regions for 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] than in the absence of sample 

selection, as is the case with 𝐸𝐸[𝑦𝑦(𝑑𝑑)] discussed above.  

 We note that the NA,NA bounds assume nothing about the distribution 𝐺𝐺(𝑤𝑤|𝑆𝑆 = 0) of the 

treatment variable in the non-selected subsample. This also implies that the treatment variable can 

be always, partially or never observable in that subsample. Even if it were always observable, 

however, the fact that the outcome is never observable makes it impossible to use 𝐺𝐺(𝑤𝑤) to 

construct bounds on magnitudes defined in the non-selected subsample without any further 

assumptions. 

 
2.3  Assumptions on the Selected Subsample 
 
To further narrow the identification region of the ATE and the 𝛼𝛼-QTE we use additional 

assumptions that apply to the selected subsample (i.e., the students who take the PISA math test). 
 
2.3.1  Monotone Treatment Response 
 
The monotone treatment response (MTR) was introduced by Manski (1997), and it posits that a 

higher level of the treatment does not reduce the outcome. In Manski (1997) the assumption is 

formulated as holding for every sampling unit within the selected subsample, that is, 

∀𝑖𝑖 and 𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 > 𝑑𝑑1 and for 𝑆𝑆 = 1 
 

 𝑦𝑦𝑖𝑖(𝑑𝑑2) ≥ 𝑦𝑦𝑖𝑖(𝑑𝑑1).  (13) 
 
As discussed in Appendix A.2, one can obtain all results related to the MTR assumption 

by using instead of (13) the weaker assumption that distributions of outcomes under higher 

treatment levels dominate distributions under lower treatment levels. This weak stochastic 

dominance holds in all subsamples of the selected subsample that are defined by a particular level 

of the treatment, and thus it is not necessary that MTR hold for every selected unit, as in (13). 

Formally, the MTR assumption states that ∀ 𝑑𝑑,𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 > 𝑑𝑑1, 

𝐹𝐹[𝑦𝑦(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]  ≥𝑑𝑑 𝐹𝐹[𝑦𝑦(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1], that is, 
 

 𝐹𝐹[𝑦𝑦(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1],   (14) 
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where ≥𝑑𝑑 denotes weak stochastic dominance. The MTR assumption is often a mild one. For 

example, it is reasonable to use it when studying the effect of education and work experience on 

wages, or the effect of physical exercise on life expectancy. It is also a mild assumption in our 

case, as it is unlikely that a higher level of maternal education harms children’s school 

performance, and it’s even more unlikely that this happens over a distribution of outcomes in 

violation of (14). Both (13) and (14) are, however, untestable assumptions because they involve 

counterfactual comparisons. 

Another channel through which (14) is likely to hold is that a higher maternal education 

should weakly increase the probability of school attendance at grade 6 or above at age 15, that is 

𝐸𝐸[𝑙𝑙(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] ≥ 𝐸𝐸[𝑙𝑙(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]. This in turn should lead to weakly higher 

scores.  

Given the general formulation of the bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)] in (2), the lower (upper) bound 

on 𝐸𝐸[𝑦𝑦(𝑑𝑑)], when using MTR on the selected subsample and NA on the non-selected one, is a 

weighted average of the MTR lower (upper) bound under no sample selection 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 (𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) 

derived in Manski (1997), and of 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼), the weights being equal to the probability of 

selection and its complement, that is, 
 

 

{𝐸𝐸[𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃(𝑆𝑆 = 0  

≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ 

{𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 𝐸𝐸[𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) +

𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑃𝑃(𝑆𝑆 = 0).  

(15) 

 
As Manski (1997) shows, the MTR bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1] are sharp, and thus the 

bounds in (15) are also sharp in the absence of any further assumptions. Moreover, if 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≤

𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 < 𝐸𝐸[𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1] and 𝐸𝐸[𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1] < 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼, then the identification 

regions in (15) are wider than those under no sample selection derived in Manski (1997) due to 

the conservative bounds 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 used in the non-selected subsample. 

Unlike the MTR,NA bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)], the MTR,NA bounds on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] cannot be 

computed as weighted averages of the bounds in the selected and non-selected subsample. Rather, 

they are described in the following proposition. 
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Proposition 2 Let the MTR assumption in (14) hold. Let α ∈ (0,1). Define 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) and 

𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) as 

 

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)

= �

𝑄𝑄
�1− (1−𝛼𝛼)

𝑆𝑆(𝑤𝑤≤𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)�
(𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1) if                                                          

                                              𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) + (𝑆𝑆 = 0) < 𝛼𝛼 < 1,
𝑚𝑚𝑖𝑖𝑚𝑚( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)                                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒,                                        

 

𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)

= �

𝑄𝑄
� (1−𝛼𝛼)
𝑆𝑆(𝑤𝑤≥𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)�

(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1) if                                                             

                                                                   0 < 𝛼𝛼 ≤ 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1),
𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼)                              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒.                                          

 

(16) 

 

Then, ∀ d ∈ 𝐷𝐷, 

 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≤ 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑). (17) 

 
In the absence of other information, these bounds are sharp. 

Proof. See Appendix A.2. 
 

Once again, the bounds in (16) become equal to the MTR bounds in Manski (1997) when 

there is no sample selection, that is, when 𝑃𝑃(𝑆𝑆 = 1) = 1. 

As is the case with the NA bounds, sample selection increases the probability that the 

MTR,NA bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] in (16) are uninformative compared to the MTR bounds under no 

sample selection derived in Manski (1997). Furthermore, even when MTR,NA bounds are 

informative, they produce wider identification regions for 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] compared to the case of no 

sample selection. 

We note that imposing the MTR assumption on the selected subsample does not ensure 

that the lower bound of the ATE and 𝛼𝛼-QTE is equal to zero, as is the case in the absence of sample 

selection (see Manski, 1997; Giustinelli, 2011). This is so because the bounds on the non-selected 

subsample are still those under NA, that is, equal to 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆 and thus very conservative. 

As a result, the identification regions after imposing MTR only on the selected subsample can still 

be wide enough to make the lower bound of the ATE and 𝛼𝛼-QTE negative. As discussed in Section 

2.4.1 below, only when one imposes MTR also on the non-selected subsample it is assured that 

the lower bound of the ATE and 𝛼𝛼-QTE cannot be lower than zero. 
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2.3.2  Monotone Treatment Selection 
 
Monotone Treatment Selection (MTS) was introduced by Manski and Pepper (2000, henceforth 

MP) for mean outcomes, and by Giustinelli (2011) for quantiles. In our application, MTS implies 

that children who attend school at grade 6 or above and whose mothers have higher education 

would do on average at least as well as children whose mothers have low education if both children 

groups had, counterfactually, mothers with the same level of education. This is likely a mild 

assumption, as a higher observed maternal education implies that the child likely has a number of 

advantages in life that help him/her under any circumstances (e.g., higher level of economic 

resources, access to better peers and a safer environment from living in a better neighborhood).  

While MP formulate the MTS assumption in terms of means, and Giustinelli (2011) in 

terms of inequalities of quantiles, we formulate the assumption in terms of stochastic dominance 

of outcome distributions. Given that both means and quantiles respect stochastic dominance, this 

formulation encompasses both the formulation of MP and that of Giustinelli (2011).  

Formally, the MTS assumption states that ∀ 𝑑𝑑,𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 > 𝑑𝑑1,  

𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑2, 𝑆𝑆 = 1] ≥𝑑𝑑 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑1, 𝑆𝑆 = 1], that is,  
 

 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑2, 𝑆𝑆 = 1] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑1, 𝑆𝑆 = 1]. (18) 

 
One can think about the MTS assumption as a particular form of non-random selection into 

treatment, that is, a particular form of the condition 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] ≠ 𝐹𝐹[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1], 

which implies that those who choose different levels of the treatment have systematically different 

outcomes also under a counterfactual common treatment. The MTS assumption pins down the 

direction of this difference, as it states that higher observed treatment levels lead to weakly 

dominating distributions of potential outcomes under a counterfactual common treatment value. 

As was the case with MTR, another channel through which MTS is likely to hold is that a 

higher observed maternal education should weakly increase the probability of school attendance 

at grade 6 at age 15, even if the counterfactual maternal education received is the same. In other 

words, 𝐸𝐸[𝑙𝑙(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑2, 𝑆𝑆 = 1] ≥ 𝐸𝐸[𝑙𝑙(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑1, 𝑆𝑆 = 1]. The reasoning for this is the same as 

with the potential scores, that is, a higher observed socio-economic status should weakly help with 

school attendance and progress. 
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By (2), the lower (upper) bound on 𝐸𝐸[𝑦𝑦(𝑑𝑑)], when using MTS on the selected subsample 

and NA on the non-selected one, is a weighted average of 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀𝑀𝑀𝑆𝑆 (𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀𝑀𝑀𝑆𝑆), namely the MTS 

lower (upper) bound under no sample selection derived in MP, and of 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼), that is, 
 

 

{𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1)

+ 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃(𝑆𝑆 = 0) 

≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ 

{𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1)

+ 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑃𝑃(𝑆𝑆 = 0). 

(19) 

 

MP show that the MTS bounds 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀𝑀𝑀𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀𝑀𝑀𝑆𝑆 in (19) are sharp, and thus the bounds 

in (19) are also sharp in the absence of any further assumptions. Moreover, if 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≤ 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 <

𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] < 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼, then the identification regions in (19) are wider than those 

under no sample selection derived by MP due to the conservative bounds 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 used 

in the non-selected subsample.  

Once more,  the MTS,NA bounds on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] cannot be computed as simple weighted 

averages of the bounds in the selected and non-selected subsample, unlike the MTS,NA bounds 

on 𝐸𝐸[𝑦𝑦(𝑑𝑑)] in (19). Rather, they are described in the following proposition. 
 

Proposition 3 Let the MTS assumption (18) hold. Let 𝛼𝛼 ∈ (0,1). Define 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) and 

𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) as 

 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)

= �

𝑄𝑄
�1− (1−𝛼𝛼)

𝑆𝑆(𝑤𝑤≥𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)�
(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)  if 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) +     

                                                                                            (𝑆𝑆 = 0) < 𝛼𝛼 < 1,
𝑚𝑚𝑖𝑖𝑚𝑚( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)                                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒,                                         

 

𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) =

�

𝑄𝑄� 𝛼𝛼
𝑃𝑃(𝑤𝑤≤𝑑𝑑|𝑆𝑆=1)𝑃𝑃(𝑆𝑆=1)�

(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) if                                                                  

                                                        𝛼𝛼 ≤ 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1),
𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼)                          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒.                                               

  

(20) 

 
Then, ∀ d ∈ 𝐷𝐷, 
 

 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆(𝛼𝛼,𝑑𝑑) ≤ 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆(𝛼𝛼,𝑑𝑑). (21) 
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In the absence of other information, these bounds are sharp. 

Proof. See Appendix A.3. 
 

Once again, when there is no sample selection, that is when 𝑃𝑃(𝑆𝑆 = 1) = 1, the bounds in 

(20) become equal to the MTS bounds under no sample selection derived in Giustinelli (2011). 

As is the case with the NA,NA and MTR,NA bounds, sample selection increases the 

probability that the MTS,NA bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] in (20) are uninformative compared to the MTS 

bounds under no sample selection derived in Giustinelli (2011). Furthermore, even when the 

MTS,NA bounds under sample selection are informative, they produce wider identification regions 

for 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] than under no sample selection. 

The MTS assumption is, like the MTR one, counterfactual, because it compares outcomes 

between subsamples actually receiving different treatments under the counterfactual situation in 

which they received the same treatment. The combination of MTR and MTS, however, is testable, 

as shown in MP (p. 1004, footnote 9). In particular, MP show that MTR and MTS jointly imply 

that ∀ 𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 > 𝑑𝑑1,  
 

 𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑2, 𝑆𝑆 = 1) ≥ 𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑1, 𝑆𝑆 = 1). (22) 
 
Equation (22) states that the MTR and MTS assumptions jointly imply that the observed 

mean outcomes are weakly increasing in the value of the treatment. It is easy to show that an 

analogous result applies also to quantiles, as the analysis of the implications of the joint MTR and 

MTS assumption can be easily expressed in terms of potential outcome distributions. As we 

discuss in Section 3 below, in our data we observe a very clear positive association between the 

outcome and the treatment, and thus we cannot reject the joint MTR and MTS assumption. 

 By combining the MTR and MTS assumptions it is possible to compute identification 

regions that are typically narrower than those derived using either of the two assumptions. As 

Giustinelli (2011) points out, the combination of MTR and MTS produces bounds on 

𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1] that are linear combinations of observed cumulative distributions, and thus cannot 

be inverted analytically to derive bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]. As discussed in Appendix A.3, this 

is true also for the MTR+MTS,NA bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]. Hence, these bounds are calculated by 

numerical inversion of the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)]. On the other hand, we show in Appendix A.3 that 

MTR+MTS,NA bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)] can be computed analytically as weighted averages of the 

bounds in the selected and non-selected subsamples. 
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2.4  Assumptions on the Non-Selected Subsample 
 
One can further narrow the identification region of the ATE and the 𝛼𝛼-QTE by imposing 

assumptions on the non-selected subsample (i.e., the students who have dropped out of school or 

lag behind). In particular we discuss the MTR, stochastic dominance and bounded variation 

assumptions. As will be clear from the discussion below, all three assumptions refer to 

distributions of the potential outcome 𝑦𝑦(𝑑𝑑), either in the whole sample or in the selected and the 

non-selected subsamples. As a result, none of these assumptions impose any constraints on the 

observability or any other features of 𝐺𝐺[𝑤𝑤| 𝑆𝑆 = 0], of the realized treatment distribution in the 

non-selected subsample. 

 
2.4.1  Monotone Treatment Response 
 
The MTR assumption could also be invoked for the non-selected subsample as it would be 

reasonable to assume that even children who have dropped out of school at age 15 or lag behind 

would benefit from a higher maternal education in terms of their test scores, had they stayed in 

school.  

Formally, and as in (14), the MTR assumption states that ∀ 𝑑𝑑,𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 >

𝑑𝑑1, 𝐹𝐹[𝑦𝑦(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0] ≥𝑑𝑑 𝐹𝐹[𝑦𝑦(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0], that is,  
 

 𝐹𝐹[𝑦𝑦(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0].  (23) 
 
As was the case with the selected subsample, another channel through which MTR is likely 

to hold for the non-selected one is that a higher maternal education should weakly increase the 

probability of school attendance at grade 6 at  age 15, that is 𝐸𝐸[𝑙𝑙(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0] ≥

𝐸𝐸[𝑙𝑙(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0]. This in turn should lead, on average, to weakly higher potential scores 

𝑦𝑦(𝑑𝑑). Applying the MTR assumption to both the selected and non-selected subsample implies 

that the ATE and 𝛼𝛼-QTE are bounded below by zero. The following lemma establishes the result. 
 

Lemma 1. Let 𝛼𝛼 ∈ (0,1). Suppose that ∀ 𝑑𝑑, and ∀ 𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 > 𝑑𝑑1, and for 𝑘𝑘 = 0,1,   

𝐹𝐹[𝑦𝑦(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 𝑘𝑘] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 𝑘𝑘]. (24) 

 
Then the A𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) and the 𝛼𝛼-𝑄𝑄𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) are bounded below by zero. 

Proof. See Appendix A.2. 
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 As is the case with MTR in the selected subsample, MTR in the non-selected subsample is 

an untestable assumption. Moreover, since no outcomes are observed in the non-selected 

subsample, one cannot combine the MTR with the MTS assumption to derive a testable implication 

using observed outcomes, as is the case with the selected subsample.  

  
2.4.2   Stochastic Dominance 
 
The assumption of stochastic dominance (SD henceforth) compares the distribution of scores 

under sample selection and no selection and posits that the former distribution stochastically 

dominates the latter, for any given level of the treatment.  

Formally, ∀ 𝑑𝑑 ∈ 𝐷𝐷, 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] ≥𝑑𝑑 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 0], that is, 
 

𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 0]. (25) 

 
In our empirical application, SD states that the distribution of the scores of children who 

are in school stochastically weakly dominates that of children who have actually dropped out or 

lag behind, had the latter attended school at grade 6 or above, and had all children had the same 

level of maternal education. This is a mild assumption, as children that drop out or lag behind are 

more likely to come from less privileged backgrounds, and thus are likely to do worse in school 

on average.3 SD could also obtain if students are more likely to stay in school when they feel that 

can do well in class, which is another reason for positive selection. 

Importantly, SD is likely to hold even if one takes into account the effect of the 

counterfactual treatment variation on the probability of counterfactual school attendance at grade 

6 or above. Especially for higher maternal education levels, such attendance is likely to increase 

more for observed non-selected children, and this in turn should make their score distribution less 

stochastically dominated by the one of the selected children. However, it should remain the case 

that the less privileged socio-economic background observed on average of the non-selected 

children makes the SD condition in (25) hold. 

The SD assumption in (25) implies that a lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] is also a lower 

bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 0]. Hence, (6) implies that a lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] is also a lower 

bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)], as in Blundell et al. (2007). Given that lower bounds on distributions determine 

                                                            
3 In Brazil, as in most Latin American countries, there is a strong negative association between socio-economic status 
and secondary school drop-out (Bassi et al., 2015; Busso et al., 2017). 



19 
 

upper bounds on quantiles, SD also implies that the upper bound on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1] is also an 

upper bound on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]. The same result also holds at the mean, that is, the upper bound on 

𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] becomes under SD an upper bound on 𝐸𝐸[𝑦𝑦(𝑑𝑑)].  

The intuition for these results in our context is that an upper bound on the potential score 

(under treatment value 𝑑𝑑) of children who stay in school is also an upper bound for the 

counterfactual potential score of the children who drop out or lag behind, given that the latter 

children would have been expected to do worse than the former on average, had they taken the 

test. As a result, an upper bound on the potential score of children that take the test is also an upper 

bound on the score of all students. 

The above implies that under SD uncertainty due to sample selection no longer affects the 

upper bounds of 𝐸𝐸[𝑦𝑦(𝑑𝑑)] and 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]; as a result, they become smaller. As discussed in 

Appendix A.4, SD decreases upper bounds the most at higher quantiles of 𝑦𝑦(𝑑𝑑). 

 
2.4.3   Bounded Variation 
 
While SD imposes the condition that non-selected children cannot do better than selected ones in 

distribution, it does not put any limits on how much worse they can do. Hence, without any further 

assumptions the conservative lower bound on test scores of non-selected children is  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, that 

is, zero. This is likely an unduly dismal outcome, as at least some non-selected children would 

have done well in the PISA tests, had circumstances allowed them to continue attending while not 

lagging behind. 

 We thus propose an assumption of bounded variation (BV) that limits the extent to which 

non-selected students would be doing worse in school than the selected ones.4 This BV assumption, 

a variant of the BV assumptions used in Manski and Pepper (2018), posits that the lower bound of 

the mean potential score of the non-selected students cannot be smaller than k percent of the lower 

bound of the mean potential score of students that take the test. In other words, we assume that for 

the lower bounds 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿 and 𝑁𝑁𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀 of 𝐸𝐸[𝑦𝑦(𝑑𝑑)] in (2) we have 
 

𝑁𝑁𝑆𝑆𝑆𝑆𝐸𝐸𝑀𝑀 = 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿 . (26) 

 

                                                            
4 Alternatively, one can view this assumption as one of maximum stochastic dominance, as it limits the extent to which 
the outcomes in the non-selected subsample are smaller than those in the selected one. 
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Clearly, it is difficult to pin down exactly the coefficient k, and thus we provide results for 

two values equal to 25 percent and 50 percent in our empirical application (the former is obviously 

a more conservative choice than the latter). As is also the case with the other identifying 

assumptions used, we leave it to the reader to decide whether any variant of the BVk assumption 

is credible. 

 Turning now to quantiles, we construct the upper bound of the potential outcome 

distribution of the non-selected children (which determines the lower bound of the associated 

quantiles) as follows: i) we take the upper bound of the corresponding distribution of selected 

children and calculate its quantiles from 1 to 99 ; ii) we then make each quantile between 1 and 99 

of the upper bound of the potential score distribution in the non-selected subsample k percent 

smaller than the corresponding quantile calculated in i), and then linearly interpolate between the 

thus calculated quantiles to construct the upper bound of the distribution in the non-selected 

subsample.  

We provide further details on the calculation of bounds under BVk in Appendix A.5. We 

also point out therein that BVk increases lower bounds the most at lower quantiles of 𝑦𝑦(𝑑𝑑). 

 
2.5  Monotone Instrumental Variables 
 
As MP show, one can further narrow identification regions by using monotone IVs (MIVs 

henceforth), that is, auxiliary variables allowed to vary weakly monotonically with the outcome.  

Formally, a variable 𝑍𝑍 is a MIV if ∀ 𝑑𝑑 ∈ 𝐷𝐷,∀ 𝑧𝑧1, 𝑧𝑧2 ∈ 𝑍𝑍 such that 𝑧𝑧2 > 𝑧𝑧1, 

𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧2] ≥𝑑𝑑 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧1], that is,  
 

𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧2] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧1]. (2722) 
 
In other words, the distribution of the potential outcome conditional on a higher value of 

the MIV must dominate stochastically the corresponding distribution conditional on a lower value 

of the MIV (see also Blundell et al., 2007: 332).  

To understand better how MIVs operate, we first note that we can always express the lower 

bound on 𝐸𝐸[𝑦𝑦(𝑑𝑑)]5F

5 under a set of assumptions L on the selected subsample and a set of 

assumptions M on the non-selected one as 
 

                                                            
5 The intuition is the same for the case of the 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)], which we discuss in Appendix A.6. 
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 𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑) = �𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧)
𝑧𝑧

𝑃𝑃(𝑍𝑍 = 𝑧𝑧). (28) 

 
Clearly, 𝑃𝑃(𝑍𝑍 = 𝑧𝑧) is given by the data and thus cannot be changed. Hence, to increase the 

overall lower bound 𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑) one needs to increase the conditional lower bounds 

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧). Similar arguments hold for the upper bound 𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀(𝑑𝑑). 

Let us first examine how an exogenous IV (XIV) can help narrow the identification range. 

Following Manski (1990), a variable 𝑍𝑍 is a XIV if ∀ 𝑑𝑑 ∈ 𝐷𝐷,∀ 𝑧𝑧 ∈ 𝑍𝑍, 
   

𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧] = 𝐸𝐸[𝑦𝑦(𝑑𝑑)]. (29) 

 
Equation (29) implies that conditioning on any value of the XIV does not change the 

distribution of the potential outcome. Hence, all identification regions conditional on values of Z 

should provide identical lower and upper bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)]. Therefore, the identification region 

of 𝐸𝐸[𝑦𝑦(𝑑𝑑)] is the intersection of all identification regions conditional on Z. This intersection is 

contained between the maximum of all the conditional lower bounds and the minimum of all 

conditional upper bounds. Hence, we have  
 

max
𝑧𝑧

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) ≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ min

𝑧𝑧
𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧). (30) 
 
With an MIV, however, equation (29) does not hold because by (27) the MIV is weakly 

monotonically correlated with the outcome. As a result, one cannot compute as the overall 

identification region the intersection of all conditional identification regions, as with an XIV. On 

the other hand, it is possible to exploit the fact that, by (27), a lower bound on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧1] is 

also a lower bound on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧] for 𝑧𝑧 ≥ 𝑧𝑧1, and, correspondingly, an upper bound on 

𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧2] is also a upper bound on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑍𝑍 = 𝑧𝑧] for 𝑧𝑧 ≤ 𝑧𝑧2. Hence, one can potentially 

increase the lower bound 𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) in (28) by taking the maximum lower bound 

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧1) over all 𝑧𝑧1 ≤ 𝑧𝑧. Correspondingly, one can potentially decrease the upper bound 

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) by taking the minimum upper bound 𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧2) over all 𝑧𝑧2 ≥ 𝑧𝑧. Hence, 

we obtain 
 

 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧1≤𝑧𝑧

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑧𝑧1] ≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧] ≤ 𝑚𝑚𝑖𝑖𝑚𝑚

𝑧𝑧≤𝑧𝑧2
𝑆𝑆𝑆𝑆𝐸𝐸

𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑧𝑧2] (31) 
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Once the bounds in (31) have been computed for all 𝑧𝑧, one can take their weighted average 

over all 𝑧𝑧 and bound the potential outcome 𝐸𝐸�𝑌𝑌(𝑑𝑑)� as follows: 
 

 
 
 
 

�𝑃𝑃(𝑍𝑍 = 𝑧𝑧)𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧1≤𝑧𝑧

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑧𝑧1]

𝑧𝑧

 

≤�𝑃𝑃(𝑍𝑍 = 𝑧𝑧)𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧]
𝑧𝑧

= 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ 

�𝑃𝑃(𝑍𝑍 = 𝑧𝑧)𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧≤𝑧𝑧2

𝑆𝑆𝑆𝑆𝐸𝐸
𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑧𝑧2]

𝑧𝑧

 

(32) 

 
Hence, by integrating 𝑍𝑍 out of the conditional expectation 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧] one can obtain 

bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)]. Clearly, the optimization operations in (31) take place over a restricted range 

of values of Z compared to (29), and thus the identifying power of the MIV assumption is smaller 

than that of the XIV one. This is to be expected, as the weak monotonicity of a MIV in (27) is a 

weaker assumption than the exogeneity of an XIV in (29). 

We note that (27) does not imply a causal effect of the MIV on the outcome, but only 

denotes a weakly positive association with it. Importantly, no association is also allowed. We also 

note that, the MIV condition in (27) is applied to the distribution of the potential outcome in the 

population, and not just in the selected subsample. As it is applied to potential outcomes, it is an 

unverifiable assumption, which is also the case for the exogeneity assumption underlying XIVs.  

 It is generally easier to find candidate MIVs, as the weak stochastic dominance condition 

in (27) is less demanding than the orthogonality with the outcome that is required of an XIV. In 

our application, we use two monotone instruments. The first one is the father’s education, 

measured in three levels, primary, secondary and tertiary. The MIV condition implies that we 

require that a higher paternal education is not negatively associated with school performance in 

the population. This seems a mild assumption in our case, and its plausibility is further discussed 

in Section 3.  

The second MIV we use is an indicator of material possessions, and in particular of a family 

car and a computer at home. This indicator takes the value of zero if none of the goods are owned 

by the child’s family, one if the family possesses any one of the two goods, and two if it possesses 

both. The MIV assumption requires that possessing more of these two goods is not negatively 

associated with school performance in the population. Once more, this is a mild assumption given 

that these two goods denote socio-economic status. We discuss this further in Section 3. 
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3. Empirical Analysis: The Impact of Maternal Education on School 
Achievement 

  
3.1 Data 
  
In our empirical application, we use the mathematics test scores reported in the 2015 PISA survey 

in Brazil. Our sample consists of 17,984 children aged 15 who are administered the test at school. 

The PISA survey also reports the education of the mother, which we divide in three levels: primary, 

secondary and tertiary. In our application we report the treatment effect of a change in maternal 

education from primary to tertiary. The average test score is equal to 385.8 points, while the 

median is 380.5 points, and the standard deviation 91.3 points.  

We further observe that there is a clear positive association between the test score and 

maternal education, both at the mean and the median. In particular, the mean scores for 

schoolchildren whose mothers have primary, secondary and tertiary education are 361, 393 and 

421 points, respectively. The corresponding results at the median are equal to 359, 391 and 421 

points, respectively. We obtain analogous results in other quantiles. This strong positive 

association between the observed outcome and the treatment implies that it is not possible to reject 

the joint MTR+MTS hypothesis in the selected subsample, as discussed in Section 2.3.2 above. 

 The PISA data do not contain any information on the percentage of students who have 

dropped out of school or are in grade 6 or below at age 15, and hence are excluded from the PISA 

sampling frame. To remedy this situation, we obtain data on school enrolment from the Pesquisa 

Nacional por Amostra de Domicílios (PNAD), a nationally representative household survey. The 

PNAD contains information on whether children are currently attending school and the grade 

attended, which allows us to construct a selection indicator adhering to the PISA sample selection 

criteria.  

The PNAD also includes information on the treatment (maternal education), and, 

importantly, on our two MIVs, namely paternal education and family ownership of a computer 

and a car.6 As discussed above, we do not use the information on the distribution of the treatment 

in the non-selected subsample 𝐺𝐺[𝑤𝑤| 𝑆𝑆 = 0] in our estimation, as none of our identifying 

assumptions is related to it. On the other hand, we use the information on the two MIVs, as we 

need to compute the probability of selection conditional on them. We pool three years of PNAD 

                                                            
6 Parental education is not available for 15-year-olds who are heads of household or their spouses in the survey (2.8 
percent of the 15-year-olds included in the three survey years—2013, 2014, 2015—used for the analysis). 
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data, that is, from 2013 to 2015, to obtain more precise estimates of these selection probabilities. 

The final sample consists of 9,712 children aged 15. 

Using PNAD, we compute the probability of selection and its complement. Some 13.9 

percent of eligible 15-year-olds are not included in PISA, and this selection probability varies 

strongly by the level of maternal education: it is equal to 21 percent for children who have mothers 

with primary education, 7.7 percent for those with mothers with secondary education, and 4 

percent for those with mothers with tertiary education. The strong positive association between 

maternal education and PISA selection makes it more likely that the assumption of stochastic 

dominance discussed in Section 2.4.2 above is a valid one. 

 
3.2  Statistical Considerations 
 
As Kreider and Pepper (2007) and Manski and Pepper (2009) point out, the minimization and 

maximization operations required by the MIV assumption can result in biased estimates. To correct 

for this, we use for our mainline results the bias correction procedure proposed by Kreider and 

Pepper (2007). The bias-corrected estimates turned out to be very close to the uncorrected ones 

(the latter are available upon request from the authors). 

 For methods that do not use MIVs we compute confidence intervals (CIs henceforth) using 

the results in Imbens and Manski (2004). On the other hand, for methods that do use MIVs, Manski 

and Pepper (2009: S211) point out that the methods underlying the Imbens and Manski (2004) CIs 

appear to be inapplicable. Therefore, we use, as in de Haan (2011) bootstrap-based bias-corrected 

percentile CIs. We use 80 bootstrap replications, and the associated balanced replicate weights, as 

recommended in OECD (2017b, Chapter 8). 

 In our mainline results, we do not bootstrap the selection rates derived from the PNAD 

data. As a robustness check, however, we bootstrap those rates as well by resampling the PNAD 

sample 80 times (so as to match the number of bootstrap runs in the PISA data). The resulting CIs 

remain essentially unchanged. 

 
3.3  Results 
 
We show results on the treatment effects on test scores due to a change in maternal education from 

primary to tertiary. In each set of results, we show the lower and upper bound of the treatment 

effect, as well as the associated 95 percent and 90 percent CIs. To highlight the role of the 
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uncertainty induced by sample selection, we juxtapose the estimates of the population ATEs and 

𝛼𝛼-QTEs under sample selection to those for the ATEs and 𝛼𝛼-QTEs in the selected subsample, which 

consists of the students taking the PISA test. The latter estimates are derived using results in 

Manski (1997), MP, and Giustinelli (2011). 

Panel A of Table 2 shows the estimates of the average and median treatment effects in the 

population, while the corresponding results for the selected subsample are shown in Panel B. Each 

row shows results obtained under a particular set of assumptions. Column 1 shows the assumptions 

used for the computation of the bounds in the selected sample, while Column 2 shows the 

assumptions used in the non-selected sample. Column 3 indicates whether MIVs are used. 

Treatment effects at the mean are shown in Columns 4-9, while those at the median in Columns 

10-15.  

We start with the results for treatment effects computed under the assumption that sample 

selection is random and the treatment is exogenous (ETS). If both these assumptions hold, then 

the causal impact of maternal education is given by the difference in observed average and median 

scores in the PISA data. We note that under the ETS assumption maternal education has a strong 

influence on children’s school performance, namely 59.2 points at the mean and 62.7 points at the 

median, with both effects being tightly estimated. 

The ETS results are likely misleading, however, both because maternal education is 

unlikely to be exogenous and because sample selection (i.e., dropping out of school and lagging 

behind) is unlikely to be random. As discussed in Section 2.1, to address these two problems we 

use PI methods. It is clear that under NA, that is, the most conservative estimation choice, the 

identification region of the treatment effect is very wide and thus uninformative, as it ranges from 

-459.6 to 501.8 points at the mean and from -741.9 to 741.9 points at the median. The MTR 

assumption applied to the selected subsample raises considerably the lower bound of the treatment 

effect but leaves it still well below zero, while adding the MTR assumption also on the non-

selected subsample raises further the lower bound to zero, as shown in Lemma 1 in Section 2.4.1. 

In both cases the upper bound remains unchanged.  

Turning now to the MTS assumption, when used on its own on the selected subsample and 

together with NA in the non-selected one it produces an uninformative lower bound. On the other 

hand, the upper bound shrinks considerably compared to the one under NA in both subsamples, 
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namely to 154.7 points at the mean, and 101.3 points at the median. Adding the MTR assumption 

in both subsamples to the MTS one brings back the lower bounds to zero. 

Combining MTS and MTR for the selected subsample with MTR and SD for the non-

selected one narrows down the identification range considerably, with the lower bounds being 

equal to zero while the upper bounds shrink to 110 points at the mean and 78.2 points at the median.  

Adding the BV25 assumption to the previous combination decreases considerably the 

upper bound of the ATE to 97.5 points, while the BV50 assumption decreases it further to 84.9 

points. On the other hand, as mentioned in Section 2.6.3 and further explained in Appendix A.5 

the BV assumption narrows very little the identification regions at quantiles other than the very 

low ones, and thus adding even the stronger BV50 assumption decreases the upper bound of the 

median QTE by only 0.3 points with respect to that obtained under MTR+SD. 

Adding the MIV1 assumption (i.e., only using paternal education as a MIV) to the MTR 

and MTS assumptions for the selected subsample, and the MTR and SD assumptions for the non-

selected one, makes the upper bounds shrink to 85.9 points at the mean and 55.1 points at the 

median. Adding the BV25 assumption shrinks the upper bound at the mean to 74.7 points, while 

the BV50 assumption shrinks it further to 63.6 points. On the other hand, the BVk assumptions 

make again little difference at the median. In all cases, the lower bound of the treatment effect is 

equal to zero. 

Adding a second monotone instrument (i.e. the family ownership of a car or a computer) 

shrinks the identification region further, as the upper bound when using MTR and MTS for the 

selected subsample and MTR and SD for the non-selected one becomes equal to 63.5 points at the 

mean and 30.6 points at the median, that is, equal to about 0.34 standard deviations (sds) of the 

score. Once more, adding the BVk assumptions makes little difference at the median, while BV25 

shrinks the upper bound at the mean to 53.5 points, and BV50 to 43.4 points, which is about 0.48 

sds of the observed score distribution. Once more, the lower bounds are equal to zero.  

The above results clearly show that the identification region of the ATEs and QTEs 

narrows as assumptions are added, and the identifying power of each additional assumption 

becomes clear when comparing results with and without it. The smallest upper bounds we obtain 

at the mean are considerably lower than the ETS estimates, while at the median this happens when 

adding the MIV1 assumption to the MTR and MTS ones for the selected subsample, and the SD 

one for the non-selected one. The fact that the ETS results are well outside the PI identification 
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regions obtained using mild assumptions suggests that they are likely to overestimate the causal 

effect of maternal education on the child’s math score. Importantly, the uncertainty around the PI 

estimates is also much larger than the one around the ETS ones, suggesting that ETS and the 

random sample selection assumption lead to a considerable underestimation of the true uncertainty 

around the effect of interest. 

In Panel B of Table 2 we show the treatment effects estimated using only the selected 

subsample (the test-takers). Hence, these estimates do not reflect what happens in the population, 

but only in this subsample. Given that the uncertainty due to the unobservability of test scores of 

non-test-takers is ignored, we expect the identification regions in this subsample to be narrower.  

 Indeed, we observe that the same assumptions in the selected subsample lead to much 

narrower identification regions when ignoring sample selection. For example, under MTR and 

MTS, the upper bounds are equal to 59.8 points at the mean, and 62.7 points at the median.7 The 

corresponding upper bounds of population treatment effects, even after adding MTR and SD on 

the non-selected subsample, are much larger at 110 points, and 78.2 points, as noted above.  

 When we add the MIV assumption the identification regions shrink even further, with the 

lower bounds becoming equal to 1.2 points at the mean and 2.7 points at the median when using 

MTR+MTS+MIV2. Both lower bounds are statistically significant at 5%, and imply that changing 

maternal education from primary to tertiary causes an increase in the math score that is at least this 

large. The upper bounds also become much smaller than those computed without the MIV 

assumption: they are equal to 23.1 points at the mean and 20.7 points at the median, that is, about 

0.25 and 0.23 sds of the observed score distribution, respectively. Both these values are much 

smaller than the ETS estimates, which again suggests that ETS overestimates the effect of maternal 

education on the child’s score also in the selected subsample, that is, for the children who actually 

take the test. 

 In Table 3 we show results for the 10th and the 90th quantiles. We note that also for these 

quantiles the addition of assumptions generally narrows the identification regions. At the 10th 

quantile (results are shown in Columns 4-9), however, the upper bounds remain very large. This 

is due to the fact that, as shown in the definition of the α-QTE given in (7), the upper bound of the 

                                                            
7 These values are equal to the ETS ones. The result that the MTR+MTS upper bound of the treatment effect of a 
change in the treatment from its minimum to its maximum value is equal to the ETS value is shown by MP for the 
ATE, and by Giustinelli (2011) for the QTE. 
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treatment effect is equal to the upper bound of the 10th quantile of the potential outcome 

distribution under tertiary maternal education minus the lower bound of the 10th quantile of the 

potential outcome distribution under primary maternal education. It turns out that the bound in the 

latter case is the smallest possible, that is zero, and thus the upper bound of the 10-QTE becomes 

very large.  The lower bound at the 10th quantile of the potential outcome distribution under 

primary maternal education is so small due to the fact that, as discussed in Section 3, in our sample 

the probability of non-selection is larger than 0.1, and thus Propositions 1-3 imply that the lower 

bound at the 10th quantile is not identified. Consequently, it is equal to min( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), that 

is, zero.  

Only when applying the MIV and BVk assumptions (see the discussion in Section 2.4.3 

and in Appendix A.5 for the identifying power of the latter at low quantiles) does the upper bound 

of the 10-QTE narrow considerably, but even at its lowest (equal to 69.5 points) it remains much 

larger than the ETS estimate, which is equal to 24.5 points. The lower bound of the 10-QTE is 

always zero.  

The 10-QTEs on the selected sample are shown in Panel B, and, as expected, have 

identification regions that are much narrower than when incorporating sample selection. The upper 

bound under MTR+MTS is equal to 24.5, that is to the ETS value, while adding two MIVs makes 

the lower bound equal to 2.6 (significant at 5 percent), while the upper bound becomes 4.3. Hence, 

the MIV assumption results in a very narrow identification whose upper bound is much smaller 

the ETS value, suggesting again that the latter is an upwardly biased estimate of the 10-QTE for 

the test takers. 

Turning now to the 90-QTE (results are shown in Columns 10-15 in Table 3), we see that 

the SD assumption, as discussed in Section 2.4.2 and Appendix A.4, has considerable identifying 

power at high quantiles. On the other hand, the BVk assumption has very little identifying power, 

as discussed in Section 2.4.3 and in Appendix A.5. Without MIV, the narrowest upper bound is 

equal to 97.4 points, while adding MIV2 (MIV1) brings it down to 45.4 (45.2) points, that is, about 

0.5 sds of the observed score distribution. Hence, it is much smaller than the ETS value (89.3 

points). The lower bounds of the 90-QTE are always equal to zero. 

In the selected subsample (results are shown in Panel B of Table 3), the narrowest upper 

bound using MTR+MTS+MIV2 is 43.2 points, while the corresponding one under 
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MTR+MTS+MIV1 is 61.1 points. Hence, at its tightest, the upper bound is equal to about 0.47 sds 

of the observed score distribution, and well below the ETS value. 

In Appendix Table A.1 we provide results for the 25-QTE and the 75-QTE. The patterns 

of the results are broadly similar to those for the quantiles discussed up to now. One important 

difference of the 25-QTE with respect to the 10-QTE is that the upper bounds of the former are 

now much smaller than those of the latter. This happens because the probability of non-selection 

in our sample is smaller than 0.25, and thus the lower bound of the 25th quantile of the potential 

outcome distribution under primary maternal education is identified, as indicated by Propositions 

1-3. 

 
4. Discussion 
 
The need to estimate treatment effects in the population when the available sample is a selected 

one is a common occurrence in empirical work. Ignoring sample selection likely leads to biased 

estimates of population treatment effects and underestimates their standard errors, given the 

additional uncertainty induced by the unobservability of outcomes in parts of the population. 

In this paper, we address these issues by applying PI methods that use mild assumptions to 

bound nonparametrically population ATEs and QTEs under sample selection. In the process, we 

show the extent to which each additional assumption narrows identification regions. In contrast 

with previous literature that has applied similar methods to situations where treatment assignment 

is random (i.e., in the context of randomized control trials), we derive these regions in 

observational data, where this is generally not the case.  

We apply our procedures to the estimation of the causal effect of maternal education on the 

child’s math score in the 2015 PISA test in Brazil. The test is administered to 15-year-old children 

attending secondary school at grade 6 or above. Using data from PNAD, a nationally representative 

sample of Brazilian households, we show that administering the test in schools misses an important 

part of the target population: 13.9 percent of 15-year-old children have dropped out from school 

or attend a grade below 6. Sample selection is non-random: the non-selection rate is 21 percent for 

children who have mothers with primary education, and 4 percent for those with mothers with 

tertiary education. 

Ignoring this non-random sample selection, that is, examining only the sample of test 

takers, leads to narrow identification regions and, depending on the set of assumptions used, 
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treatment effects of maternal education on children’s math test scores that are significantly 

different from zero. The narrowest identification regions imply that having a mother with tertiary 

education increases the score by at least about 0.01(0.03) standard deviations at the mean(median) 

compared to having a mother with primary education. The upper bound of the effect is equal to 

about 0.25(0.23) standard deviations at the mean (median).  

On the other hand, when taking into account the additional uncertainty due to sample 

selection, even the narrowest identification regions we obtain imply that one cannot reject the 

hypothesis that the population treatment effect is zero. In contrast, the effect can be considerable 

at its upper bound, equal to about 0.48(0.36) standard deviations of the observed score at the 

mean(median). Moreover, identification regions are much larger at the bottom of the score 

distribution.  

Importantly, the upper bounds of treatment effects are always lower than the observed 

difference in scores among children with different levels of maternal education (with the exception 

of the 10-QTE). This is to be expected, as interpreting observed differences causally implies 

treating maternal education as exogenous to the test score and sample selection (i.e., test-taking) 

as random. 

The identification regions could become narrower if there were some additional 

information on the non-selected subsample. For example, if tests like PISA were administered to 

at least some of the non-selected children, then researchers would have a better idea of the 

difference in scores between those children and the children that still attend school at grade 6 or 

higher at age 15. We understand that such surveys on school dropouts are currently being 

considered, and their eventual availability could reduce the uncertainty about population treatment 

effects of interest.  
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Table 1. Descriptive Statistics 
 

Magnitude Mean Median
Std. 

Deviation
Minimum Maximum

PISA math test Score
   Whole sample 385.79 380.47 91.26 88.34 741.90
   Maternal education less than secondary 361.29 358.53 80.33 100.07 671.40
   Maternal education secondary 393.41 391.49 87.20 88.34 739.55
   Maternal education tertiary 421.06 421.27 102.43 111.46 741.90

Number of observations in PISA 17,984

School Enrolment
   Whole Sample 0.861
   Maternal education less than secondary 0.790
   Maternal education secondary 0.923
   Maternal education tertiary 0.960

Number of observations in PNAD 9,712
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Table 2. Average and Median Treatment Effects 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Assumptions 
used for the 

selected 
subsample 

Assumptions 
used for the non-

selected 
subsample 

MIV
Lower 
Bound

Upper 
Bound

Low 
95% CI

High 
95% CI

Low 
90% CI

High 
90% CI

Lower 
Bound

Upper 
Bound

Low 
95% CI

High 
95% CI

Low 
90% CI

High 
90% CI

ETS
Random sample 
selection

No 53.9 63.3 54.8 62.7 56.8 67.6 58.3 66.0

NA NA No -459.6 501.8 -463.8 504.5 -462.9 503.9 -741.9 741.9 -741.9 741.9 -741.9 741.9
MTR NA No -103.2 501.8 -103.2 504.5 -103.2 503.9 -37.6 741.9 -39.8 741.9 -39.3 741.9
MTR MTR No 0.0 501.8 0.0 504.5 0.0 503.9 0.0 741.9 0.0 741.9 0.0 741.9
MTS NA No -459.6 154.7 -463.8 161.2 -462.9 159.8 -741.9 101.3 -741.9 110.6 -741.9 108.6
MTR+MTS MTR No 0.0 154.7 0.0 161.2 0.0 159.8 0.0 101.3 0.0 110.6 0.0 108.6
MTR+MTS MTR+SD No 0.0 110.0 0.0 117.6 0.0 115.9 0.0 78.2 0.0 86.9 0.0 85.0
MTR+MTS MTR+SD+BV25 No 0.0 97.5 0.0 105.0 0.0 103.4 0.0 78.0 0.0 86.7 0.0 84.7
MTR+MTS MTR+SD+BV50 No 0.0 84.9 0.0 92.5 0.0 90.8 0.0 77.9 0.0 86.6 0.0 84.7
MTR+MTS MTR+SD MIV1 0.0 85.9 0.0 89.0 0.0 88.4 0.0 55.1 0.0 59.1 0.0 58.6
MTR+MTS MTR+SD+BV25 MIV1 0.0 74.7 0.0 78.0 0.0 77.3 0.0 54.9 0.0 58.9 0.0 58.4
MTR+MTS MTR+SD+BV50 MIV1 0.0 63.6 0.0 66.9 0.0 66.2 0.0 54.8 0.0 58.8 0.0 58.4
MTR+MTS MTR+SD MIV2 0.0 63.5 0.0 67.8 0.0 66.9 0.0 30.8 0.0 35.7 0.0 35.7
MTR+MTS MTR+SD+BV25 MIV2 0.0 53.5 0.0 57.8 0.0 56.8 0.0 30.6 0.0 35.5 0.0 35.5
MTR+MTS MTR+SD+BV50 MIV2 0.0 43.4 0.0 47.9 0.0 46.8 0.0 30.6 0.0 35.5 0.0 35.5

NA -..- No -414.0 463.0 -418.9 466.2 -417.8 465.5 -655.9 655.9 -655.9 655.9 -655.9 655.9
MTR -..- No 0.0 463.0 0.0 466.2 0.0 465.5 0.0 655.9 0.0 655.9 0.0 655.9
MTS -..- No -414.0 59.8 -418.9 67.4 -417.8 65.7 -655.9 62.7 -655.9 71.4 -655.9 69.5
MTR+MTS -..- No 0.0 59.8 0.0 67.4 0.0 65.7 0.0 62.7 0.0 71.4 0.0 69.5
MTR+MTS -..- MIV1 0.0 41.3 0.0 44.7 0.0 44.1 0.0 42.2 0.0 46.4 0.0 44.9
MTR+MTS -..- MIV2 1.2 23.1 0.5 27.7 0.6 26.5 2.6 20.7 1.5 25.3 1.6 25.3

Panel B. Treatment effects for the selected subsample

59.8 62.7

Assumptions Mean Median

Panel A. Population treatment effects 

 
Note: The table shows the treatment effect of a change in maternal education from primary to tertiary under different assumptions. ETS: exogenous 
treatment selection; NA: no assumptions; MTR: monotone treatment response; MTS: monotone treatment selection; SD: stochastic dominance; 
BV25: variation bounded to 25 percent; BV50: variation bounded to 50 percent: MIV1: single monotone instrumental variable (paternal education); 
MIV2: two monotone instrumental variables (paternal education and assets ownership, namely having a car and a computer at home). Data sources: 
PISA and PNAD. 
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Table 3. Treatment Effects: 10th and 90th Quantiles 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Assumptions 
used for the 

selected 
subsample 

Assumptions 
used for the non-

selected 
subsample 

MIV
Lower 
Bound

Upper 
Bound

Low 
95% CI

High 
95% CI

Low 
90% CI

High 
90% CI

Lower 
Bound

Upper 
Bound

Low 
95% CI

High 
95% CI

Low 
90% CI

High 
90% CI

ETS
Random sample 
selection

No 20.5 28.2 21.7 28.0 76.5 93.7 79.0 91.8

NA NA No -308.7 422.9 -313.7 431.4 -312.6 429.5 -323.2 332.4 -339.7 336.9 -336.1 335.9
MTR NA No -279.6 422.9 -283.8 431.4 -282.9 429.5 -244.3 332.4 -253.1 336.9 -251.2 335.9
MTR MTR No 0.0 422.9 0.0 431.4 0.0 429.5 0.0 332.4 0.0 336.9 0.0 335.9
MTS NA No -308.7 293.9 -313.7 300.4 -312.6 299.0 -323.2 282.8 -339.7 288.9 -336.1 287.6
MTR+MTS MTR No 0.0 293.9 0.0 300.4 0.0 299.0 0.0 282.8 0.0 288.9 0.0 287.6
MTR+MTS MTR+SD No 0.0 286.1 0.0 292.1 0.0 290.8 0.0 97.9 0.0 110.8 0.0 108.0
MTR+MTS MTR+SD+BV25 No 0.0 184.9 0.0 190.7 0.0 189.4 0.0 97.5 0.0 110.5 0.0 107.6
MTR+MTS MTR+SD+BV50 No 0.0 93.2 0.0 99.1 0.0 97.8 0.0 97.4 0.0 110.4 0.0 107.5
MTR+MTS MTR+SD MIV1 0.0 278.4 0.0 282.7 0.0 282.4 0.0 65.7 0.0 71.6 0.0 70.2
MTR+MTS MTR+SD+BV25 MIV1 0.0 170.8 0.0 174.9 0.0 174.4 0.0 65.5 0.0 71.5 0.0 70.1
MTR+MTS MTR+SD+BV50 MIV1 0.0 78.1 0.0 82.6 0.0 81.0 0.0 65.5 0.0 71.4 0.0 70.0
MTR+MTS MTR+SD MIV2 0.0 274.2 0.0 275.8 0.0 275.6 0.0 45.8 0.0 51.8 0.0 51.5
MTR+MTS MTR+SD+BV25 MIV2 0.0 161.9 0.0 163.7 0.0 163.2 0.0 45.4 0.0 51.3 0.0 50.8
MTR+MTS MTR+SD+BV50 MIV2 0.0 69.5 0.0 72.3 0.0 71.6 0.0 45.2 0.0 51.2 0.0 50.3

NA -..- No -214.3 315.7 -219.5 321.5 -218.3 320.2 -301.9 321.4 -315.9 324.9 -312.8 324.1
MTR -..- No 0.0 315.7 0.0 321.5 0.0 320.2 0.0 321.4 0.0 324.9 0.0 324.1
MTS -..- No -214.3 24.6 -219.5 31.0 -218.3 29.6 -301.9 89.0 -315.9 101.6 -312.8 98.8
MTR+MTS -..- No 0.0 24.6 0.0 31.0 0.0 29.6 0.0 89.0 0.0 101.6 0.0 98.8
MTR+MTS -..- MIV1 0.0 12.9 0.0 17.4 0.0 17.0 0.0 61.1 0.0 66.5 0.0 65.8
MTR+MTS -..- MIV2 2.6 4.3 0.8 6.0 0.9 6.0 0.0 43.2 0.0 49.8 0.0 48.6

Assumptions 10th quantile 90th quantile

Panel A. Population treatment effects 

24.6 89.0

Panel B. Treatment effects for the selected subsample

 
Note: See note to Table 2.
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Appendix 
 
A.1 No Assumptions (NA) Bounds 

Proof of Proposition 1. The proof is based on Manski (1994: 149-151) and is structured in four parts. 

1. sNA,NA(α, d) is an upper bound.  

The NA,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (10) imply that  

 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ 𝛼𝛼 ⟹  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] ≥ 𝛼𝛼.  (A.1) 

 
The premise of (A.1) is empty if 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) < α. Suppose that 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 =

1)𝑃𝑃(𝑆𝑆 = 1) ≥ α. Then the definition of 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) states that 
 

 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≡ 𝑚𝑚𝑖𝑖𝑚𝑚 𝑦𝑦:�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] ≥ 𝛼𝛼/[𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)].  (A.2) 

 

It follows that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)] ≥ 𝛼𝛼. Hence 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑). 

This result can be understood from the fact that the upper bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is found by 

reversing the NA,NA lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (10). Hence, it is the value 𝑦𝑦� that solves the equation 

𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) = α ⟹ 𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) = α
𝑆𝑆(𝑤𝑤=𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

= β. 

Hence, 𝑦𝑦� is equal to the 𝛽𝛽𝑡𝑡ℎ quantile of 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1), and thus it must be the case that 𝛽𝛽 ≤

1 ⟹ 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ 𝛼𝛼.  

 
2.  rNA,NA(α, d) is a lower bound.  

The NA,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (10) imply that 
 

{𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

                                                                           𝑃𝑃(𝑆𝑆 = 0) < α ⟹ 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] < 𝛼𝛼. 
(A.3) 

 
Given that  𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1) = 1 −  𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) and 𝑃𝑃(𝑆𝑆 = 0) = 1 −  𝑃𝑃(𝑆𝑆 = 1), (A.3) 

may be rewritten as   

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] < 1 − (1−𝛼𝛼)
𝑆𝑆(𝑤𝑤=𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

⟹ 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] < 𝛼𝛼.                                                                            (A.4) 

 
The premise of (A.4) is empty if 1 − α ≥ 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ α. Suppose that 1 − α < 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) + 𝑃𝑃(𝑆𝑆 = 0) < α. Then the definition of 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) states that 

 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) ≡ min 𝑦𝑦:�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] ≥ 1 − �
(1 − 𝛼𝛼)

𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)�.  (A.5) 
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It follows that, for all 𝜂𝜂 > 0, 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜂𝜂] < 𝛼𝛼. Hence 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≤ 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]. 

This result can be understood from the fact that the lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is found by 

reversing the NA,NA upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (10). Hence, it is the value 𝑦𝑦� that solves the equation 

[𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) = α ⟹ 𝐹𝐹(𝑦𝑦�|𝑤𝑤 =

𝑑𝑑, 𝑆𝑆 = 1) = 1 − 1-α
𝑆𝑆(𝑤𝑤=𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

= β. Hence, 𝑦𝑦� is equal to the 𝛽𝛽𝑡𝑡ℎ quantile of 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1), 

and thus it must be the case that 𝛽𝛽 > 0 ⟹ 1 − α < 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 =

1)𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) < 𝛼𝛼. 
 

3. sNA,NA(α, d) is the least upper bound.  

Let 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ α, so that 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) is finite. For any 𝜆𝜆 > 0, 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

(A.6) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0] =

0, as is possible in the absence of prior information. Then, the definition of 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) implies that 

  
         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆] = 

         𝐹𝐹[𝑦𝑦 ≤ 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) <  𝛼𝛼. 
 (A.7) 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] > 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) − 𝜆𝜆. 

Suppose now that 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) < α, so that 𝑠𝑠𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) =

𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼). For any finite 𝑜𝑜, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.8) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0] = 0. Then 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] = 𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) <  𝛼𝛼.  (A.9) 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] > 𝑜𝑜. 
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4.  rNA,NA(α, d) is the largest lower bound. 
 

Let 1 − α < 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) < α, so that 
𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) is finite. For any 𝜆𝜆 > 0, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.10) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 =

0] = 1, as is possible in the absence of prior information. Then, the definition of 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) implies 

that  
 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 

         𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ 𝛼𝛼 ⟹ 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] ≥ 1 − �
(1 − 𝛼𝛼)

𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)� 

 (A.11) 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] ≤ 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) + 𝜆𝜆. 

Suppose now that 1 − 𝛼𝛼 ≥ 𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) +

𝑃𝑃(𝑆𝑆 = 0) ≥ 𝛼𝛼, so that 𝑟𝑟𝐼𝐼𝑁𝑁,𝐼𝐼𝑁𝑁(α,𝑑𝑑) = 𝑚𝑚𝑖𝑖𝑚𝑚( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). For any finite 𝑜𝑜, and supposing that 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 ≠ 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 1] = 1, (A.10) implies that  

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] = [𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 = 𝑑𝑑|𝑆𝑆 = 1) + 

                                                                            𝑃𝑃(𝑤𝑤 ≠ 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ α.   
 (A.12) 

 
Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] ≤ 𝑜𝑜. 

 
A.2 Monotone Treatment Response  

We now show that the weaker stochastic dominance assumption (14) produces the same MTR bounds 

as the stronger assumption (13) used by Manski (1997). Looking first at the bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 =

1] and starting from the NA,NA bounds in (9), we note that both (13) and (14) imply that 

𝐸𝐸(𝑦𝑦|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1) ≤  𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐸𝐸(𝑦𝑦|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1) can be used in (9) as a 

lower bound for the counterfactual term 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] instead of  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆. Similarly, (13) and 

(14) imply that 𝐸𝐸(𝑦𝑦|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1) ≥  𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐸𝐸(𝑦𝑦|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1) can be 

used in (9) as an upper bound for the counterfactual term 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] instead of  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 
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Hence, both (13) and (14) lead to the MTR,NA bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)] shown in (15). The bounds on 

𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] are the same as those derived by Manski (1997) for the case of no sample selection. 

Turning now to the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1], and starting from the NA bounds in (10), we 

note that both (13) and (14) imply that 𝐹𝐹(𝑦𝑦|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1) ≥  𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 

𝐹𝐹(𝑦𝑦|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1) can be used in (10) as an upper bound for the counterfactual term 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 <

𝑑𝑑, 𝑆𝑆 = 1] instead of 1. Similarly, both (13) and (14) imply that 𝐹𝐹(𝑦𝑦|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1) ≤  𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 >

𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐹𝐹(𝑦𝑦|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1) can be used in (10) as a lower bound for the counterfactual 

term 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] instead of 0. Hence, both (13) and (14) lead to bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] under 

MTR,NA that are equal to 
 

 

𝐹𝐹(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) 

≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)] ≤ 

[𝐹𝐹(𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) 

(A.13) 

 
We note that the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] are the same as those derived by Giustinelli (2011) for 

the case of no sample selection.  
 
Proof of Proposition 2. Starting from (A.13) the proof proceeds in the same way as the proof of 

Proposition 1. 
 

1. sMTR,NA(α, d) is an upper bound.  

The MTR,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.13) imply that  
 

 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ 𝛼𝛼 ⟹  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] ≥ 𝛼𝛼.  (A.144) 
 
The premise of (A.14) is empty if 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) < α. Suppose that 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 =

1)𝑃𝑃(𝑆𝑆 = 1) ≥ α. Then the definition of 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) states that 
 

 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≡ 𝑚𝑚𝑖𝑖𝑚𝑚 𝑦𝑦:�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1] ≥ 𝛼𝛼/[𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)].  (A.15) 
 

It follows that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)] ≥ 𝛼𝛼. Hence 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑). 

This result can be understood from the fact that the upper bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is found by 

reversing the MTR,NA lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.13). Hence, it is equal to the value 𝑦𝑦� that solves 

the equation 𝐹𝐹(𝑦𝑦�|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) = α ⟹ 𝐹𝐹(𝑦𝑦�|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1) =
α

𝑆𝑆(𝑤𝑤≥𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)
= β. Hence, 𝑦𝑦� is equal to the 𝛽𝛽𝑡𝑡ℎ quantile of 𝐹𝐹(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1), and thus it must 

be the case that 𝛽𝛽 ≤ 1 ⟹ 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ 𝛼𝛼.  
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2. rMTR,NA(α, d) is a lower bound.  

The MTR,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.13) imply that 
 

�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃�𝑤𝑤 ≤ �̃�𝑑|𝑆𝑆 = 1� + 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)�𝑃𝑃(𝑆𝑆 = 1) + 

                                                                         𝑃𝑃(𝑆𝑆 = 0) < α ⟹ 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] < 𝛼𝛼. 
 (A.16) 

 
Given that  𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) = 1 −  𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1) and 𝑃𝑃(𝑆𝑆 = 0) = 1 −  𝑃𝑃(𝑆𝑆 = 1), 

(A.16) may be rewritten as   
 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1] < 1 − (1−𝛼𝛼)
𝑆𝑆(𝑤𝑤≤𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

⟹ 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] < 𝛼𝛼.                                                                            (A.17) 

 
The premise of (A.17) is empty if 1 − α ≥ 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ α. Suppose that 1 − α < 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) + 𝑃𝑃(𝑆𝑆 = 0) < α. Then the definition of 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) states that 
 

 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) ≡ min 𝑦𝑦:�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1] ≥ 1 − �
(1 − 𝛼𝛼)

𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)�.  (A.18) 

 

It follows that, for all 𝜂𝜂 > 0, 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜂𝜂] < 𝛼𝛼. Hence 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≤ 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]. 

This result can be understood from the fact that the lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is found by 

reversing the MTR,NA upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.13). Hence, it is the value 𝑦𝑦� that solves the 

equation [𝐹𝐹(𝑦𝑦�|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) = α ⟹

𝐹𝐹(𝑦𝑦�|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1) = 1 − 1-α
𝑆𝑆(𝑤𝑤≤𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

= β. Hence, 𝑦𝑦� is equal to the 𝛽𝛽𝑡𝑡ℎ quantile of 

𝐹𝐹(𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1), and thus it must be the case that 𝛽𝛽 > 0 ⟹ 1 − α < 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) ⟹ 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) < 𝛼𝛼. 

 
3. sMTR,NA(α, d) is the least upper bound.  

Let 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ α, so that 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) is finite. For any 𝜆𝜆 > 0, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.19) 
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Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 =

0] = 0, as is possible in the absence of prior information. Then, the definition of 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) 

implies that  
 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆] = 

         𝐹𝐹[𝑦𝑦 ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) <  𝛼𝛼. 
 (A.20) 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] > 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) − 𝜆𝜆. 

Suppose now that 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) < α, so that 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) =

𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼). For any finite 𝑜𝑜, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.21) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0] = 0. Then 
 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] = 𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) <  𝛼𝛼.  (A.22) 

 
Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] > 𝑜𝑜. 

 

4. rMTR,NA(α, d) is the largest lower bound. 

Let 1 − α < 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) < α, so that 

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) is finite. For any 𝜆𝜆 > 0, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.23) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 =

0] = 1, as is possible in the absence of prior information. Then, the definition of 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) 

implies that  
 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 
 (A.24) 
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         𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ 𝛼𝛼 ⟹ 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] ≥ 1 − �
(1 − 𝛼𝛼)

𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)�. 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) + 𝜆𝜆. 

Suppose now that 1 − 𝛼𝛼 ≥ 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) +

𝑃𝑃(𝑆𝑆 = 0) ≥ 𝛼𝛼, so that 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,𝐼𝐼𝑁𝑁(α,𝑑𝑑) = 𝑚𝑚𝑖𝑖𝑚𝑚( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). For any finite 𝑜𝑜, and supposing that 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 1] = 1, (A.23) implies that  

 
𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] = [𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 

                                                                            𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ α.   
 (A.25) 

 
Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] ≤ 𝑜𝑜. 
 
Proof of Lemma 1. Given that 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑] = 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) + 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 =

𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1), the stochastic dominance in (24) that holds in each of the two subsamples holds 

also for the whole sample. That is, ∀ 𝑑𝑑, and ∀ 𝑑𝑑1,𝑑𝑑2 ∈ 𝐷𝐷 such that 𝑑𝑑2 > 𝑑𝑑1, 
 

𝐹𝐹[𝑦𝑦(𝑑𝑑2)|𝑤𝑤 = 𝑑𝑑] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑1)|𝑤𝑤 = 𝑑𝑑]. (A.26) 
 

Since (A.14) holds ∀ 𝑑𝑑, it also holds unconditionally, that is 

 𝐹𝐹[𝑦𝑦(𝑑𝑑2)] ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑1)]. (A.27) 
 
Both means and quantiles are parameters that respect stochastic dominance, and thus (A.27) implies 

that both the A𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) and the 𝛼𝛼-𝑄𝑄𝑇𝑇𝐸𝐸(𝑑𝑑2,𝑑𝑑1) are bounded below by zero.  

 
A.3 Monotone Treatment Selection  
 
We first show that the MTS assumption in (18) produces the bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] in (19). 

Starting from the NA,NA bounds in (9), we note that (18) implies that 𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) ≤

 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) can be used in (9) as a lower bound for the 

counterfactual term 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] instead of  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆. Similarly, (18) implies that 

𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) ≥  𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐸𝐸[𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] can be used in (9) as an 

upper bound for the counterfactual term 𝐸𝐸[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] instead of  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Hence, (18) leads 

to the MTS bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)] shown in (19). The MTS bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] are the same as 

the ones derived by MP for the case of no sample selection.  
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Turning now to the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1], and starting from the NA bounds in (10), we 

note that (18) implies that 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) ≤  𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) 

can be used in (10) as a lower bound for the counterfactual term 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] instead of 0. 

Similarly, (18) implies that 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) ≥  𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1]. Hence, 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 =

1) can be used in (10) as an upper bound for the counterfactual term 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] instead 

of 1. Hence, (18) lead to bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] under MTS that are equal to 
 

 

𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) 

≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)] ≤ 

[𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) 

(A.28) 

 
The MTS bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] are the same as the ones derived by Giustinelli (2011) for the 

case of no sample selection. 

 
Proof of Proposition 3. Starting from (A.28) the proof proceeds in the same way as the proof of 

Proposition 1. 

1. sMTS,NA(α, d) is an upper bound.  

The MTS,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.28) imply that  
 

 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ 𝛼𝛼 ⟹  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] ≥ 𝛼𝛼.  (A.29) 
 

The premise of (A.29) is empty if 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) < α. Suppose that 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 =

1)𝑃𝑃(𝑆𝑆 = 1) ≥ α. Then the definition of 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) states that 
 

 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≡ 𝑚𝑚𝑖𝑖𝑚𝑚 𝑦𝑦:�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1] ≥ 𝛼𝛼/[𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)].  (A.30) 
 

It follows that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑)] ≥ 𝛼𝛼. Hence 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑). 

This result can be understood from the fact that the upper bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is found by 

reversing the MTS,NA lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.28). Hence, it is equal to the value 𝑦𝑦� that solves 

the equation 𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) = α ⟹ 𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) =
α

𝑆𝑆(𝑤𝑤≤𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)
= β. Hence, 𝑦𝑦� is equal to the 𝛽𝛽𝑡𝑡ℎ quantile of 𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1), and thus it must 

be the case that 𝛽𝛽 ≤ 1 ⟹ 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ 𝛼𝛼.  
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2. rMTS,NA(α, d) is a lower bound.  

The MTS,NA bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.28) imply that 
 

{𝐹𝐹[𝑦𝑦(𝑑𝑑)≤𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

                                                                         𝑃𝑃(𝑆𝑆 = 0) < α ⟹ 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] < 𝛼𝛼. 
 (A.31) 

 
Given that  𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) = 1 −  𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) and 𝑃𝑃(𝑆𝑆 = 0) = 1 −  𝑃𝑃(𝑆𝑆 = 1), 

(A.31) may be rewritten as   

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1] < 1 − (1−𝛼𝛼)
𝑆𝑆(𝑤𝑤≥𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

⟹ 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�] < 𝛼𝛼.                                                                            (A.32) 

 

The premise of (A.32) is empty if 1 − α ≥ 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ α. Suppose that 1 − α < 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) + 𝑃𝑃(𝑆𝑆 = 0) < α. Then the definition of 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) states that 
 

 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) ≡ min 𝑦𝑦:�𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑦𝑦�|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1] ≥ 1 − �
(1 − 𝛼𝛼)

𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)�.  (A.33) 

 

It follows that, for all 𝜂𝜂 > 0, 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜂𝜂] < 𝛼𝛼. Hence 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) ≤ 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)]. 

This result can be understood from the fact that the lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is found by 

reversing the MTS,NA upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.28). Hence, it is the value 𝑦𝑦� that solves the 

equation [𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) = α ⟹

𝐹𝐹(𝑦𝑦�|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1) = 1 − 1-α
𝑆𝑆(𝑤𝑤≥𝑑𝑑|𝑆𝑆=1)𝑆𝑆(𝑆𝑆=1)

= β. Hence, 𝑦𝑦� is equal to the 𝛽𝛽𝑡𝑡ℎ quantile of 

𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1), and thus it must be the case that 𝛽𝛽 > 0 ⟹ 1 − α < 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 =

1) ⟹ 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) < 𝛼𝛼. 

 
3. sMTS,NA(α, d) is the least upper bound.  

Let 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ≥ α, so that 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) is finite. For any 𝜆𝜆 > 0, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.34) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑆𝑆 = 0] =

0, as is possible in the absence of prior information. Suppose also that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) −
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𝜆𝜆|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1], as is possible under MTS. Then, 

the definition of 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) implies that  
 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆] = 

         𝐹𝐹[𝑦𝑦 ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) = 

         𝐹𝐹[𝑦𝑦 ≤ 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) <  𝛼𝛼. 

 (A.35) 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] > 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) − 𝜆𝜆. 

Suppose now that 𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) < α, so that 𝑠𝑠𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) =

𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼). For any finite 𝑜𝑜, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.36) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0] = 0, as is possible in the absence of 

prior information. Then 
 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] = 𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) <  𝛼𝛼.                                            (A.37) 
 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] > 𝑜𝑜. 

4. rMTS,NA(α, d) is the largest lower bound. 

Let 1 − α < 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) < α, so that 

𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) is finite. For any 𝜆𝜆 > 0, 
 

     𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] =  𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 1]𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0]𝑃𝑃(𝑆𝑆 = 0). 

 (A.38) 

 

Suppose that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑆𝑆 = 0] =

1, as is possible in the absence of prior information. Suppose also that 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) −

𝜆𝜆|𝑤𝑤 > 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) − 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1], as is possible under MTS. Then, 

the definition of 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) implies that  
 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] =  (A.39) 
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         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) = 

         {𝐹𝐹[𝑦𝑦 ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1]𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 

         𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)}𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ 𝛼𝛼 ⟹ 

         𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝛼𝛼,𝑑𝑑) + 𝜆𝜆] ≥ 1 − �
(1 − 𝛼𝛼)

𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1)�. 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] ≤ 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) + 𝜆𝜆. 

Suppose now that 1 − 𝛼𝛼 ≥ 𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) ⟹ 𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)𝑃𝑃(𝑆𝑆 = 1) +

𝑃𝑃(𝑆𝑆 = 0) ≥ 𝛼𝛼, so that 𝑟𝑟𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(α,𝑑𝑑) = 𝑚𝑚𝑖𝑖𝑚𝑚( 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆,  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). Suppose that for any finite 𝑜𝑜,  

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑤𝑤 < 𝑑𝑑, 𝑆𝑆 = 1] = 𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜|𝑆𝑆 = 0] = 1, as is possible in the absence of prior 

information. Then, (A.38) implies that  
 

𝐹𝐹[𝑦𝑦(𝑑𝑑) ≤ 𝑜𝑜] = [𝐹𝐹(𝑦𝑦 ≤ 𝑜𝑜|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1) + 

                                                                               𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0) ≥ α. 
(A.40) 

 

Hence, 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] ≤ 𝑜𝑜. 

When combining MTR and MTS for the selected subsample, and using the results for the 

𝐸𝐸[𝑦𝑦(𝑑𝑑)] in (15) and (19), we obtain the following bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)]: 
 

 

[𝐸𝐸(𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 

   𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃(𝑆𝑆 = 0) 

≤ 𝐸𝐸[𝑦𝑦(𝑑𝑑)] ≤ 

 [𝐸𝐸(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 

𝐸𝐸(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑃𝑃(𝑆𝑆 = 0). 

(A.41) 

 
We note that the bounds on 𝐸𝐸[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] under MTR+MTS are the same as those derived in MP 

for the case of no sample selection. 

Turning now to the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)], when combining MTR and MTS for the selected 

subsample, and using the results for the 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.13) and (A.16), we obtain the following bounds 

on 𝐹𝐹[𝑦𝑦(𝑑𝑑)]: 
 

 

[𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 𝐹𝐹(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) 

≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)] ≤ 

[𝐹𝐹(𝑦𝑦|𝑤𝑤 ≤ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≤ 𝑑𝑑|𝑆𝑆 = 1) + 

             𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 > 𝑑𝑑|𝑆𝑆 = 1)]𝑃𝑃(𝑆𝑆 = 1) + 𝑃𝑃(𝑆𝑆 = 0). 

(A.42) 
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We note that the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)| 𝑆𝑆 = 1] under MTR+MTS are the same as those derived in 

Giustinelli (2011, p. 795) for the case of no sample selection.  

  As Giustinelli (2011) points out, the combination of MTR+MTS produces bounds on 

𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1] that are linear combinations of observed cumulative distributions, and thus cannot be 

inverted analytically to derive bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]. Clearly, the same is true when adding the 

bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0] to produce the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.18), and thus bounds on 𝑄𝑄𝛼𝛼[𝑦𝑦(𝑑𝑑)] 

are calculated by numerical inversion of the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)]. 

 
A.4 Stochastic Dominance 
 
We now discuss why using the SD assumption narrows the upper bound of the identification range 

of all quantiles of the distribution of potential outcomes 𝐹𝐹[𝑦𝑦(𝑑𝑑)], and why its identification power is 

much stronger at the upper quantiles. In our discussion, we use MTR+MTS for the selected 

subsample, and NA for the non-selected one. This implies that, as discussed in Appendix A.3 above, 

there are no unobserved terms in the lower bound 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑆𝑆 of the distribution 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]. In 

other words, the only unobserved terms of the lower bound 𝑆𝑆𝑆𝑆𝐼𝐼
𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁 on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] come from 

the lower bound 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝑁𝑁 on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]. This way the effect of the SD assumption becomes 

clearer, as its operation on 𝑆𝑆𝑆𝑆𝐼𝐼
𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁 (and thus on the upper bounds of the quantiles of 𝐹𝐹[𝑦𝑦(𝑑𝑑)]) 

is not affected by any unobserved terms in the lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]. We note, however, 

that the reasoning behind the role of the SD assumption goes through for any combination of 

assumptions on the two subsamples. 

Let us take a hypothetical example in which there are 1,000 children in total, 800 of which 

attend school at grade 6 or above and take the PISA test. The upper bound on the 90th quantile of the 

population distribution of potential scores (i.e., of 𝑦𝑦(𝑑𝑑)) is determined by the lower bound on the 

population potential score distribution through inversion. Given the potential scores of the 800 

children who take the test, the lower bound on the population potential score distribution is given by 

the score distribution that puts the potential scores of the remaining 200 non-selected children at or 

above the best potential score among the children that take the test. This is so because putting the 200 

potential scores of non-selected children at the top makes the cumulative distribution take small 

values at low scores. Clearly, this is the best possible distribution of potential outcomes for the 

children that are not selected, as non-selection is due to either dropping out or lagging behind at 

school. This, however, implies that the upper bound on the 90th quantile of the population potential 

score is equal to the 100th best potential score among the children that are not selected. There is no 

information, however, that one can use to learn something about this score, as no scores are observed 
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in the non-selected subsample. Hence, this upper bound is not identified, and one has to put it equal 

to max( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼).  

SD rules out this case, as it imposes that non-selected children be stochastically dominated in 

test scores by the children that take the test, and thus the 90th quantile of the distribution of the 

potential scores of the latter is also an upper bound on the 90th quantile of the distribution of potential 

scores of the former, and hence an upper bound on the 90th quantile of the distribution of potential 

scores for the whole population. Hence, the 90th quantile of the population test score has as an upper 

bound the 90th quantile of the distribution of potential test scores in the selected subsample, which is 

equal to the 80th best potential score in that subsample. We thus see that SD has considerably reduced 

uncertainty at the 90th population quantile, as it reduced its upper bound from max( 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼) 

to a likely quite smaller value. 

Το give an example, the MTR+MTS,NA upper bound on 𝑄𝑄90[𝑦𝑦(𝑑𝑑3)], that is, on the 90th 

quantile of the potential score distribution when the mother’s education is tertiary is not identified 

(the same is true for the corresponding quantile of the potential outcome when mother’s education is 

primary and secondary). Thus, it is set equal to  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼, that is, to the observed maximum 

score, which is equal to 741.9 points in PISA. Adding SD reduces it to 557 points. 

Using the same reasoning, but now examining what happens at the 10th population quantile, 

its upper bound without SD would be equal to the 10th quantile of the lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in 

(A.42), that is, of {𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 𝐹𝐹(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 =

1)}𝑃𝑃(𝑆𝑆 = 1). On the other hand, with SD it would be equal to the 10th quantile of the lower bound 

on the potential score distribution in the selected subsample 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1], that is, of 

𝐹𝐹(𝑦𝑦|𝑤𝑤 = 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 < 𝑑𝑑|𝑆𝑆 = 1) + 𝐹𝐹(𝑦𝑦|𝑤𝑤 ≥ 𝑑𝑑, 𝑆𝑆 = 1)𝑃𝑃(𝑤𝑤 ≥ 𝑑𝑑|𝑆𝑆 = 1). The former 

distributional lower bound is equal to the latter multiplied by the probability of selection, and thus for 

a relatively high selection probability (as is the case in our context), the 10th quantiles of these two 

distributional lower bounds should be relatively close to each other.  

Το give an example, the MTR+MTS,NA upper bound for children whose mother’s education 

is tertiary (𝑄𝑄10[𝑦𝑦(𝑑𝑑3)]) is equal to 444.3 points. Adding SD reduces it to 421.2 points. 

  Finally, as was the case with MTR, imposing the SD assumption in (25) does not imply 

making any further assumptions on the observability or any other features of the distribution of the 

realized treatment in the non-selected subsample 𝐺𝐺[𝑤𝑤| 𝑆𝑆 = 0]. 

 
A.5 Bounded Variation 
 
We now discuss how the BVk narrows the identification region by increasing the lower bound on the 

quantiles of  𝐹𝐹[𝑦𝑦(𝑑𝑑)], and especially so for the smaller ones. As with the SD assumption discussed 

in Appendix A.4, we illustrate the way the BV assumption operates using, without loss of generality, 
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the MTR+MTS assumption for the selected subsample, and NA for the non-selected one. Hence, 

there are no unobserved terms in the upper bound 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑆𝑆(𝑑𝑑) on the distribution 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 =

1], and the only unobserved terms in the upper bound 𝑆𝑆𝑆𝑆𝐼𝐼
𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑆𝑆,𝐼𝐼𝑁𝑁(𝑑𝑑) on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] come from the 

upper bound 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝑁𝑁(𝑑𝑑) on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]. This way the effect of the BVk assumption becomes 

clearer, as its operation on the upper bound on 𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑆𝑆(𝑑𝑑) (and thus on the lower bounds of the 

quantiles of 𝐹𝐹[𝑦𝑦(𝑑𝑑)]) is not affected by any observed terms in the upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 1]. 

Using similar reasoning as in the case of the SD assumption discussed in Appendix A.4, the 

lower bound on the 10th quantile is not identified, as it is equal to the 100th best potential score among 

the non-selected students. Since we know nothing about this subsample, a conservative choice would 

be to put the lower bound on the 10th population quantile equal to  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0. Using BVk on the 

other hand, we can reconstruct the upper bound 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑) in (6) as described in Section 2.4.3, and 

then solve for the value of 𝑦𝑦 that makes the upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (6) equal to .10. This value 

should be quite higher than  𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0. 

Το give an example, the MTR+MTS,NA+SD lower bound on 𝑄𝑄10[𝑦𝑦(𝑑𝑑3)] is not identified, 

and thus is set equal to zero. Adding BV25 raises it to 108.9 points, while adding BV50 raises it to 

205.2 points. 

On the other hand, the lower bound on the 90th quantile of the population distribution of 

potential outcomes without imposing BVk (determined by the upper bound on the population 

distribution of potential outcomes) is the 100th best potential outcome in the selected subsample. 

Imposing BVk implies substituting the for the term 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑) = 1 in (6) the reconstructed potential 

outcome distribution of the non-selected subsample 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑆𝑆 = 0]. We then need to solve for the 

value of 𝑦𝑦 that makes the upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (6) equal to .90. The reconstructed potential 

outcome distribution, however, is likely close to 1 at this value of 𝑦𝑦, and thus replacing 1 as a value 

of 𝑁𝑁𝑆𝑆𝑆𝑆𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑) in (6) through BVk is unlikely to significantly narrow the identification region from 

above. 

Το give an example, the MTR+MTS,NA+SD lower bound on 𝑄𝑄90[𝑦𝑦(𝑑𝑑3)] is equal to 497.6 

points. Adding BV25 raises to 498.1 points, while adding BV50 raises to 498.2 points. 

Finally, we note again that, as was the case with MTR and SD, imposing the BVk assumption 

does not imply making any assumptions on the observability or any other features of the distribution 

of the realized treatment in the non-selected subsample 𝐺𝐺[𝑤𝑤| 𝑆𝑆 = 0]. 

 
A.6 Monotone Instrumental Variables (MIVs) 
 
We now describe the construction of the MIV bounds on the cumulative distribution 𝐹𝐹[𝑦𝑦(𝑑𝑑)], and 

thus on the 𝑄𝑄α[𝑦𝑦(𝑑𝑑)]. We first note that, as shown in Blundell et al. (2007: 332-333), and given that 



51 
 

the lower (upper) bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is determined by the upper (lower) bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)], to get 

an as large as possible (as small as possible) lower (upper) bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)], one needs to take the 

minimum (maximum) over the allowed instrument values of the upper (lower) bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)]. 

Hence, for a set of assumptions L on the selected subsample and a set M on the non-selected one, we 

obtain 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧1≥𝑧𝑧

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧1) ≤ 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧] ≤ 𝑚𝑚𝑖𝑖𝑚𝑚

𝑧𝑧2≤𝑧𝑧
𝑆𝑆𝑆𝑆𝐼𝐼

𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧2). (A.43) 

 

where 𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) denotes the lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧], and 𝑆𝑆𝑆𝑆𝐼𝐼

𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) denotes 

the upper bound. As in Blundell et al. (2007), the range of instrument values over which we maximize 

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) is one containing instrument values equal to or larger than the one under 

examination. This is so because, by the MIV assumption in (27), an upper bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)|𝑧𝑧1] is 

also an upper bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)|𝑧𝑧] when 𝑧𝑧 ≤ 𝑧𝑧1, or, alternatively, a lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑧𝑧1] is 

also a lower bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑧𝑧]. In an analogous fashion, to find the upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧], 

we minimize 𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀(𝑑𝑑|𝑍𝑍 = 𝑧𝑧) over instrument values smaller or equal than the one under 

examination. This is so because, by the MIV assumption in (27), a lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)|𝑧𝑧2] is 

also a lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)|𝑧𝑧] when 𝑧𝑧 ≥ 𝑧𝑧2, or, alternatively, an upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑧𝑧2] is 

also an upper bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑧𝑧]. 

As is the case with 𝐸𝐸[𝑦𝑦(𝑑𝑑)], the bound on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] is a weighted average of the bounds in 

(A.43), with the weights being equal to the probabilities of the instrument values, that is, 
 

 

 

 

 

�𝑃𝑃(𝑍𝑍 = 𝑧𝑧)𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧1≥𝑧𝑧

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑧𝑧1]

𝑧𝑧

 

≤�𝑃𝑃(𝑍𝑍 = 𝑧𝑧)𝐹𝐹[𝑦𝑦(𝑑𝑑)|𝑍𝑍 = 𝑧𝑧]
𝑧𝑧

= 𝐹𝐹[𝑦𝑦(𝑑𝑑)] ≤ 

�𝑃𝑃(𝑍𝑍 = 𝑧𝑧)𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧≥𝑧𝑧2

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑧𝑧2] .

𝑧𝑧

 

(A.44) 

 
After calculating the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)] in (A.44), one can obtain the bounds on the 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] by 

inverting the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)]. 

  The operations in (A.43) and (A.44) are illustrated in Fig. A.1 for the case of the upper bound 

on 𝐹𝐹[𝑦𝑦(𝑑𝑑)], which determines the lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)]. On the horizontal axis we have the 

values of the outcome 𝑌𝑌, while on the vertical axis we have the probability that 𝐹𝐹[𝑦𝑦(𝑑𝑑)] and its 

bounds take values in the support of 𝑌𝑌. The α-quantile of the unobserved 𝐹𝐹[𝑦𝑦(𝑑𝑑)] is equal to 𝑄𝑄α, as 

determined by the intersection of the horizontal α-quantile line with 𝐹𝐹[𝑦𝑦(𝑑𝑑)].  
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  There are two instrument values, 𝑜𝑜1 and 𝑜𝑜2, with 𝑜𝑜2 > 𝑜𝑜1. The upper bound conditional on 𝑜𝑜1 

forms the curve ABICD, while the upper bound conditional on 𝑜𝑜2 the curve EBJCF. As 𝑜𝑜1 is the 

smallest possible value, its conditional upper bound remains unchanged after the minimization 

operation in (A.43). However, to compute the upper bound conditional on 𝑜𝑜2 we minimize over the 

set of all smaller or equal instrument values, that is {𝑜𝑜1, 𝑜𝑜2}. We see that the segment BIC of 

𝑆𝑆𝑆𝑆𝐼𝐼
𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑜𝑜1] has lower values than the segment BJC of 𝑆𝑆𝑆𝑆𝐼𝐼

𝐿𝐿,𝑀𝑀[𝑑𝑑|𝑍𝑍 = 𝑜𝑜2] and thus the latter 

bound now forms curve EBICF instead of EBJCF.  

  Having now determined the upper bounds conditional on 𝑜𝑜1 and 𝑜𝑜2  through the minimization 

in (A.43), we need to compute their weighted average using (A.44). The segment BIC is now common 

to both conditional bounds, and thus the weighted average of the two curves between points B and C 

coincides with this segment. On the other hand, the weighted average of the two curves to the left of 

B forms segment GB, while the weighted average to the right C forms segment CH. Hence, the 

weighted average of the conditional upper bounds in (A.44) is given by the curve GBICH. The lower 

bound on the α-quantile 𝑄𝑄α[𝑦𝑦(𝑑𝑑)] is given by 𝑄𝑄α1.  

  Importantly, this lower bound is determined simply by inverting the upper bound GBICH on 

𝐹𝐹[𝑦𝑦(𝑑𝑑)]. This upper bound is computed using only (A.43) and (A.44) and without needing to know 

anything a priori about the lower bound on 𝑄𝑄α[𝑦𝑦(𝑑𝑑)]. 

  The identifying power of the MIV assumption is clear if one considers what would happen 

without the minimization operation in (A.43), that is, if we used only the set of assumptions L for the 

selected subsample and M for the non-selected one. In that case, the weighted average of the two 

conditional upper bound curves between points B and C would cross the α-quantile horizontal line at 

a point between J and I, and the resulting lower bound on the quantile would be smaller than 𝑄𝑄α1.  

As in our actual calculations we use more than one instrument, the maximization and 

minimization operations in (31) and (A.43) take place over vectors of instruments (see de Haan, 2011: 

868). Specifically, let us consider two instruments 𝑍𝑍1, and 𝑍𝑍1, and a vector of specific values for them 

(𝑧𝑧𝑜𝑜1, 𝑧𝑧𝑜𝑜2). Maximization operations related to 𝐸𝐸[𝑦𝑦(𝑑𝑑)] in (31) are performed over all vectors (𝑧𝑧𝑗𝑗1, 𝑧𝑧𝐵𝐵2, ) 

such that 𝑧𝑧𝑗𝑗1 ≤ 𝑧𝑧𝑜𝑜1 and, 𝑧𝑧𝐵𝐵2 ≤ 𝑧𝑧𝑜𝑜2. Analogously, minimization operations related to 𝐸𝐸[𝑦𝑦(𝑑𝑑)] in (31) are 

performed over all vectors (𝑧𝑧𝑚𝑚1 , 𝑧𝑧𝑛𝑛2) such that 𝑧𝑧01 ≤ 𝑧𝑧𝑚𝑚1 , and 𝑧𝑧02 ≤ 𝑧𝑧𝑛𝑛2. These calculations are 

performed over all possible vectors (𝑧𝑧𝑜𝑜1, 𝑧𝑧𝑜𝑜2) of values of the two instruments, as indicated in (32). As 

for the bounds on 𝐹𝐹[𝑦𝑦(𝑑𝑑)], maximization operations (A.43) are performed over all vectors (𝑧𝑧𝑗𝑗1, 𝑧𝑧𝐵𝐵2, ) 

such that 𝑧𝑧𝑗𝑗1 ≥ 𝑧𝑧𝑜𝑜1 and, 𝑧𝑧𝐵𝐵2 ≥ 𝑧𝑧𝑜𝑜2. Analogously, minimization operations in (A.43) are performed over 

all vectors (𝑧𝑧𝑚𝑚1 , 𝑧𝑧𝑛𝑛2) such that 𝑧𝑧01 ≥ 𝑧𝑧𝑚𝑚1 , and 𝑧𝑧02 ≥ 𝑧𝑧𝑛𝑛2. These calculations are performed over all 

possible vectors (𝑧𝑧𝑜𝑜1, 𝑧𝑧𝑜𝑜2) of values of the two instruments, as indicated in (A.44).   
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Table A.1. Treatment Effects: 25th and 75th Quantiles 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Assumptions 
used for the 

selected 
subsample 

Assumptions 
used for the non-

selected 
subsample 

MIV
Lower 
Bound

Upper 
Bound

Low 
95% CI

High 
95% CI

Low 
90% CI

High 
90% CI

Lower 
Bound

Upper 
Bound

Low 
95% CI

High 
95% CI

Low 
90% CI

High 
90% CI

ETS
Random sample 
selection

No 36.2 43.7 36.9 43.0 71.9 86.2 72.9 84.6

NA NA No -392.6 741.9 -400.5 741.9 -398.8 741.9 -741.9 419.0 -741.9 424.6 -741.9 423.4
MTR NA No -47.7 741.9 -49.6 741.9 -49.2 741.9 -57.2 419.0 -60.5 424.6 -59.8 423.4
MTR MTR No 0.0 741.9 0.0 741.9 0.0 741.9 0.0 419.0 0.0 424.6 0.0 423.4
MTS NA No -392.6 85.6 -400.5 94.0 -398.8 92.2 -741.9 136.0 -741.9 149.1 -741.9 146.2
MTR+MTS MTR No 0.0 85.6 0.0 94.0 0.0 92.2 0.0 136.0 0.0 149.1 0.0 146.2
MTR+MTS MTR+SD No 0.0 72.4 0.0 78.6 0.0 77.2 0.0 92.4 0.0 103.4 0.0 101.0
MTR+MTS MTR+SD+BV25 No 0.0 72.0 0.0 78.1 0.0 76.8 0.0 92.1 0.0 103.1 0.0 100.7
MTR+MTS MTR+SD+BV50 No 0.0 71.6 0.0 77.6 0.0 76.2 0.0 92.1 0.0 103.1 0.0 100.6
MTR+MTS MTR+SD MIV1 0.0 53.1 0.0 58.9 0.0 58.9 0.0 65.2 0.0 69.0 0.0 68.5
MTR+MTS MTR+SD+BV25 MIV1 0.0 52.9 0.0 58.7 0.0 58.7 0.0 64.9 0.0 68.7 0.0 68.3
MTR+MTS MTR+SD+BV50 MIV1 0.0 52.7 0.0 58.5 0.0 58.5 0.0 64.8 0.0 68.7 0.0 68.2
MTR+MTS MTR+SD MIV2 0.0 33.1 0.0 35.3 0.0 34.6 0.0 43.3 0.0 48.2 0.0 47.2
MTR+MTS MTR+SD+BV25 MIV2 0.0 32.9 0.0 35.2 0.0 34.3 0.0 42.8 0.0 47.9 0.0 46.9
MTR+MTS MTR+SD+BV50 MIV2 0.0 32.9 0.0 34.9 0.0 34.3 0.0 42.5 0.0 47.8 0.0 46.8

NA -..- No -287.5 655.9 -294.5 655.9 -293.0 655.9 -655.9 397.9 -655.9 402.6 -655.9 401.5
MTR -..- No 0.0 655.9 0.0 655.9 0.0 655.9 0.0 397.9 0.0 402.6 0.0 401.5
MTS -..- No -287.5 40.0 -294.5 45.7 -293.0 44.4 -655.9 81.2 -655.9 92.2 -655.9 89.8
MTR+MTS -..- No 0.0 40.0 0.0 45.7 0.0 44.4 0.0 81.2 0.0 92.2 0.0 89.8
MTR+MTS -..- MIV1 0.0 25.7 0.0 31.2 0.0 31.2 0.0 56.5 0.0 60.5 0.0 60.2
MTR+MTS -..- MIV2 3.2 7.8 2.1 10.2 2.3 9.7 0.7 36.1 0.0 40.9 0.0 40.3

Assumptions 25th quantile 75th quantile

Panel A. Population treatment effects 

40.0 81.2

Panel B. Treatment effects for the selected subsample

 
Note: See Note to Table 1.
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Figure A.1. Using a MIV on the Upper Bound on 𝑭𝑭[𝒚𝒚(𝒅𝒅)] 

 
 

 

 


