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This paper outlines a comprehensive study of the fluid-flow in the presence of heat 
and mass transfer. The governing non-linear ODE are solved by means of the ho-
motopy perturbation method. A comparison of the present solution is also made 
with the existing solution and excellent agreement is observed. The implementation 
of homotopy perturbation method proved to be extremely effective and highly suit-
able. The solution procedure explicitly elucidates the remarkable accuracy of the 
proposed algorithm. 
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Introduction

Most of the fluid-flows problems particularly heat and mass transfers are modeled for 
the non-linear PDE. There are several non-linear PDE in the literature and which can not be 
solved by analytical methods and hence need to be solved by using numerical methods which 
lead the researchers to observe the behavior of the system. There are several methods to approx-
imate the solutions and the most commonly exercised methods are finite difference methods, 
Runge-Kutta methods, and finite element methods. In practical use, some of these methods are 
not easy and also require complex calculation [1]. Among these methods, the finite-difference 
methods are known as effective tools to solve several types of PDE [2]. Further, in the condi-
tional stability analysis of explicit finite-difference schemes it is also necessary to put a severe 
constraint on the time parameter, while the implicit finite-difference schemes are observed that 
computationally expensive [3]. On the other side, these methods can be made highly effective 
and accurate, but require a structured grids.

In this study, we employ the homotopy perturbation method (HPM) to solve the 
non-linear ODE which arise in the heat generation and chemical reactions. The HPM was first 
introduced by He [4]. Well known remarkable feature of the HPM is that a few perturbation 
terms will be sufficient to obtain reasonable accurate solutions. The technique has been em-
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ployed by several researchers in order to solve a large variety of linear and non-linear prob-
lems [5-11]. 

Problem formulation

Consider basic governing equations of the problem with boundary conditions is:

 ( )2Re Gr Gc 0f f ff θ φ′′′ ′ ′′+ − − − =  (1)

 21 Ec Re 0
Pr

f fθ δθ θ′′ ′ ′+ + − =  (2)

 1 Re 0f
S
φ γφ φ′′ ′− − =  (3)
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According to HPM [4], the homotopy construction of eqs. (1)-(3) can be expressed 
in the form:
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Assuming 1 0,=L f  2 0,=L θ  and 3 0,=L φ  making substitution f , θ , and φ  from eq. (6) 
into eq. (5) and by using simple algebraic simplification and arrangement on powers of p-terms, 
we obtain the following sets of equations:
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where 1L , 2L , and 3L  are defined:
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On solving eq. (7) we get initial guess:

 3
0

3( ) 2 ,
2

= −f ηη η   0 ( ) 1 2= −θ η η ,  and  0 ( ) 1 2= −φ η η  (9)
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On solving eqs. (10) and (11) One can use one of the software such as MATHEMAT-
ICA, MAPLE or MATLAB. Then we write first order approximations:
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Results and discussion

By looking at the graphical representation of the results we notice that a very useful 
demonstration of the efficiency and accuracy of the method HPM for considered problems. In 
order to verify the accuracy of the present method, we have compared HPM results with the 
numerical and HAM results. The tabs. 1-4 clearly reveal that present solution method namely 
HPM shows excellent agreement with the HAM and numerical solution. This analysis shows 
that HPM suits for boundary-layer flow problem in the presence of heat and mass transfer.

In figs. 1-4 we show the velocity, ( )f η′ , temperature, ( )θ η , and concentration pro-
files ( )φ η  obtained by the HPM. The effect of Grashof number, Gc, (is also known as the local 
solutal) on the velocity is shown in the fig. 1. It is noted from fig.1 that initially /f  increases but 
after the center of the channel it decreases as Grashof number increases. Figures 2 and 3 illus-
trate the effect of δ  and Eckert number on temperature θ . Figure 2 shows that those positive 
values of δ  increases temperature θ  and the negative values of δ  decreases temperature θ . 
From fig. 3 it is found that θ  is an increasing function of Eckert number. Figure 4 depicts the 
influence of chemical reaction parameter γ  on the concentration profiles ( )φ η . It is noticed that 

( )φ η  decreases when γ  increases.
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Table 3. Comparison between the HPM, 
HAM, and numerical solutions of ′(0)θ  for 
different values of δ

/ (0)θ HPM HAM Numerical
0 –1.47915 –1.47915 –1.47915

0.5 –1.38989 –1.38989 –1.38989
1.0 –1.29903 –1.29903 –1.29903
1.5 –1.20654 –1.20654 –1.20654
2.0 –1.11233 –1.11233 –1.11233
2.5 –1.01634 –1.01634 –1.01634
3.0 –0.918509 –0.91851 –0.91851
3.5 –0.818754 –0.81875 –0.81875
4.0 –0.716997 –0.71700 –0.71699

Table 4. Comparison between the HPM, 
HAM, and numerical solutions of (0)φ  for 
different values of chemical reaction 
parameter

(0)φ HPM HAM Numerical
0 –1.88893 –1.88893 –1.88893 

0.5 –1.97323 –1.97323 –1.97323 
1.0 –2.05614 –2.05614 –2.05614 
1.5 –2.13770 –2.13770 –2.13770 
2.0 –2.21796 –2.21796 –2.21796 
2.5 –2.29697 –2.29697 –2.29697 
3.0 –2.37476 –2.37476 –2.37476 
3.5 –2.45137 –2.45137 –2.45137 
4.0 –2.52685 –2.52685 –2.52685
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Figure 1. Variation of local solutal  
Grashof number on the velocity ′f

Figure 2. Variation of δ  on the 
temperature θ

Table 1. Comparison between the HPM, 
HAM, and numerical solutions of ′(0)f ,  
′(0)θ , ′(0)φ  for different values of  

Reynolds numbers
/ (0)f HPM HAM Numerical
0.1 1.48951 1.4895 1.4895 
1.0 1.48782 1.4878 1.4878
5.0 1.47979 1.4798 1.4798 
/ (0)θ HPM HAM Numerical
0.1 –1.40213 –1.4021 –1.4021
1.0 –1.29903 –1.2990 –1.2990 
5.0 –0.868941 –0.8690 –0.8690 
/ (0)φ HPM HAM Numerical
0.1 –2.15309 –2.1531 –2.1531 
1.0 –2.05614 –2.0561 –2.0561
5.0 –1.64838 –1.6484 –1.6484

Table 2. Comparison between the HPM, 
HAM, and numerical solutions of ′(0)θ  for 
different values of Eckert number

/ (0)θ HPM HAM Numerical
0 –1.71593 –1.71593 –1.71593
1 –1.29903 –1.29903 –1.29903
2 –0.882127 –0.88213 –0.88213
3 –0.465201 –0.46520 –0.46520
4 –0.048258 –0.04826 –0.04826
5 0.368703 0.36871 0.36871
10 2.45377 2.45377 2.45377
20 6.62523 6.62523 6.62523
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Conclusions

In this paper, the non-linear ODE which result from the similarity solutions of a steady 
viscous fluid with heat generation and chemical reaction were solved by using an analytical 
solution method as known the HPM. Comparison of the results obtained using the developed 
HPM with numerical and HAM results. The variations of various emerging parameters on the 
velocity, temperature as well as concentration profiles are also discussed through the graphs and 
tables, respectively. Then we can easily make the following observations.

 y The HPM is an effective and easy to use if one compares with HAM and numerical solution 
method. 

 y The tangential velocity at the wall is an increasing function of Reynolds number.
 y Behaviors of δ  and Econ temperature ( )θ η  are similar.
 y Concentration profile decreases by increasing chemical reaction parameter.

The proposed analytical approach for this problem might have many more applica-
tions and thus possible to apply in similar ways to the other boundary-layer flows to get accu-
rate series solutions.

Nomenclature
Ec – Eckert number, [–]
f – dimensionless velocity profile, [–]
Gc – the local solutal Grashof number, [–]
Gr – the local thermal Grashof number, [–]
Pr – Prandtl number, [–]
Re – Reynolds numbers, [–]
S – Schmidt number, [–]

Greek symbols

γ – chemical reaction parameter, [–]
θ – dimensionless temperature profile, [–]
ϕ – dimensionless concentration, [–]

Acronym

HAM – homotopy analysis method
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