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aDepartment of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia
bMI SANU, Beograd, Serbia

Abstract. Subgroups, congruences and normal subgroups are investigated for Ω-groups. These are lattice-
valued algebraic structures, defined on crisp algebras which are not necessarily groups, and in which the
classical equality is replaced by a lattice-valued one. A normal Ω-subgroup is defined as a particular
class in an Ω-congruence. Our main result is that the quotient groups over cuts of a normal Ω-subgroup
of an Ω-group G, are classical normal subgroups of the corresponding quotient groups over G. We also
describe the minimal normal Ω-subgroup of an Ω-group, and some other constructions related to Ω-valued
congruences.

1. Introduction

We introduce a concept of a normal subgroup in the framework of Ω-groups, introduced in [7]. Ω is
a complete lattice, hence we deal with lattice-valued structures. In this case, the underlying algebra is
not necessarily a group, and the classical equality is replaced by a lattice-valued one. Therefore algebraic
(group) identities hold as particular lattice-valued formulas.

1.1. Historical background

First we recall particular basic references for fuzzy groups and related structures, not pretending to
present an extensive list of such references. Chronologically, fuzzy groups and related notions (semigroups,
rings etc.), were introduced early within the fuzzy era (e.g., Rosenfeld [23] and Das [10], then also Mordeson
and Malik [22]). Since then, fuzzy groups remain among the most studied fuzzy structures (e.g., Malik,
Mordeson and Kuroki [20], Mordeson, Bhutani, and Rosenfeld [21] and [26]). Investigations of notions
from general algebra followed these first studies (see e.g., Di Nola, Gerla [13] and [24, 25]). The universe
of an algebra was fuzzified, while the operations remained crisp. The set of truth values was either the
unit interval, or a complete, sometimes residuated lattice; generalized co-domains were also used (lattice
ordered monoids, Li and Pedrycz, [19], posets or relational systems, [25]). An analysis of different co-
domain lattices in the framework of fuzzy topology is presented by Höhle and Šostak in [17]. The notion
of a fuzzy equality was introduced by Höhle ([15]) and then used by many others. Using sheaf theory
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O.S.A. Bleblou et al. / Filomat 32:19 (2018), 6699–6711 6700

([14]), in [16], Höhle was dealing with Ω-valued sets and equalities (Ω being a complete Heyting algebra),
representing many fields of fuzzy set theory in this framework. Demirci (see e.g., [11, 12]) introduced
the new approach to fuzzy structures. He considered particular algebraic structures equipped with fuzzy
equality relations and fuzzy operations. In this framework he developed detailed studies of fuzzy groups
(vague groups, smooth subgroups) and related topics. Bělohlávek (papers [1, 3], [5] with Vychodil, the
books [2, 4], the second with Vychodil) introduced and investigated algebras with fuzzy equalities. These
are defined as classical algebras in which the crisp equality is replaced by a fuzzy one being compatible with
the fundamental operations of the algebra. Bělohlávek develops and investigates main fuzzified universal
algebraic topics. Some aspects of universal algebra in a fuzzy framework were also investigated by Kuraoka
and Suzuki, [18].

1.2. Organization of the paper
Throughout the paper, the co-domain of all mappings is a complete lattice, denoted by Ω, so we deal

with Ω-valued structures. Our approach is order-theoretic and algebraic, and in addition, we use techniques
developed in basics of fuzzy sets. The reason for not using a residuated or related lattices for the membership
values is that our results essentially depend on cut structures and their properties. Indeed, it is known that
classical set-theoretic and algebraic properties which are fuzzified are preserved on cut-structures, but only
if the co-domain structure is a basic complete lattice, without additional operations.

After Introduction, in Preliminaries we introduce necessary known notions and their properties: lat-
tices, lattice-valued structures, some topics from universal algebra. Then we list the relevant results about
Ω-algebras (omega algebras), in particular concerning Ω-groups. For each of these we refer to the corre-
sponding literature. This is the framework for our results in the present work. The basic property we use is
mentioned: an Ω-algebra is an Ω-group if and only if the cut structures over the corresponding cuts of the
Ω-valued equality are classical groups. Finally, section Results contains our contribution. After proving
that the property of being an Ω-subgroup is preserved under the corresponding quotient groups over cuts,
we introduce the notion of a normal Ω-subgroup of an Ω-group. For this we use an Ω-valued congruence
and the Ω-function being its block containing the neutral element. The main theorem which explains our
definition is: A subgroup of an Ω-group is normal if and only if every quotient subgroup constructed
over cuts of this Ω-subgroup is a normal subgroup of the corresponding quotient subgroup in the starting
Ω-group. We explicitly describe the smallest normal Ω-subgroup and analyze its cut structures. We also
present a construction of other normal Ω-subgroups, when an Ω-valued congruence is given.

2. Preliminaries

2.1. Lattices, universal algebra
We use a complete lattice as a partially ordered set (Ω,6), where every subset A has both a meet

∧
A

and a join
∨

A. In addition,
∨
∅ = 0, and

∧
∅ = 1, where 0 and 1 are the least and greatest elements of Ω,

respectively. We use ordinary properties of lattices, given in every textbook dealing with this topic, e.g., [9].
Some basic notions from Universal Algebra are given in the sequel. For more, see e.g., [8].
A language or a typeL is a set F of functional symbols, together with a set of natural numbers (arities)

associated to these symbols. As usually, an algebra of type L is a pair (A,F) denoted by A, where A is a
nonempty set and F is a set of (fundamental) operations on A. Each operation in F corresponds to some
symbol in the language; if the symbol is n-ary, then the arity of the operation is n. A subalgebra of A
is an algebra of the same type, defined on a non-empty subset of A, closed under the operations in F.
Terms in a language are usual regular expressions constructed by the variables and operational symbols.
If t(x1, . . . , xn) is a term in the language of an algebraA, then we denote in the same way the corresponding
term-operation on A. An identity in a language is a formula t1 = t2, where t1, t2 are terms in the same
language. An identity t1(x1, . . . , xn) = t2(x1, . . . , xn) is said to be valid on an algebra A = (A,F), or that A
satisfies this identity, if for all a1, . . . , an ∈ A, the equality t1(a1, . . . , an) = t2(a1, . . . , an) holds. An equivalence
relation ρ on A which is compatible with respect to all fundamental operations (xiρyi, i = 1, . . . ,n imply
f (x1, . . . , xn)ρ f (y1, . . . , yn)) is a congruence onA.
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The following known properties of congruences and quotient structures are used throughout this text.
If ρ is a congruence onA, then for a ∈ A, the congruence class of a, [a]ρ, and the quotient algebraA/ρ

are defined respectively by

[a]ρ := {x ∈ A | (a, x) ∈ ρ}; A/ρ := (A/ρ,F),

where A/ρ = {[a]ρ | a ∈ A}, and the operation on classes are defined by representatives. Next, let φ and θ be
congruences on an algebraA, and θ ⊆ φ. Then, the relation

φ/θ := {([a]θ, [b]θ) | (a, b) ∈ φ}

is a congruence onA/θ.

Theorem 2.1 (Second Isomorphism Theorem). If φ and θ are congruences on an algebraA and θ ⊆ φ, then
φ/θ is a congruence onA/θ.

LetA be an algebra, θ a congruence onA and B ⊆ A. Let

Bθ := {x ∈ A | B ∩ [a]θ , ∅},

and Bθ the subalgebra ofA generated by Bθ. We denote

θ�Bθ := θ ∩ B2

(the restriction of θ to B). Now, the universe of Bθ is Bθ and θ�Bθ is a congruence on B.

Theorem 2.2 (Third Isomorphism Theorem). If B is a subalgebra ofA and θ a congruence onA, then

B/θ�B � B
θ/θ�Bθ .

2.2. Ω-valued functions and relations
An Ω-valued function µ on a nonempty set A, is a function µ : A → Ω, where (Ω,6) is a complete

lattice. This notion can be identified with the one of a fuzzy set on A. An Ω-valued function µ on A is said
to be nonempty, if µ(x) > 0 for some x ∈ A. If µ and ν are Ω-valued functions of A, then we say that µ is a
fuzzy subset of ν, we write µ ⊆ ν if for every x ∈ A, µ(x) 6 ν(x).

For p ∈ Ω, a cut set or a p-cut of µ : A→ Ω is a subset µp of A which is the inverse image of the principal
filter in Ω, generated by p:

µp = {x ∈ X | µ(x) > p}.

An Ω-valued (binary) relation ρ on A is an Ω-valued function on A2, i.e., it is a mapping ρ : A2
→ Ω.

ρ is symmetric if ρ(x, y) = ρ(y, x) for all x, y ∈ A; (1)

ρ is transitive if ρ(x, y) > ρ(x, z) ∧ ρ(z, y) for all x, y, z ∈ A. (2)

We say that a symmetric and transitive relation ρ on A is an Ω-valued equality, or an Ω-valued equality
on A.

Observe that an Ω-valued equality ρ on a set A fulfills the strictness property (see [16]):

ρ(x, y) 6 ρ(x, x) ∧ ρ(y, y). (3)

Similarly as in [16], we say that an Ω-valued equality ρ on A is separated, if it satisfies the property

ρ(x, y) = ρ(x, x) implies x = y. (4)
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Next, we briefly connect the above notions with Ω-valued relations on Ω-valued sets.
Let µ : A→ Ω be an Ω-valued function on A and let ρ : A2

→ Ω be an Ω-valued relation on A. If for all
x, y ∈ A, ρ satisfies

ρ(x, y) 6 µ(x) ∧ µ(y), (5)

then we say that ρ is an Ω-valued relation on µ (see e.g., [28]).
An Ω-valued relation ρ on µ : A→ Ω is said to be reflexive on µ if

ρ(x, x) = µ(x) for every x ∈ A. (6)

Observe that a reflexive Ω-valued relation on µ is strict on A, in the sense of (3).
A symmetric and transitive Ω-valued relation ρ on A, which is reflexive on µ : A → Ω is an Ω-valued

equality on µ. In addition, if ρ is separated on A, then we say that it is a separated Ω-valued equality on µ.
A lattice-valued subalgebra of an algebra A = (A,F), here an Ω-valued subalgebra of A is a function

µ : A → Ω which is not constantly equal to 0, and which fulfils the following: For any operation f from F
with arity greater than 0, f : An

→ A,n ∈N, and for all a1, . . . , an ∈ A, we have that

n∧
i=1

µ(ai) 6 µ( f (a1, . . . , an)), (7)

and for a nullary operation c ∈ F, µ(c) = 1. (8)

Proposition 2.3. Let µ : A→ Ω be an Ω-valued subalgebra of an algebraA and let t(x1, . . . , xn) be a term in
the language ofA. If a1, . . . , an ∈ A, then the following holds:

n∧
i=1

µ(ai) 6 µ(tA(a1, . . . , an)). (9)

�

An Ω-valued relation R : A2
→ Ω on an algebra A = (A,F) is compatible with the operations in F if

the following two conditions holds: for every n-ary operation f ∈ F, for all a1, . . . , an, b1, . . . , bn ∈ A, and for
every constant (nullary operation) c ∈ F

n∧
i=1

R(ai, bi) 6 R( f (a1, . . . , an), f (b1, . . . , bn)); (10)

R(c, c) = 1. (11)

2.3. Ω-set

An Ω-set (as defined in [14]) is a pair (A,E), where A is a nonempty set, and E is a symmetric and
transitive Ω-valued relation on A which may be separated if indicated.

For an Ω-set (A,E), we denote by µ the Ω-valued function on A, defined by

µ(x) := E(x, x). (12)

We say that µ is determined by E. Clearly, by the strictness property, E is an Ω-valued relation on µ, namely,
it is an Ω-valued equality on µ. That is why we say that in an Ω-set (A,E), E is an Ω-valued equality.

Lemma 2.4. If (A,E) is an Ω-set and p ∈ Ω, then the cut Ep is an equivalence relation on the corresponding
cut µp of µ.
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2.4. Ω-algebra

Next we introduce a notion of a lattice-valued algebra with a lattice valued equality.
LetA = (A,F) be an algebra and E : A2

→ Ω an Ω-valued equality on A, which is compatible with the
operations in F. Then we say that (A,E) is an Ω-algebra. AlgebraA is the underlying algebra of (A,E).

Now we present some cut properties of Ω-algebras. These have been proved in [7], in the framework of
groups.

Proposition 2.5. Let (A,E) be an Ω-algebra. Then the following hold:
(i ) The function µ : A→ Ω determined by E (µ(x) = E(x, x) for all x ∈ A), is an Ω-valued subalgebra of

A.
(ii ) For every p ∈ Ω, the cut µp of µ is a subalgebra ofA, and
(iii ) For every p ∈ Ω, the cut Ep of E is a congruence relation on µp.

Remark 2.6. Observe the difference between an Ω-valued subalgebra µ of an algebraA, and an Ω-algebra
(A,E): the former is a function compatible with the operations on A in the sense of (9), and the latter is a
pair (A,E), consisting of an algebraA and an Ω-equality E. Relationship among these two is given in the
above Proposition 2.5.

2.5. Identities

Next we define how identities hold on Ω-algebras, according to the approach in [27].
Let and u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v) be an identity in the type of an Ω-algebra (A,E). We

assume, as usual, that variables appearing in terms u and v are from x1, . . . , xn Then, (A,E) satisfies identity
u ≈ v (i.e., this identity holds on (A,E)) if the following condition is fulfilled:

n∧
i=1

µ(ai) 6 E(u(a1, . . . , an), v(a1, . . . , an)), (13)

for all a1, . . . , an ∈ A.

If Ω-algebra (A,E) satisfies an identity, then this identity need not hold onA. On the other hand, if the
supporting algebra fulfills an identity then also the corresponding Ω-algebra does.

Proposition 2.7. If an identity u ≈ v holds on an algebraA, then it also holds on an Ω-algebra (A,E).

2.6. Ω-groups

The definitions and propositions in this section are from [7].

Definition 2.8. Let

G = (G, Eµ)

be an Ω-algebra in which G = (G, · ,−1 , e) is an algebra with a binary operation ( · ), unary operation (−1) and
a constant (e), and

µ : G→ Ω, such that µ(x) = Eµ(x, x).
Then G is an Ω-group if it satisfies the known group identities:

x · (y · z) ≈ (x · y) · z
x · e ≈ x, e · x ≈ x
x · x−1

≈ e, x−1
· x ≈ e.

By formula (13), the above identities hold if the following lattice-theoretic formulas are satisfied; observe
that by (8), µ(e) = 1:

(i) µ(x) ∧ µ(y) ∧ µ(z) 6 Eµ(x · (y · z), (x · y) · z);
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(ii) µ(x) 6 Eµ(x · e, x), µ(x) 6 Eµ(e · x, x);

(iii) µ(x) ∧ µ(x−1) 6 Eµ(x · x−1, e), µ(x) ∧ µ(x−1) 6 Eµ(x−1
· x, e).

Element e is said to be the unit in G, and x−1 is the inverse of element x in G. We also say that
G = (G, · ,−1 , e) is the underlying algebra of Ω-group G.

Observe that according to the definition, µ has the following properties: for all x, y ∈ G

µ(x · y) > µ(x) ∧ µ(y),
µ(x−1) > µ(x),
µ(e) = 1.

Theorem 2.9. Let G = (G, · ,−1 , e) be a group, and Eµ an Ω-valued equality on G. Then, G = (G, Eµ) is an
Ω-group.

Theorem 2.10. Let G = (G,Eµ) be an Ω-group with separated Eµ. Let also t(x) be a term depending on a
variable x only. Then the Ω-valued identity Eµ(t(x), x) holds on G if and only if the corresponding crisp
identity t(x) = x holds on G.

Corollary 2.11. Let G = (G,Eµ) be an Ω-group where Eµ is separated. Then the underlying algebra G =
(G, · ,−1 , e) fulfils:

(a) e is a neutral and a unique idempotent element with respect to binary operation · ,
(b) unary operation −1 is an involution, and
(c) identity (x · x−1) · x = x holds.

Let ν : G→ Ω be a nonempty Ω-valued subset of an Ω-valued set µ : G→ Ω, R an Ω-valued relation on
µ, and S : G2

→ Ω an Ω-valued relation on G. Then, S is a restriction of R to ν if

S(x, y) = R(x, y) ∧ ν(x) ∧ ν(y). (14)

Let A be a nonempty set and (A,Eµ) an Ω-set on A. If Eµ1 is the restriction of Eµ to a nonempty Ω-valued
subset µ1 of µ (where µ is determined by Eµ). Then clearly (A,Eµ1 ) is also an Ω-set on A. An analogue
property holds for Ω-algebras:

Proposition 2.12. If (A,Eµ) is an Ω-algebra on an algebraA = (A,F) and µ1 is an Ω-valued subset of µ and
a subalgebra ofA, then also (A,Eµ1 ) is an Ω-algebra onA, where Eµ1 is the restriction of Eµ to µ1 .

Let G = (G,Eµ) and G1 = (G,Eµ1 ) be Ω-groups over the same algebra G = (G, · ,−1 , e). We say that G1 is
an Ω-subgroup of Ω-group G, if Eµ1 is a restriction of Eµ to the Ω-valued subalgebra µ1 of G, determined
by Eµ1 .

Theorem 2.13. Let G = (G,Eµ) be an Ω-group and Eµ1 : G2
→ Ω an Ω-valued relation on G, satisfying the

formula:

Eµ1 (x, y) = Eµ(x, y) ∧ Eµ1 (x, x) ∧ Eµ1 (y, y). (15)

Then the structure G1 = (G,Eµ1 ) is an Ω-subgroup of the Ω-group G if and only if it satisfies:

Eµ1 (x, x) ∧ Eµ1 (y, y) 6 Eµ1 (x · y, x · y), (16)
Eµ1 (x, x) 6 Eµ1 (x−1, x−1), (17)
Eµ1 (e, e) = 1. (18)
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Let G = (G,Eµ) be an Ω-algebra. By known properties of Ω-valued structures, for every p ∈ Ω, the cut
µp of the Ω-valued subalgebra µ (µ(x) = Eµ(x, x)) of G is a subalgebra of G. Further, the cut relation Ep of Eµ

is a congruence relation on µp.

Theorem 2.14. Let G = (G,Eµ) be an Ω-algebra. Then, G is an Ω-group if and only if for every p ∈ Ω the
quotient structure µp/Ep is a group.

The last theorem is a special case of the following general property.

Theorem 2.15. Let (A,E) be an Ω-algebra, and F a set of identities in the language of A. Then, (A,E)
satisfies all the identities in F if and only if for every p ∈ L the quotient algebra µp/Ep satisfies the same
identities.

3. Results

First we deal with particular cut properties of Ω-subgroups. Let G = (G,Eµ) be an Ω-group. Observe
that by Theorem 2.15, for every p ∈ Ω, the quotient structure µp/E

µ
p is a classical group, where µp is a p-cut

of µ : G→ Ω, with µ(x) = Eµ(x, x), and Eµp is the corresponding cut of Eµ.

Theorem 3.1. Let G = (G,Eµ) be an Ω-group and N = (G,Eν) an Ω-subgroup of G. Then, for every p ∈ Ω,
the group νp/Eνp is, up to an isomorphism, a subgroup of the group µp/E

µ
p .

Proof. Consider the quotient groups νp/Eνp and µp/E
µ
p , for p ∈ Ω. Observe that νp is a subalgebra of the

algebra µp, and that Eνp is a restriction of Eµp to νp, in the sense of the starting algebras with a binary, a unary
and a nullary operation.

Now, Eνp is a congruence on νp, and Eµp is a congruence on µp. We also have that Eνp is a restriction of Eµp
to νp. Let

ν
Eµp
p = {a ∈ µp | νp ∩ [a]Eµp , ∅}.

In other words, ν
Eµp
p is a union of classes of congruence Eµp having nonempty intersection with νp.

It is clear that ν
Eµp
p is a subalgebra of µp, and that the restriction of Eµp to ν

Eµp
p , Eµp�ν

Eµp
p , is a congruence on

ν
Eµp
p .

By the Third isomorphism theorem, we have that

νp/Eνp � ν
Eµp
p /(E

µp�ν
Eµp
p ).

Since νp/Eνp is a group, we also have that the quotient structure on the righthand side, ν
Eµp
p /(Eµp�ν

Eµp
p ) is a

group. In addition, ν
Eµp
p /(Eµp�ν

Eµp
p ) is a subset of µp/E

µ
p , since the former consists of some equivalence classes

of µp/E
µ
p . Finally, ν

Eµp
p /(Eµp�ν

Eµp
p ) is a group, hence it is a subgroup of µp/E

µ
p .

Let G = (G,Eµ) be an Ω-group.
By µ we denote the mapping from G to Ω, defined by µ(x) = Eµ(x, x).
An Ω-valued congruence onG is an Ω-valued relation Θ : G2

→ Ω on G, which isµ-reflexive, symmetric,
transitive and compatible with the operations in G, and which also for all x, y ∈ G fulfills Θ(x, y) > Eµ(x, y).

Observe that µ-reflexivity of Θ means that for every x ∈ G, Θ(x, x) = Eµ(x, x).
Let Θ be a congruence on a given Ω-group G = (G,Eµ). Define ν : G→ Ω by

ν(x) := Θ(e, x), (19)

where e is a constant, neutral element in G. Next, let Eν : G2
→ Ω be defined by

Eν(x, y) := Eµ(x, y) ∧ ν(x) ∧ ν(y). (20)
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Proposition 3.2. If G = (G,Eµ) is an Ω-group, thenN = (G,Eν) is an Ω-subgroup of G.

Proof. We prove that conditions given in Theorem 2.13 are fulfilled.
First, condition (15) is fulfilled:

Eν(x, y) = Eν(x, y) := Eµ(x, y) ∧ Eν(x, x) ∧ Eν(y, y),

by the definition of Eν, since Eν(x, x) = Eµ(x, x) ∧Θ(e, x) = Θ(e, x), and similarly for Eν(y, y).
Further, by compatibility of Θ,

Eν(x, x) ∧ Eν(y, y) = Θ(e, x) ∧Θ(e, y) 6 Θ(e, x · y) = Eν(x · y, x · y),

and (16) holds. Analogously, conditions (17) and (18) are satisfied.
Therefore, by Theorem 2.13,N is an Ω-subgroup of G.

Remark 3.3. Observe that in the case of crisp, classical groups, (19) gives a characteristic function of a
normal subgroup.

The above considerations motivates the following definition.
Let G = (G,Eµ) be an Ω-group and N = (G,Eν) an Ω-subgroup of G. Then, N is a normal Ω-subgroup

of G, if there is an Ω-valued congruence Θ on G, such that for all x, y ∈ G,

Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y). (21)

The following result is the main argument for the definition of a normal Ω-subgroup.

Theorem 3.4. An Ω-subgroup N = (G,Eν) of an Ω-group G = (G,Eµ) is a normal Ω-subgroup of G, if and
only if for every p ∈ Ω, νp/Eνp is a normal subgroup of the group µp/E

µ
p .

Proof. Let N be a normal Ω-subgroup of the Ω-group G. Then, by the definition, there is an Ω-valued
congruence Θ on G, such that for all x, y ∈ G, θ(x, y) > Eµ(x, y) and

Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y).

Now, for p ∈ Ω, we consider the cut Θp, which is, clearly, a congruence on the subalgebra µp of the
underlying algebra G, since for every x ∈ G, Θ(x, x) = Eµ(x, x), and Eµp ⊆ Θp.

By the above, all conditions for the Second isomorphism theorem are fulfilled. Therefore, the relation
Θp/E

µ
p , defined by

([x]Eµp , [y]Eµp ) ∈ Θp/E
µ
p if and only if (x, y) ∈ Θp, (22)

is a congruence on µp/E
µ
p (it is well defined since Θp is a congruence by the assumption).

In the above formula,

(x, y) ∈ Θp if and only if Θ(x, y) > p.

Further, by the Second isomorphism theorem,

µp/E
µ
p/Θp/E

µ
p � µp/Θp.

Now, µp/E
µ
p is a group, Θp/E

µ
p is a congruence on this group, hence µp/Θp is a group.

Next, by the definition, for every x ∈ G, ν(x) = Θ(e, x), hence for p ∈ Ω, x ∈ νp if and only if Θ(e, x) > p.
By Theorem 3.1, νp/Eνp is, up to an isomorphism, a subgroup of µp/E

µ
p . By the definition, νp/Eνp consists

exactly of some equivalence classes of µp/E
µ
p , so it is indeed a subgroup of µp/E

µ
p .
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Now we show that νp/Eνp is a normal subgroup of µp/E
µ
p . In other words, we prove that νp/Eνp is a class

of a congruence on µp/E
µ
p , containing the neutral element.

Indeed, we have already noted that Θp/E
µ
p is a congruence on µp/E

µ
p and now we see that the class of

this congruence containing the neutral element is exactly νp/Eνp.

Conversely, suppose that N = (G,Eν) is an Ω-subgroup of an Ω-group G = (G,Eµ). By assumption, for
every p ∈ Ω, νp/Eνp is a normal subgroup of the group µp/E

µ
p which means that elements in νp/Eνp are exactly

some classes of µp/E
µ
p . Now, for every p ∈ Ω, we define a relation θp on µp/E

µ
p by

[x]Eµpθp[y]Eµp if and only if [x]Eµp · [y]−1
Eµp
∈ νp/Eνp.

Since νp/Eνp is a normal subgroup, θp is a congruence on µp/E
µ
p .

[x]Eµp · [y]−1
Eµp
∈ νp/Eνp is equivalent with [x · y−1]Eµp ∈ νp/Eνp, which is further equivalent with x · y−1

∈ νp,

which is equivalent with ν(x · y−1) > p.
Now we consider a family of congruences {θi | i ∈ I ⊆ Ω}. Since [x]Eµi

θi[y]Eµi
is equivalent with

ν(x · y−1) > i, we have that [x]Eµi
θi[y]Eµi

for every i ∈ I is equivalent with ν(x · y−1) >
∨

i∈I i, this is further
equivalent with [x]Eµi

θ∨
i∈I i[y]Eµi

. Hence, we have that the family of all congruences {θi | i ∈ Ω} is a closure
system, since ⋂

i∈I

θi = θ∨
i∈I i.

Now, we define a relation:

Θ : G2
→ Ω by Θ(x, y) =

∨
{p | ([x]Eµp , [y]Eµp ) ∈ θp}.

Note that if (x, y) does not belong to any θp for p ∈ Ω, then Θ(x, y) = 0 by the definition of the supremum of
∅ in the complete lattice Ω.

Now, it is straightforward to prove that θ is a symmetric, transitive and compatible relation on G. It is
also µ-reflexive: for x ∈ G

Θ(x, x) =
∨
{p | ([x]Eµp , [x]Eµp ) ∈ θp} =

∨
{p | x ∈ µp} = µ(x) = Eµ(x, x),

since µ(x) is one of the values over which the supremum run.
Finally, we prove that for all x, y ∈ G, Eµ(x, y) 6 Θ(x, y). Let Eµ(x, y) = p. Then (x, y) ∈ Ep and hence

[x]eµp = [y]eµp . Since θp is a congruence on µp/E
µ
p , it is obvious that we have ([x]eµp , [y]eµp ) ∈ θp. By the definition

of Θ, we get Θ(x, y) > p.
Hence Θ is an Ω-valued congruence on G, and by the construction Θ(x, e) = ν(x) = Eν(x, x). By the

definition (21),N is a normal Ω-subgroup of G.

Corollary 3.5. If G = (G,Eµ) is a commutative Ω-group, then every Ω-subgroup of G is normal.

Proof. Indeed, commutativity of an Ω-group is hereditary for quotient subgroups on cuts by Theorem
2.15. Therefore, if G is commutative, then every quotient structure µp/Ep, p ∈ Ω is an Abelian group. All
subgroups of these are normal, hence by Theorem 3.4, every Ω-subgroup of G is normal.

Example 1. The structure (G,Eµ), whereG = (G, ·, −1, e) with a binary operation · on G = {e, a, b, c, d, f , 1, h, i, j}
is given in Table 1; unary operation −1 is the identity function, and neutral element is e. The lattice Ω is
given by the diagram in Figure 1. The Ω-valued equality Eµ is presented in Table 2.
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· e a b c d f g h i j
e e a b c d f g h i j
a a e b c d f h g i j
b b b e e g h f d i j
c c c e e h g d f i j
d d f h g e e c b i j
f f d g h e e b c i j
g g g d f b c e e i j
h h h f d c b e e i j
i i a b c d f g h e e
j j a b c d f g h e e

Table 1: Binary operation on G

uu
�
�
�
@
@
@�

�
�
@

@
@u
u

u
1

q r

0
Figure 1: Lattice Ω

Eµ e a b c d f g h i j
e 1 r 0 0 0 0 0 0 0 0
a r r 0 0 0 0 0 0 0 0
b 0 0 r r 0 0 0 0 0 0
c 0 0 r r 0 0 0 0 0 0
d 0 0 0 0 r r 0 0 0 0
f 0 0 0 0 r r 0 0 0 0
g 0 0 0 0 0 0 r r 0 0
h 0 0 0 0 0 0 r r 0 0
i 0 0 0 0 0 0 0 0 q q
j 0 0 0 0 0 0 0 0 q q

Table 2: Ω-valued equality on G

The function µ : G→ Ω is determined by Eµ: µ(x) = Eµ(x, x).

x e a b c d f g h i j
µ(x) 1 r r r r r r r q q

(G,Eµ) is an Ω-group. Quotient cut-subgroups are:

µr/E
µ
r = {{e, a}, {b, c}, {d, f }, {1, h} and µq/E

µ
q = {{i, j}}.

An Ω-valued congruence Θ on (G,Eµ) is given in Table 3.
By the definition we have ν(x) = Θ(e, x):

x e a b c d f g h i j
ν(x) 1 r r r 0 0 0 0 0 0
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Therefore, ν1 = {e}, and νr = {e, a, b, c} and the remaining cut νq is the empty set.
Consequently, νr/Eνr = {{e, a}, {b, c}} is a normal subgroup of µr/E

µ
r , and this is the only nonempty and

non-trivial cut structure.

Θ e a b c d f g h i j
e 1 r r r 0 0 0 0 0 0
a r r r r 0 0 0 0 0 0
b r r r r 0 0 0 0 0 0
c r r r r 0 0 0 0 0 0
d 0 0 0 0 r r r r 0 0
f 0 0 0 0 r r r r 0 0
g 0 0 0 0 r r r r 0 0
h 0 0 0 0 r r r r 0 0
i 0 0 0 0 0 0 0 0 q q
j 0 0 0 0 0 0 0 0 q q

Table 3: Ω-valued congruence on G

Following (21) i.e., by

Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y),

we have Eν presented in Table 4.

Eν e a b c d f g h i j
e 1 r 0 0 0 0 0 0 0 0
a r r 0 0 0 0 0 0 0 0
b 0 0 r r 0 0 0 0 0 0
c 0 0 r r 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 0

By Theorem 3.4, the structure (G,Eν) is a normal Ω-subgroup of the Ω-group (G,Eµ). �

Continuing with the general properties of normal Ω-subgroups, we use the fact that Eµ is also an
Ω-valued congruence on G. Therefore, we examine a particular case when Θ = Eµ.

Theorem 3.6. Let G = (G,Eµ) be an Ω-group, and Eε : G2
→ Ω defined by

Eε(x, y) = Eµ(e, x) ∧ Eµ(e, y), (23)

with ε : G→ Ω, ε(x) := Eε(x, x). Then, E = (G,Eε) is the smallest normal Ω-subgroup of G.

Proof. By (21), Eε is an Ω-congruence on G:

Eε(x, y) = Eµ(e, x) ∧ Eµ(e, y) = Eµ(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y),

since by symmetry and transitivity of Eµ

Eµ(e, x) ∧ Eµ(e, y) 6 Eµ(x.y).
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Therefore, E is a normal Ω-subgroup of G. We prove that it is the smallest one. Namely, let N = (G,Eν)
be an arbitrary normal Ω-subgroup of G; we show that (G,Eε) is an Ω-subgroup of N . Indeed, Eε is a
restriction of Eν to ε, where ε(x) = Eµ(e, x), and Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y), for an Ω-congruence Θ

on G, Eµ(x, y) 6 Θ(x, y). So, we have
Eε(x, y) = Eµ(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y) =
Eµ(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y) ∧Θ(e, x) ∧Θ(e, y) =
Eν(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y) = Eν(x, y) ∧ ε(x) ∧ ε(y),

and Eε is a restriction of Eν to ε. By Proposition 2.12, E is an Ω-subgroup of an arbitrary normal Ω-subgroup
N of G, hence it is the smallest one.

The following is an explicit description of E in terms of cut relations.

Corollary 3.7. Let E = (G,Eε) be the subgroup of an Ω-group G = (G,Eµ), with Eε being defined by (23).
Then, for every p ∈ Ω, the cut Eεp is the diagonal relation (equality) on the quotient group µp/E

µ
p .

Proof. By (22), the relation Eεp/E
µ
p , defined by

([x]Eµp , [y]Eµp ) ∈ Eεp/E
µ
p if and only if (x, y) ∈ Eεp,

is a congruence on µp/E
µ
p . By the definition of Eε and by transitivity of Eµ we have

(x, y) ∈ Eεp if and only if Eε(x, y) > p
which implies Eµ(x, y) > Eµ(e, x) ∧ Eµ(e, y) > p.
Obviously, this is equivalent with [x]Eµp = [y]Eµp , hence Eεp is a classical equality on µp/E

µ
p .

Next we prove that an Ω-valued congruence on an Ω-group, acting as an Ω-valued equality, generates
an Ω-group itself. Recall that an Ω-valued congruence Θ on an Ω-group (G,Eµ) is an Ω-valued equivalence
on G, compatible with the group operations and satisfying Θ(x, y) > Eµ(x, y).

Theorem 3.8. Let Θ : G2
→ Ω be an Ω-valued congruence on an Ω-group (G,Eµ). Then (G,Θ) is an Ω-group

as well. In addition, for every p ∈ Ω, the mapping f : µp/E
µ
p → µp/Θp, defined by f ([x]Eµp ) = [x]Θp is a

classical surjective group homomorphism.

Proof. It is obvious that (G,Θ) is an Ω-algebra. We prove that the group identities are fulfilled. This follows
by the fact that for every x ∈ G, µ(x) = Θ(x, x). Hence, e.g., for Ω-associativity of the binary operation on G,
we have

µ(x) ∧ µ(y) ∧ µ(z) 6 Eµ(x · (y · z), (x · y) · z) 6 Θ(x · (y · z), (x · y) · z),

similarly with other group identities.
Next, let f : µp/E

µ
p → µp/Θp, be such that f ([x]Eµp ) = [x]Θp . Then, for x, y ∈ µp,

f ([x · y]Eµp ) = [x · y]Θp = [x]Θp · [y]Θp = f ([x]Eµp ) · f ([y]Eµp ),

hence f is a homomorphism. Analogously, one can check that f is compatible with the unary operation −1,
and that f ([e]Eµp ) = [e]Θp . It is surjective, since every class [x]Θp is the image of [x]Eµp under f .

4. Conclusion

In the framework of Ω-groups we have introduced and investigated normal Ω-subgroups. We have
also shown the connection to classical groups and normal subgroups, which appear as quotient subgroups
over the cuts.

As a continuing investigation, we intend to deal with particular important notions related to groups
and normal subgroups, all in the framework of Ω-groups. These topics are chains of subgroups, subnormal
subgroups and in particular lattices of these structures.



O.S.A. Bleblou et al. / Filomat 32:19 (2018), 6699–6711 6711

References
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[3] R. Bělohlávek, Birkhoff variety theorem and fuzzy logic, Archive for Mathematical Logic 42.8 (2003): 781-790.
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[15] U. Höhle, Quotients with respect to similarity relations, Fuzzy Sets and Systems 27 (1988) 31-44.
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