®

Check for
updates

CoVeriTest with Dynamic Partitioning
of the Iteration Time Limit*
(Competition Contribution)

Marie-Christine Jakobs**

Technical University of Darmstadt, Department of Computer Science,
Darmstadt, Germany

Abstract. Our CoVeriTest submission, which is implemented in the
analysis framework CPAcunEckER, uses verification techniques for automatic
test-case generation. To this end, it checks the reachability of every test
goal and generates one test case per reachable goal. Instead of checking
the reachability of every test goal individually, which is too expensive,
CoVeriTest considers all test goals at once and removes already covered
goals from future reachability queries. To deal with the diverse set of
Test-Comp tasks, CoVeriTest uses a hybrid approach that interleaves
value and predicate analysis. In contrast to Test-Comp’19, the time limit
per iteration is no longer fixed for an analysis. Instead, we fix the iteration
time limit and split it dynamically among the analyses, rewarding analyses
that previously covered more test goals per time unit.

Keywords: Test-case generation - Cooperative verification - CPAcHECKER

1 Test-Generation Approach

Test-case generation approaches have different strengths and weaknesses. To deal
with the diverse Test-Comp benchmark, we therefore use an hybrid approach.
More concrete, our Test-Comp’20 submission CoVERITEST combines different
verification approaches using the idea of cooperative, verifier-based testing [6].

Figure 1 shows the workflow of our CoVeRrITEST submission. Like in Test-
Comp’1l9, CoVERITEST iteratively combines a value analysis [5], which only
tracks the explicit values of those variables stored in its precision, and a predicate
analysis, which applies adjustable block encoding [4] and abstracts at loop heads
only. Both analyses use counterexample-guided abstraction refinement [8] to
adjust their precision (the set of tracked variables or the set of predicates) and
check which open test goals can be reached. Whenever one analysis reaches a test
goal, i.e., it finds a real counterexample, a test case adhering to the Test-Comp
exchange format! is constructed from that counterexample [1] and the test goal

* This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.
** jury-member
! https://gitlab.com/sosy-lab/software/test-format /tree/master

© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 540-544, 2020.
https://doi.org/10.1007/978-3-030-45234-6_30

https://gitlab.com/sosy-lab/software/test-format/tree/master
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_30&domain=pdf

CoVeriTest with Dynamic Partitioning of the Iteration Time Limit 541

is removed from the set of open test goals. Depending on the Test-Comp’20
property, the set of test goals is initialized to the set of all __VERIFIER_error ()
calls or the set of all branches.

Like in Test-Comp’19,
both analyses resume Test specification
their exploration from the

in . init in .
specification ¢ l specification ¢

previous round and do Test goals
not exchange any further oo - T eovered Oy,
information. The novelty 0¥ - S0y

for Test-Comp’20 is the
dynamic adjustment of e
the analyses’ time limits “8re

~ _ - j npP
. \S})Lf\\\\ /,//,}O%’ij
To better adjust to the Time limit adaption

Test suite <

program, we redistribute (20, 805)

the iteration time limit Program

among the analyses after

each iteration round. Fig.1: CoVeriTEsT workflow for Test-Comp’20

Initially, we grant the

value analysis 20s and the predicate analysis 80s. Thereafter, we use the
normalized progresses py and pp reported by the analyses to compute the new
time limits. The normalized progress is the number of test goals covered by the
analysis in the round divided by the total number of test goals. If no analysis
made progress (py < 0 and pp < 0), we will reuse the time limits from the
current round. Otherwise, we adjust the limits according to Eq. 1 (i € {V, P}).
Each analysis gets at least 10s to avoid to turn it off. The remaining 80 s of the
iteration limit are redistributed according to the relative contribution of each
analysis. The relative contribution of an analysis is its progress per time limit
related to the sum of the progresses per time limit.

Pi
lmit"®" = 10s + pvhm—ltipp «80's (1)
limit\/ limitp

The main differences to HybridTiger [11], which also applies cooperative, verifier-
based testing, are that Hybrid Tiger uses multi-goal partitioning [10] and that
HybridTiger uses fixed time limits 120 s and 720 s for value and predicate analysis.

2 Tool Architecture

CoVERITEsT is implemented within the Java-based software-analysis framework
CPACHECKER [3], which uses the Eclipse CDT parser? and integrates different
SMT solvers via the JavaSMT [9] interface. For Test-Comp’20, we rely on
CPAcHECKER’s default SMT solver MathSATS5 [7].

% https://www.eclipse.org/cdt/

https://www.eclipse.org/cdt/

542 M.-C. Jakobs

CPACHECKER’s core is the configurable program analysis framework [2], which
defines the basis for the verification approaches. The framework consists of two
parts: configurable program analyses (CPAs) and the CPA algorithm. CPAs like
the value and predicate analysis used by CoVERITEST describe program analyses.
Therefore, they define the abstract domain and the analysis operators. The CPA
algorithm performs the reachability analysis for a given CPA and program.

To integrate further verification techniques, the CPA framework is enhanced
with algorithms like counterexample-guided abstraction refinement [8], the circular
algorithm, which performs a continuous iteration over a set of analyses, or the
test-case generation algorithm. To produce test cases, the test-case generation
algorithm wraps and runs another analysis, generates test cases from counter-
examples [1] returned by the wrapped analysis, updates the analysis specification
(i.e., removes covered goals), and thereafter continues the wrapped analysis.

3 Strengths and Weaknesses

CoVErITEST won the third place in the category Cover-Branches and in contrast
to Test-Comp’19, became better than KLEE in this category.

The major change of CoVerITEST from Test-Comp’l9 to Test-Comp’20
is the dynamic adjustment of the iteration time limits. Thus, many strength
and weaknesses are still the same as in Test-Comp’19. CoVERITEST’s iterative
combination of predicate and value analysis helped to adapt to the diverse set
of Test-Comp tasks and its direct search of the test goals lead to few test cases.
Also, CoVEeRrITEST has still problems with tasks that contain large arrays because
these are not supported by the underlying analyses. Furthermore, CoVERITEST
has problems with the new subcategory BusyBox-Memsafety and fails to parse
the programs in the new subcategory SQLite-MemSafety.

Now, let us discuss the effect of the adjustment of the time limits. For the
time limit adjustment, we use the progress of the analyses measured in number
of covered goals. Since there only exists one (reachable) test goal per task in
the Cover-Error category, either both analyses make no progress in an iteration
(pv <0 and pp < 0) or one analysis covered the goal and CoVERITEsST stops.
Thus, the time limit adjustment has no effect on the Cover-Error category.

Next, let us consider the Cover-Branches category. Our own comparison of
the CoVERITEST submissions for Test-Comp’19 and Test-Comp’20 revealed that
the time limit adjustment mainly affects tasks of the ECA subcategory. In total,
the coverage value for 320 tasks decreased and the coverage value for 591 tasks
increased. Moreover, the increase is typically significantly larger than the decrease
(on average 6.3 percent points increase compared to 1.5 percent points decrease).
Furthermore, most of the tasks with a difference in the coverage value belong to
the ECA subcategory. Therefore, the time limit adjustment pays off. Nevertheless,
CoVEerITEST could still perform better on the ECA subcategory. We believe that
one problem in the ECA subcategory are redundant test goals, which lead to the
same or similar test case generated multiple times and, thus, a waste of time.

CoVeriTest with Dynamic Partitioning of the Iteration Time Limit 543

4 Setup and Configuration

CoVERITEST is distributed as part of CPAcHECKER®, which requires a Java 8
runtime environment. Our Test-Comp’20 submission, with which we participated
in all categories, uses CPACHECKER in revision 32236. After the environmental
setup, one can run CoVERITEST on program program.i with the following
command. The file property.prp is a placeholder for the test specification, either
coverage-error-call.prp or coverage-branches.prp.

scripts/cpa.sh -testcomp20 -benchmark -heap 10000m
-spec property.prp program.i

The command above assumes that program.i runs in a 32-bit environment.
When requiring a 64-bit environment, one needs to add the parameter -64 to the
above command. Moreover, if the machine has not enough RAM to handle the
specified Java heap memory, one can decrease the value passed with -heap.
The test suite generated during the execution of CoVERITEST is written to
the directory test-suite, which is a subdirectory within the output directory
of CPAcHECKER. As defined by the Test-Comp rules, the test suite contains a
metadata file and test-case files adhering to the required XML format.

5 Project and Contributors

CoVERITEST is a component of the open-source project CPACHECKER 2, which is
hosted by Dirk Beyer’s group at LMU Munich under Apache 2.0. Currently, also
members of the Institute for System Programming of the Russian Academy of
Sciences, Masaryk University, and Technical University of Darmstadt contribute
to CPAcHECKER. We would like to thank all contributors.

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326-335. IEEE (2004)

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504-518. LNCS 4590, Springer (2007)

3. Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software
verification. In: Proc. CAV. pp. 184-190. LNCS 6806, Springer (2011)

4. Beyer, D.; Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189-197. FMCAD (2010)

5. Beyer, D., Lowe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proc. FASE. pp. 146-162. LNCS 7793, Springer (2013)

6. Beyer, D., Jakobs, M.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389-408. LNCS 11424, Springer (2019)

3 https://cpachecker.sosy-lab.org

https://cpachecker.sosy-lab.org

544 M.-C. Jakobs

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93-107. LNCS 7795, Springer (2013)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003)

9. Karpenkov, E.G., Friedberger, K., Beyer, D.: JAVASMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139-148. LNCS 9971, Springer (2016)

10. Ruland, S., Lochau, M., Fehse, O., Schiirr, A.: Configurable test-goal set partitioning
for multi-goal test-suite generation. STTT Competitions and Challenges Track -
Test-Comp 2019 To appear

11. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking and
domination-based partitioning for efficient multi-goal test-suite generation (compe-
tition contribution). In: Proc. FASE. LNCS, Springer (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	30 CoVeriTest with Dynamic Partitioning of the Iteration Time Limit* (Competition Contribution)
	1 Test-Generation Approach
	2 Tool Architecture
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References

