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Abstract

It is well established that the multitude of microbes residing in
the human intestine play a key role for health. Recently, it has
become apparent that ingested chemicals affect the compo-
sition of the human gut microbiota. Additionally, the gut mi-
crobes affect the uptake and metabolism of chemicals in
multiple ways. Here, we outline the current knowledge about
the complex interplay between gut microbes, ingested xeno-
biotics and toxicological effects. We propose that the intestinal
microbiota plays a key role in chemical toxicity, which is typi-
cally overlooked in existing approaches for risk assessment.
This means that factors such as animal provider, batch/litter
differences, and co-caging may significantly influence the
outcome of toxicity evaluations based on rodent experiments.
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1. Introduction
The human intestinal tract harbours between 1013 and
1014 bacterial cells [1], which engage in a complex
interplay with each other as well as with the human host

[2]. The role of this interplay for human health is well
established [3]. It has recently been proposed that he
gut microbiota may also play a key role in the toxicity of
environmental chemicals [4], as the intestinal microbes
putatively interact with ingested xenobiotic chemicals
in multiple ways (Figure 1).
www.sciencedirect.com
Ingested xenobiotics may directly affect the host
microbiota, and thereby potentially the host health, by
selective suppression or enhancement of specific bac-
terial species within the complex community [5,6]. As
the microbiota is reported to be involved in the meta-
bolism of several drugs and pollutants [7], inter-
individual variation in bacterial community composi-
tion may result in a personalized response to given
xenobiotic compounds. Furthermore, the composition of
the microbial community of the gut influences the
permeability of the intestinal barrier as well as the

uptake of nutrients [8], and it can thus be anticipated
that the microbiota influences the uptake of xenobiotic
compounds.

In summary, it is highly likely that the toxic effects of
ingested xenobiotics are significantly enhanced or
reduced by the gut microbiota. Nevertheless, the role of
the microbiota in animal models applied for chemical
risk assessment is very rarely taken into account. We
propose that a great deal of the variation in dosee
response output observed in such assessments can be

attributed to differences in the intestinal microbial
populations of the experimental animals applied.

Chemicals affect the gut microbiota. Several different
classes of xenobiotic chemicals have been reported to
interfere with the biochemical and enzymatic activity of
gut microbes affecting bacterial community composition
and overall gut microbiome homeostasis, with possible
harmful consequences to the host [4]. Specifically, ef-
fects of pesticides on bacterial communities has recently
attracted much attention and consequently various
fungicides [9], insecticides [10] and herbicides [11]

have been shown to affect the gut microbiota. The
observed changes in bacterial composition are a kin to
those observed following oral administration of antibi-
otics, but are typically much more subtle. The molecular
mechanisms involved in the chemicalemicrobe in-
teractions are mostly unknown. An exception to this is
the herbicide glyphosate which is known to specifically
block the synthesis of the three essential aromatic amino
acids tyrosine, phenylalanine and tryptophan by inhib-
iting the 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS), in the shikimate pathway of some bacterial

species as well as in plants [12,13].
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Figure 1

The intestinal microbes putatively interact with ingested xenobiotic chemicals in multiple ways.
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The gut microbiota is dependent on nutrients provided
either by ingested feed or by indigenous secretion in the
gut environment. Because different bacterial species

vary in nutritional requirements and also in their sensi-
tivity to xenobiotic compounds, statistically significant
changes in the microbiota, albeit slight, are very likely to
occur in animal exposure studies involving chemicals,
provided that such studies are well controlled for
confounding effects and that a sufficient number of an-
imals are included. Therefore, the research question to
be asked should be extended to whether induced
changes in the microbiota have any biologically relevant
effect in the host species. We propose the termmicrobiota
disrupting chemicals to describe substances that fulfill the

following two criteria; (i) the substance alters the
composition and/or activity of the intestinal microbiota
and (ii) these alterations mediate an adverse health
effect in the host species. This is in line with the WHO
criteria used to define endocrine disrupters [14], and
requires that there is a causal relationship between
microbiota changes and observed adverse health effects.
Establishing such causal relationships can be achieved by
established protocols for fecal transplantation to germ-
free animal models [15] and further molecular mecha-
nismsmay be elucidated. For endocrine disruptors, it has

been debated whether the definition needs to include
themediation of an adverse effect in the host, or could be
limited to any aspect of hormone action [16]. However,
in the context of microbiota disruption, we find it
Current Opinion in Toxicology 2019, 15:109–113
necessary to include the second criterion given above,
sincemany types of food additives alter the gutmicrobial
composition and/or activity, and are sometimes even

added with this purpose, since such changes may also be
beneficial. Without the second criterion, these additives
would fall under the definition of microbiota disrupting
chemicals.

Lost in translation? Both in vitro and in vivo study designs
have routinely been used to investigate effects of
xenobiotic compounds on microbial communities
[10,17,18]. The advantages of in vitro fermentation
based studies include the possibility to rigidly control
for confounding factors and the possibility for high-

throughput analysis of many different compounds or
exposure levels in parallel. Both continuously fed and
batch fermentation systems may be employed, of which
the first provides a more realistic set of conditions but is
more difficult to multiplex. The most obvious drawback
of in vitro systems is the complete separation from the
host organism of the bacterial community, making host-
dependent effects impossible to study. Another chal-
lenge is to simulate the growth conditions to reflect the
in vivo conditions. Several different bacterial growth
media have been developed to mimic the conditions of

the colon and may include meat or yeast extract, bile
acids, short chain fatty acids, amino acids and oligosac-
charides, which combined with anaerobic conditions
sustain the growth requirements of a large diversity of
www.sciencedirect.com
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Gut microbes affect toxicology Licht and Bahl 111
different gut bacteria [19]. A recent study from our lab
highlights the importance of growth conditions for the
evaluation of the effect of the herbicide glyphosate on
the intestinal community [20]. In this study we find
only very limited effects of glyphosate on the microbial
community composition in vivo as compared to previous
in vitro studies [11,18] and demonstrate that this is due
to the presence of sufficient levels of intrinsic aromatic

amino acids in the gut to alleviate the growth inhibitory
effect of glyphosate in vivo. This shows that careful
consideration should be given to bacterial growth con-
ditions when designing in vitro studies and further
points to the continued importance of employing animal
models to test chemicals for microbiota disrupting
properties.

In vivo models that may be applied in studies of in-
teractions between microbes and a host factors relevant
for chemical risk assessment include mice [21], rats

[22], zebrafish [23], the nematode Caenorhabditis elegans
[24] and the insect Drosophila melanogaster [25]. Addi-
tionally, originally germ-free mice colonized with mi-
crobial communities derived from humans [26]
represent a useful model for investigations of the causal
effects of chemically induced microbiota changes on
host health. In risk assessment, the choice of animal
model will primarily rely on the feasibility of the model
for assessment of the adverse outcome, which is ex-
pected to result from chemical exposure, such as e.g. the
measurement of anogenital distance in rat models

applied for investigation of putative endocrine disrup-
tors [27]. With all animal models, translation to the
human situation should however be done with great
caution. In studies of microbiota disrupting chemicals, it
is worth noticing that the commensal rodent microbiota
is very different from that of humans. For example, mice
often lack genera such as bifidobacteria, which are
considered important beneficial bacteria in humans
[28], while these genera are more abundant in rats [29].
The commensal microbiota of fish, rats and nematodes
is however even more distant from the human micro-
biota than that of rodents (and other mammals) [30]. In

models where a human microbiota is introduced into an
animal host, it should be noted that due to the absence
of co-evolution between host and microbes, the ‘foreign’
microbes will typically not have as much impact on the
host response as those indigenously present in the given
host species [31]. Furthermore, not all microbes derived
from a human gut will be able to colonize e.g. in a mouse
[26]. In spite of these reservations, animal models still
constitute an important tool in the assessment of
potentially adverse effects of chemicals, including also
microbiota disrupting effects.

The gut microbiota affects uptake and metabolism of
ingested compounds. Xenobiotic suppression or
enhancement of proliferation of specific groups of in-
testinal microbes may lead to alterations of the
www.sciencedirect.com
composition of the intestinal bacterial population, which
in turn is known to affect the permeability of the in-
testinal epithelium. For example, specific bacterial
species are known to upregulate genes responsible for
epithelial expression of tight junctions and mucins
in vitro [32,33], while faecal water from elderly, who have
a different gut microbiota as compared to younger
people, apparently causes a decrease in the integrity of

epithelial cell layers in vitro [34]. Moreover, studies from
our lab reveal that antibiotic treatment impacts gut
permeability in rodent models [29]. It is thus highly
likely that the integrity of the gut barrier can be affected
by the changes induced by microbiota-disrupting chemicals.
This may in turn lead to alteration in the uptake of the
given chemical, as well as of other toxic and/or beneficial
components present in the gut.

Additionally, microbes known to reside in the gut
harbour a different pool of enzymes than their mamma-

lian host, and many of these microbial enzymes can
metabolise xenobiotic compounds directly [35,36]. Ex-
amples include the direct bioactivation of polycyclic ar-
omatic hydrocarbons by human colonic microbial
communities, leading to formation of estrogenic me-
tabolites [37], and the recently reported modulation of
the toxicity of organophosphate insecticides mediated
by specific strains of Lactobacillus [25]. Furthermore, the
intestinal microbes regulate xenobiotic metabolism in
the liver as monitored by differential expression of genes
connected to xenobiotic metabolism in conventional and

germ-free animals, respectively [38]. The microbes may
also de-conjugate conjugated xenobiotics recycled from
the liver [39], leading to regeneration of the original
toxin, or to formation of new toxic agents.

In vivo variation may be partly attributed to differences in
microbiota.The efficacy and toxicity of chemotherapeutic
agents is affected by the gutmicrobiota [40], however the
mechanisms behind such individual responses are
currently not understood. We find it likely that the in-
dividual response of experimental animals to chemical
exposure is similarly highly dependent on their micro-

biota. We thus suggest that a significant part of the inter-
individual variation as well as the study-to-study differ-
ences currently observed in risk assessment of ingested
chemicals based on experimental rodents may be
explained by differences in themicrobiota of the animals.

Complete gene catalogues of the intestinal microbiota
of mice and guinea-pigs including comparisons to that of
humans are available [28,41]. For experimental mice, it
is additionally well described that the composition of
the microbiota is highly dependent on the animal pro-

vider. In fact, this factor dominates the microbial gut
profile more than factors such as diet, mouse strain or
housing lab [28]. In both animals and humans, litter-
mates/siblings harbour more similar microbiotas than
unrelated individuals [42]. As rodents practice
Current Opinion in Toxicology 2019, 15:109–113
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coprophagy, co-housing (e.g. living in the same cage) is
known to affect the microbiota-derived metabolic traits
of the mouse host [15]. Moreover, a recent study from
our lab reveals that even the transfer of microbes
occurring between animals not in direct contact, e.g. as
airborne spreading or through handling, is sufficient to
create distinct microbial patters as well as to affect the
metabolic responses in mice [26]. These factors are thus

crucial to take into account in the planning of animal
experiments. For example, if animals challenged with
two different doses of a chemical are co-housed in two
separate groups receiving one dose per group, it can be
speculated that the sharing of microbiota between co-
housed animals significantly affect the toxicological
endpoints. Potentially, observations interpreted as re-
sults of different doses may in this case in fact result
from different microbiotas.

Consideration of the gut microbiota in risk assessment. As
discussed above, it is becoming increasingly evident that
the gut microbiota plays an important role in toxicology
studies and may constitute a substantial confounding
effect. In order to minimize this effect and thus some of
the variability observed in animal exposure studies we
propose the following considerations: (i) When possible,
choose animal models with a high bacterial diversity -
preferably comparable to wild animals. The absence of a
‘natural’ complex microbiota is likely to affect the
outcome parameters as explained above. (ii) Request
animals with standardized microbiota from vendors that

offer this [43]. If standardized animal models are not
available, make sure to obtain information about the
origin of the animals (litter, breeding barrier), which
should be applied for randomization. (iii) Analyze in-
testinal bacterial diversity and composition routinely in
animal studies addressing the effect of oral exposure to
xenobiotic substances, and compare this to observed
end-point measurements in the individual animal hosts.
(iv) Carefully consider how animals are co-caged, as
microbiota spread between co-caged animals due to
coprophagia and environmental contact. (v) Consider
supplementation of animal experiments with studies of

the effect of given toxic substrates on bacterial strains
and communities, and with studies of bacterial meta-
bolism and conversion of these substrates.
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