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Abstract: Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two
main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this
paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zero-
shot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical se-
mantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is
induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference
phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propaga-
tion algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our
model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also
yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot fine-

grained classification.
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1 Introduction

Fine-grained image classification, which aims to recog-
nize subordinate level categories, has emerged as a popular
research area in the computer vision community!-3l. Dif-
ferent from general image recognition such as scene or ob-
ject recognition, fine-grained image classification needs to
explicitly distinguish images with subtle difference, which
actually involves the classification of many subclasses of
objects belonging to the same class such as birds/68],
dogsl¥ and plants[10: 11],

In general, fine-grained image classification is a chal-
lenging task due to two main issues:

1) Since recognizing images in the fine-grained classes
is a fairly difficult and expert task, the annotations of im-
ages in fine-grained classes are expensive and collecting
large-scale labelled data just as general image recognition
(e.g., ImageNetl?]) is thus impractical. Therefore, the
question of how to recognize images from fine-grained
classes given the lack of sufficient training data for every
class becomes a thought-provoking one in computer vision.

2) As compared with general image recognition, fine-
grained classification is a more challenging task, which
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needs to discriminate between objects that are visually
similar to each other. Therefore, we have to learn more
discriminative representation for fine-grained classifica-
tion than that for general image classification.

Considering the lack of training data for every class in
fine-grained classification, we can adopt zero-shot learn-
ing to recognize images from unseen classes without la-
belled training data. However, conventional zero-shot
learning algorithms mainly explore the semantic relation-
ship among classes (using textual information) and at-
tempt to learn a match between images and their textual
descriptions[!3-15l. In other words, this rarely works on
zero-shot learning focus on feature learning. This is really
bad for fine-grained classification, since it requires more
discriminative features than general image recognition.
Hence, we must focus on feature learning for zero-shot
fine-grained image classification.

In this paper, we propose a two-phase framework to
recognize images from unseen fine-grained classes, i.e.,
zero-shot fine-grained classification (ZSFC). The first
phase of our model is to learn discriminative features.
Most fine-grained classification models extract features
from deep convolutional neural networks that are fine-
tuned by images with extra annotations (e.g., bounding
box of objects and part locations). However, these extra
annotations of images are expensive to access. Unlike
these models, our model only exploits implied hierarchic-
al semantic structure among fine-grained classes for fine-
tuning deep networks. The hierarchical semantic struc-
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ture among classes is obtained based on taxonomy, which
can be easily collected from Wikipedia. In our model, we
generally assume that experts recognize objects in fine-
grained classes based on the discriminative visual fea-
tures of images and the hierarchical semantic structure
among fine-grained classes is their prior knowledge. Un-
der this assumption, we finetune deep convolutional neur-
al networks using hierarchical semantic structure among
fine-grained classes to extract discriminative deep visual
features. Meanwhile, a domain adaptation subnetwork is
introduced into the proposed network to avoid domain
shift caused by zero-shot setting.

In the second label inference phase, a semantic direc-
ted graph is firstly constructed over attributes of fine-
grained classes. Based on the semantic directed graph and
also the discriminative features obtained by our feature
learning model, we develop a label propagation algorithm
to infer the labels of images in the unseen classes. The
flowchart of the proposed framework is illustrated in Fig. 1.
Note that the proposed framework can be extended to a
weakly supervised setting by replacing class attributes
with semantic vectors extracted by word vector extract-
ors (e.g., Word2Vecl16)).

To evaluate the effectiveness of the proposed model,
we conduct experiments on two benchmark fine-grained
image datasets (Caltech UCSD Birds-200-2011[6] and Ox-
ford Flower-10200)). Experimental results demonstrate
that the proposed model outperforms the state-of-the-art
zero-shot learning models in the task of zero-shot fine-
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grained classification. Moreover, we further test the fea-
tures extracted by our feature learning model by apply-
ing them to other zero-shot learning models and the ob-
tained significant gains verify the effectiveness of our fea-
ture learning model.

The main contributions of this work are given as fol-
lows:

1) We have proposed a two-phase learning framework
for zero-shot fine-grained classification. Unlike most pre-
vious works that focus on zero-shot learning, we pay more
attention to feature learning instead.

2) We have developed a deep feature learning method
for fine-grained classification, which can learn discrimin-
ative features with hierarchical semantic structure among
classes and a domain adaptation structure. More notably,
our feature learning method needs no extra annotations
of images (e.g., part locations and bounding boxes of ob-
jects), which means that it can be readily used for differ-
ent zero-shot fine-grained classification tasks.

3) We have developed a zero-shot learning method for
label inference from seen classes to unseen classes, which
can help to address the issue of lack of labelled training
data in fine-grained image classification.

The remainder of this paper is organized as follows.
Section 2 provides related works of fine-grained classifica-
tion and zero-shot learning. Section 3 gives the details of
the proposed model for zero-shot fine-grained -classifica-
tion. Experimental results are presented in Section 4. Fi-
nally, the conclusions are drawn in Section 5.

Phase 1: Feature learning
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- Fully-connected layer
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Fig.1 Overview of the proposed framework for zero-shot fine-grained image classification. The proposed framework contains two

phases: feature learning and label inference. In the first feature learning phase, hierarchical classification subnetworks and a domain
adaptation structure are both integrated into VGG-16Net. In the second label inference phase, deep features from the first phase and a
semantic directed graph constructed with class attributes are involved into a label propagation process to infer the labels of images in the
unseen classes. Color versions of the figures in this paper are available online.
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2 Related works
2.1 Fine-grained image classification

There are two strategies widely used in existing fine-
grained image classification algorithms. The idea of the
first strategy is distinguishing images according to the
unique properties of object parts, which encourages the
use of part-based algorithms that rely on localizing ob-
ject parts and assigning them region-based convolutional
neural network attributes. Zhang et al.[l7l propose a part-
based region based-convolutional neural network (R-
CNN) where R-CNN is used to detect object parts and
geometric relations among object parts which are used for
label inference. Since R-CNN extracts too many propos-
als for each image, this algorithm is time-consuming. To
solve this problem, Huang et al.[18l propose a part-stacked
convolutional neural network (PS-CNN), where a fully-
convolutional network is used to detect object parts and a
part-crop layer is induced into AlexNetl9 to combine
part/object features for classification. To solve the lim-
ited scale of well-annotated data, Xu et al.29 propose an
agumented part-based R-CNN to utilize the weak labeled
data from the web. Unlike those models that mainly use
large parts of images (i.e., proposals) for fine-grained clas-
sification, Zhang et al.2l] detect semantic parts and classi-
fy images based on features of their semantic parts.
However, the aforementioned part-based algorithms need
very strong annotations (i.e., locations of parts), which
are very expensive to acquire.

The second strategy is to exploit more discriminative
visual representations, which is inspired by the recent
success of CNNs in image recognition?2. Lin et al.23] pro-
pose a bilinear CNN, which combines the outputs of two
different feature extractors by using an outer product to
model local pairwise feature interactions in a translation-
ally invariant manner. This structure can create robust
representations and achieve significant improvement com-
pared with the state-of-the-art. Zhang et al.24] propose a
deep filter selection strategy to choose suitable deep fil-
ters for each kinds of parts. With suitable deep filters,
they can detect more accurate parts and extract more
discriminative features for fine-grained classification.

Note that the above models need extra annotations of
images (e.g., bounding boxes of objects and locations of
parts). Moreover, their training data include all fine-
grained classes. When we only have training images from
a subset of fine-grained classes, the domain shift problem
will occurl25l. Besides, without extra object or part an-
notations, these models will fail. In contrast, our model
needs no extra object or part annotations at both train-
ing and testing stages. Furthermore, the domain adapta-
tion strategy is induced into our model to avoid domain
shift. In this way, we can learn more discriminative fea-
tures for zero-shot fine-grained classification.

2.2 Zero-shot learning

Zero-shot learning, which aims to learn to classify in
the absence of labeled data, is a challenging problem[26-32],
Recently, many zero-shot learning approaches have been
developed. Zhang and Saligramal'4 viewed each source or
target data as a mixture of seen class proportions and
postulated that the mixture patterns have to be similar if
the two instances belong to the same unseen class. A se-
mantic similarity embedding (SSE) approach for zero-
shot learning is proposed to solve this problem. They also
formulate zero-shot learning as a binary classification
problem and develop a joint discriminative learning
framework based on dictionary learning to solve itl33].
Romera-Paredes and Torrl!3l. use a two linear layers net-
work to model the relationships between features, attrib-
utes, and classes. Bucher et al.34 addresses the task of
zero-shot learning by formulating this problem as a met-
ric learning problem, where a metric among class attrib-
utes and image visual features is learned for inferring la-
bels of test images. A multi-cue framework facilitates a
joint embedding of multiple language parts and visual in-
formation into a joint space to recognize images from un-
seen classesB%. Fu et al.l!5l propose to model the semant-
ic mainfold in an embedding space using a semantic class
label graph, in order to redefine the distance metric in the
semantic embedding space for more effective zero-shot
learning (ZSL). To avoid domain shift between the sets of
seen classes and unseen classes, Kodirov et al.[25] propose
a zero-shot learning method based on unsupervised do-
main adaptation. On the observation that textual de-
scriptions are noisy, Qiao et al.l propose an Ly i-norm
based objective function to suppress the noisy signal in
the text and provide a function to match the text docu-
ment and visual features of images. However, the afore-
mentioned works mainly focus on recognizing a match
between images and their textual descriptions and few of
them pay attention to discriminative feature learning,
which is crucial for fine-grained classification.

3 Proposed model

In this section, we propose a two-phase framework for
zero-shot fine-grained classification. A deep convolutional
neural network integrating hierarchical semantic struc-
ture of classes and domain adaptation strategy is first de-
veloped for feature learning and a label propagation
method based on semantic directed graphs is further pro-
posed for label inference.

3.1 Feature learning

Our main idea is motivated by implied hierarchical se-
mantic structure among fine-grained classes. For example,
winter wren (species-level name), a very small North-
American bird, can be called “Troglodytes” at genus level
and also can be called “Troglodytidae” at family level
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(See Fig.2). We assume that experts recognize objects in
fine-grained classes by using the discriminative visual fea-
tures and the hierarchical semantic structure among fine-
grained classes is their prior knowledge. As shown in Fig. 1,
lower-level features are used (with fewer network layers)
for classifying images at coarser level. In other words, to
recognize images in a fine-grained level, we must exploit
higher-level and fine-grained features.

To induce the hierarchical semantic structure into fea-
ture learning, we integrate hierarchical classification sub-
networks (HCS) into VGG-16NetB7l. The detailed archi-
tectures of hierarchical classification subnetworks are
presented in Fig.3. In our model, each classification sub-
network is designed to classify images into the corres-
ponding level semantic classes (i.e., family level, genus
level, or species level). Concretely, we locate the classific-
ation subnetworks for family-level, genus-level, and spe-

Family level

Troglodytidae

Genus level

[ Troglodytes | [ Salpinctes |

pecies level

Winter wren Rock wren

Marsh wren

1

Fig. 2 Hierarchical semantic structure of fine-grained classes

Family-level/genus-level classification subnetwork

cies-level labels afterwards the third, fourth, and fifth
groups of convolutional layers, respectively (also see Fig. 1).
For family-level and genus-level classification subnet-
works, their detailed network structure includes a convo-
lutional layer, two fully-connected layers, and a softmax
activation layer (see Fig.3). For the sake of quick
converegence, we take the classification structure of
VGG-16Net as the species-level classification subnetwork
(see Fig.3), which can be initialized by ImageNet pre-
trained parameters(!2. Therefore, by merging the VGG-
16Net and hierarchical classification subnetworks into one
network, we define the loss function for an image x as fol-

lows.

Ln(0F,0f,0g,0s) = prLs(ys, Gr(G(a;0r);05))+
HgLg(yg, Gg(G(z;0r);04))+
£5(967G6(G($59F)§95)) (1)

where L;, L, and Ls; denote the loss of family-level,
genus-level, and species-level classification subnetworks,
respectively. yyr, yy and y, respectively denote the true
label of the image at family-level, genus-level, and species
level. r denote the parameters of the feature extractor
(the first five groups of convolutional layers) in VGG-
16Net. 6f, 04, and 6, denote the parameters of family-
level, genus-level, and species-level classification
subnetworks. py and pg denote weights of loss of family
and genus-level classification subnetworks. G and Gy (or
Gy, G) respectively denote the feature vector of VGG-
16Net,

hierarchical classification subnetworks.

family-level  (or genus-level, species-level)

Note that the labels of training data do not include
unseen classes and thus domain shift will occur when we
extract features for test images using the deep neural net-
works trained by this training data. To avoid domain
shift, we add a domain adaptation structurel38], which in-
cludes a gradient reversal layer and a domain classifier,
after the fifth group of convolutional layers in VGG-

3rd/4th convs of Conv Dropout E@
VGG-16 Net Ixixs12@128 | Rebl—-Eosiy > Reli—-Ruea @
Species-level classification subnetwork
Sth convs of EC Dropout EC Dropout EC
VGGHENet T ™ @006 ™ Relv s P @agos ™ Relv s o
FC Dropout HE Dropout FC
Grl layer —>@1024 — RclLu 0.5 — @1024—> ReLu -9 05 — @2 —

Fig. 3 Detailed architecture of hierarchical classification subnetworks. In this figure, “Conv” and “FC” denote the convolutional layer
and fully-connected layer respectively. The numbers under the “Conv”, “FC” and “Dropout” denote the kernel information of the
convolutional layer, number of output of fully-connected layer and the ratio of dropout, respectively. n is the total number of classes at

the corresponding level.
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16Net (as shown in Fig.1). The domain adaption struc- fine-grained classification. Figs.5-6 provide some samples
ture views training data and test data as two domains of misclassified images when only using species-level (or
and aims to train a domain classifier that cannot distin- species-level /genus-level) features. From Figs.5-6, we can
guish the domain of some given data. In this way, the dif- observe that there are obvious semantic relations between
ference of features among data from two domains can be the true labels and predicted labels of these misclassified
eliminated. In our model, we aim to achieve an adversari- images (in blue boxes), which are visually similar to im-
al process, i.e., to learn features that can confuse the do- ages in their predicted classes (in red boxes). Hence, the
main classifier and classify fine-grained classes. Therefore, hierarchical semantic structure of classes can be used to
we aim to minimize the loss of hierarchical classification capture discriminative features and thus lead to better re-
subnetworks and maximize the loss of the domain classifi- cognition results.
er. The gradient reversal layer (Grl layer in Fig.4) pro-
posed by Ganin and Lempitsky[38l is used to achieve the 3.2 Label inference
goal. We also present the detailed architecture of a do-
main classifier in Fig.4. By merging the domain adapta- In this section, with the discriminative features ob-
tion structure, hierarchical classification subnetworks and tained from Section 3.1, we provide a label propagation
VGG-16 Net together, the total loss of an image z is giv- approach for zero-shot fine-grained image classification.
en as follows: We use S = {s1, -+ ,8p} to represent the set of seen
classes, where p is the number of seen classes. And we use
L(OF,07,04,05,00) = L1,(0r,05,04,05)— U= {u1, -+ ,uq} to represent the set of unseen classes,
pala(ya, Ga(Gs(0s, G(x;0r)); 04)) (2) where ¢ is the number of unseen classes. Specifically,
classes which appeared in S won't appear in U, i.e.,
where L4, ya, py and 4 respectively denote the loss of SNU = ¢. We are given a training set of size N, de-
domain classifier, the domain label of image x, the weight noted as Ds; = {(x;,y;) :¢=1,---,Ns}. In the training
of loss of domain classifier and the parameter of domain set, the feature vector of the i-th image in the training
classifier. G4 denotes the domain classifier. set is denoted as x;, the corresponding label is denoted as
It should be noted that the hierarchical semantic y; € S. We are also given a test set of size N, denoted as
structure of fine-grained classes actually plays an import- D, ={(zj,y;): 7=1,--- ,Ny}. In the test set, the fea-
ant role in extracting discriminative features for zero-shot ture vector of the j-th image in the test set is denoted as
Grl layer — @fgz , > ReLu - DR g @fgz , > ReLu —p= DR g;

Fig.4 Detailed architecture of domain classifier. In this figure, “Grl” and “FC” denote gradient reversal layer and the fully-connected
layer, respectively. The numbers under the “FC” and “Dropout” denote the number of output of fully-connected layer and the ratio of
dropout, respectively.

Icteridae Family-level

[ Euphagus || Quiscalus | Genus-level

[ Brewer blackbird | [ Boat tailed grackle |  Species-level

Brewer blackbird

Caprimulgidae Family-level

[ Chordeiles || Antrostomus | Genus-level

[ Nighthawk | [ Whip poor will |  Species-level

Nighthawk

Emberizidae Family-level

[ Ammodramus | [ Passerella | Genus-level

[ Henslow sparrow | [ Foxsparrow | Species-level

Henslow sparrow Fox sparrow

Fig. 5 Samples of misclassification when only using species-level features. In this figure, images in the blue boxes are misclassified
images when only using species-level features and the category names under images are their true labels, while the predicted labels of
these images (in blue boxes) are given with a sample (in red boxes) in the corresponding rows. These misclassified images are correctly
classified when the species-level /genus-level features are used.
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Ovenbird

Yellow bellied flycatcher

Stercorarius
Pomarine jaeger

Charadriiformes Order-level
[ Stercoraiidae |[  Laridae | Family-level

Larus Genus-level
Species-level

Passeriformes

Order-level

[ Mimidaec ][ Emberizidae | Family-level
Toxostoma Passerslla Genus-level
[ Psaaeriformes | Order-level

[ Parulidae ][ Tyrannidae | Family-level
Seiurus [ Empidonax | Genus-level

[ Yellow beillied flycatcher] Species-level

Fig. 6 Samples of misclassification when only using species-level/genus-level features. In this figure, images in the blue boxes are
misclassified images when only using species-level/genus-level features and the category names under images are their true labels, while
the predicted labels of these images (in blue boxes) are given with a sample (in red boxes) in the corresponding rows. These misclassified
images are correctly classified when the species-level /genus-level /family-level features are used.

x;, the corresponding unknown label is denoted as y; € U.
The main goal of zero-shot learning is to learn a classifier
that can predict the correct label y; for a test image z;.

In order to predict the labels of images in unseen
classes from seen classes, we should measure the semant-
ic relationships between seen and unseen classes at first.
In this paper, we collect the attributes of each fine-
grained class to form its semantic vector. After that, a se-
mantic-directed graph G = {V, E} is used over all classes
(including seen/unseen classes). The set of nodes (i.e.,
fine-grained classes) in the graph is denoted as V' and the
set of directed edges between classes is denoted as FE
Three steps are used to construct the graph G:

1) The first step is to construct the edges between
seen classes. A k-nearest-neighbors (k-NN) method is
used on semantic vectors for each seen class. We con-
struct a directed edge from a seen class to classes that are
k1 nearest neighbors of it in seen classes. Specifically, the
Euclidean distance between two classes is the weight of
the edge between two nodes.

2) The second step is to construct the edges between
seen classes and unseen classes. A k-nearest-neighbors (k-
NN) method is used on semantic vectors for each seen
class. We construct a directed edge from a seen class to
classes that are k2 nearest neighbors of it in unseen
classes. Specifically, the Euclidean distance between two
classes is the weight of the edge between two nodes.

3) Finally, for each unseen classes, it has one edge
pointing to itself whose weight is 1.

A weight matrix W of the semantic-directed graph G
is constructed as

w=[f Fol (3)

where R; € RP*? represents the weights among seen
classes, R2 € RP*9 represents the weights between seen

@ Springer

classes and unseen classes, and I € R?*? is an identity
matrix. Given a weight matrix W, we can define a
Markov chain process:

T=D"'W (4)

where D is a diagonal matrix whose i-th diagonal element
is equal to the sum of the i-th row of W.

A normalization method is then exploited to guaran-
tee that the Markov chain process has a unique station-
ary solution[39: 40l

P= i (ptg = L) + (=0T (5)

where 7 is a normalization parameter, 1,,, is a one
matrix and I,44 is an identity matrix, the size of both of
them is (p + q) x (p + q).

Zero-shot fine-grained classification can be formulated
as the following label propagation problem:

- - 2

ngin % g;w(u)pw (Y;%u) - Y%@) +AIY; = Yil3 (6)
where Y; (the i-th row of ¥ € RN«*(+9) is the optimal
probabilities of the i-th test image belonging to each
class. Y; (the i-th row of Y € RN«*(®T9) is the initial
probabilities of the i-th test image belonging to each
class. Yis an initialization of ¥ and Y is the final solution
of the problem formulated in (6). Moreover, m(u) is the
sum of the u-th row of P (ie., > puv), and A is a
regularization parameter.

In order to ensure that semantically similar classes for
the i-th test image have similar Y;, the first term of the
above objective function sums the weighted variation of
Y; on each edge of the directed graph G. In order to en-
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sure that }NQ does not change too much from Y;, the
second term denotes an Lo-norm fitting constraint.

We adopt the technique introduced by Zhou et al.[39
in order to solve the above label propagation problem. In
this paper, we define the operator ©:

wl-
=
[

o_ (112 PTI~ PII?) -

+ 11~
2

where IT is a diagonal matrix with size (p + ¢q) X (p + q)-
And the u-th diagonal element of the matrix is equal to m(u).
The optimal solution Y* of the problem in (6) is

Y =Y (I -a0)" (8)
according to Zhou et al.B9, where I € RPTO*(+a) jg ap

1
€ (0,1).
(1+A) (0.1)
Y should be provided in advance in order to obtain

identity matrix and a =

the above solution. There are two parts in each row of Y:
the probabilities of a test image belonging to seen classes,
and the probabilities of a test image belonging to unseen
classes. We set the probabilities belonging to unseen
classes as 0 since there is no labelled data in unseen
classes. We use LIBLINEAR toolbox4l to train an Lo-
regularized logistic regression classifier, in order to com-
pute the initial probabilities belonging to seen classes. In
general, we empirically set the parameter ¢ in La-regular-
ized logistic regression as 0.01.

To sum up, by combining the feature learning and la-
bel propagation approaches together, the complete al-
gorithm for zero-shot fine-grained classification is out-
lined as Algorithm 1. It should be noted that the pro-
posed approach can be extended to a weak supervision
setting by replacing class attributes with semantic vec-
tors extracted by word vector extraction methods (e.g.,
Word2Veclf]).

Algorithm 1. The proposed framework

Input: the set of labeled training images Ds, the set
of test images in unseen classes X,

Feature learning:

1) Train the proposed neural network using hierarch-
ical semantic structure among fine-grained classes;

2) Run forward computation of the proposed neural
network for each test image and extract deep features
from hierarchical classification subnetworks;

3) Concatenate the features from hierarchical classific-
ation subnetworks to obtain deep features F;

Label inference:

4) Compute the initial probabilities of test images be-
longing to unseen classes Y with the LIBLINEAR
toolbox4!l and deep features F:

5) Construct the semantic-directed graph based on se-
mantic vectors;

6) Compute the normalized transition matrix P ac-
cording to (3)—(5);

7) Find the solution Y* of label propagation problem

formulated in (6) according to (7) and (8);
8) Label each test image x; with class arg max; Y;;
Output: Labels of test images in unseen classes.

4 Experimental results
4.1 Experimental setup

In our experiment, we describe our experiments on the
benchmark fine-grained datasets, Caltech UCSD Birds-
200-2011[6] and Oxford Flower-102[10],

4.1.1 Caltech UCSD Birds-200-2011 dataset

The Caltech UCSD Birds-200-2011 dataset (6) con-
tains 11, 788 images of 200 North-American bird
speciesl®l. Each species is associated with a Wikipedia art-
icle and organized by scientific classification (family,
genus, species). Each class is also annotated with 312
visual attributes. In the zero-shot setting, we follow
Zhang and Saligramal33]l to use 150 bird species as seen
classes for training and the left 50 species as unseen
classes for testing. The results are the average of four fold
cross validation. For parameter validation, we also use a
zero-shot setting within the 150 classes of the training
set, i.e., we use 100 classes for training and the rest for
validation. The hierarchical labels of fine-grained classes
are collected from Wikipedia. For each fine-grained class,
we use 312-d class attributes and 300-d semantic vectors
extracted by the 16 modell!6] (trained by GoogleNews) as
semantic description.

4.1.2 Oxford Flower-102 dataset

The Oxford Flower-102 (Flowers-102) dataset con-
tains 8189 images of 102 different categories. There is no
human annotated attribute for each category. Therefore,
we choose 80 of 102 categories, which are associated with
a Wikipedia article and organized by scientific classifica-
tion (family, genus, species). In the zero-shot setting, sim-
ilar to the setting of 6 dataset, we use 60 flower species as
seen classes for training and the left 20 species as unseen
classes for testing. The results are the average of four fold
cross validation. For parameter validation, we use a simil-
ar strategy as the 6 dataset, i.e., we use 60 classes for
training and the rest for validation. The hierarchical la-
bels of fine-grained classes are collected from Wikipedia.
For each fine-grained class, only 300-d semantic vectors
extracted by the 16 modell'6] (trained by GoogleNews)
are used as semantic description.

4.2 Implementation details

In the feature learning phase, the VGG-16's layers are
pre-trained on ILSVRC 2012 1K classification[!2], and
then finetuned with training data. Meanwhile, other lay-
ers are trained from scratch. All input images are resized
to 224x224. Stochastic gradient descent (SGD)MZ is used
to optimize our model with a basic learning rate of 0.01, a
momentum of 0.9, a weight decay of 0.005 and a mini-
batch size of 20. For layers trained from scratch, their
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learning rate is 10 times that of the basic learning rate.
The model is implemented based on Caffel43l. In the label
inference phase, we choose the parameters s, pg, n and
A by cross validation on training data.

In this phase, different-level features are extracted
from the last but one fully-connected layers before soft-
max layers and we finally obtain three kinds of features
which are used to classify images at different levels. To
find a good way to combine these features, we conduct
experiments on the proposed model using the concatena-
tion of different-level features and the results are shown
in Table 1. From the table, we can observe that high-
level features perform better than features extracted from
shallow layers. Furthermore, the combination of three-
level features performs best. Therefore, we use the concat-
enation of three-level features as the final deep visual fea-
tures in our model.

4.3 Effectiveness of the proposed feature
learning approach

To test the effectiveness of the proposed feature learn-

ing approach, we utilize features extracted by the the
proposed feature learning approach into other zero-shot
learning models[!3-15] and results are given in Fig.7. From
Fig.7, we can observe that the proposed feature learning
method works well in other zero-shot learning models.
Compared with features extracted from VGG-16Net pre-
trained by ImageNet, the proposed feature learning ap-
proach involves hierarchical semantic structure of labels
and domain adaptation structure, which thus generate
more discriminative features for zero-shot fine-grained
classification.

4.4 Comparison with state-of-the-arts

4.4.1 Testing on class attributes

We provide the comparison of the proposed approach to
the state-of-the-art zero-shot learning approaches[!3-15, 33-35]
using class attributes on the 6 dataset, which is shown in
Table 2. In this table, “ZC” denotes the zero-shot learn-
ing approach based on label propagation, “VGG-16Net”
denotes the features obtained from VGG-16Netl37 (pre-
trained with ImageNet[12l), “HCS” denotes the hierarchic-

Table1 Comparison of the proposed approach using the concatenation of different-level features on the CUB-200-2011 dataset

Features

Semantic level

Accuracy (%)

Class attributes Semantic vectors

Finetuned VGG-16Net+HCS Species-level 44.9 28.9
Genus-level 36.3 22.3

Family-level 32.3 15.3

Species-level /Genus-level 45.7 30.4

Species-level/Genus-level /Family-level 46.2 32.2

Finetuned VGG-16Net+HCS+DA Species-level 46.8 29.8
Genus-level 37.1 24.3

Family-level 33.2 18.3

Species-level/Genus-level 48.3 33.2

Species-level/Genus-level /Family-level 49.5 34.5

50 - 35 = 40 -
§ 7 , %/ e FIVGO-16HCS

45 . . \% 35 {lZZFTVGG-16+HCS+DA 7
_ 30 L BN A 7 N |
e \ P\ [E // \ B
g 35 o \ 12\ R N I |
< / < \/ / Z / i\/ /

25 Ml . . 15 ~, 15 ‘ . // ,

[13]  [14] [15]  Our [13]  [14] [I15] Our
Models Models Models
(a) (b) (c)

Fig. 7 The results of other zero-shot learning approaches using the proposed feature learning approach. (a) 6 dataset using class
attributes. (b) 6 dataset using semantic vectors. (c¢) Flowers-102 dataset using semantic vectors. In this figure, “VGG-16", “FTVGG-
16+HCS” and “FTVGG-16+HCS+DA” denote features obtained from VGG-16Net pretrained by ImageNet, VGG-16Net with

hierarchical classification subnetworks and VGG-16Net with hierarchical classification subnetworks and domain adaptation structure,

respectively.
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al classification subnetworks of the method proposed in
Section 3.1, and “DA” denotes domain adaptation struc-
ture of the method in Section 3.1. It can be seen that the
proposed approach significantly outperforms the state-of-
art zero-shot learning approaches. The comparison
between “ZC” versus “Our full model” demonstrates that
the proposed feature learning approach is very effective in
the task of zero-shot fine-grained classification. The com-
parison between “ZSC” versus “Our full model” demon-
strates that the domain adaptation structure is necessary
for feature learning in the task of zero-shot fine-grained
classification. It should be noted that Akata et al.3% has
achieved 56.5% using a multi-cue framework, where loca-
tions of parts are involved as very strong supervision in
the training and test process. The 49.5% released in
Table 2 is its classification result when annotations of the
whole images are used (without locations of parts). The
superior performance of the proposed approach compared
with Akata et al.3% verifies the effectiveness of the pro-
posed approach.

4.4.2 Testing on semantic vectors

We also evaluate the proposed approach in the weakly
supervised setting, where only fine-grained labels of train-
ing images are given and the semantics among fine-
grained are learned from text descriptions. Table 3
provides classification results on 6 and Flowers-102 data-
sets in the weaker supervised setting. From this table, we
can observe that our approach outperforms the state-of-
the-art zero-shot learning algorithms, which verifies the
effectiveness of the proposed model.

5 Conclusions

In this paper, we propose a two-phase framework for
zero-shot fine-grained classification approach, which can
recognize images from unseen fine-grained classes. In our
approach, a feature learning strategy based on hierarchic-
al semantic structures of fine-grained classes and class at-
tributes is developed to generate robust and discriminat-
ive features and then a label propagation method based

Table 2 Comparison of zero-shot learning approaches on class attributes

Datasets Approaches Features Accuracy (%)

CUB-200-2011 [13] VGG-16Net 33.8
[14] VGG-16Net 30.4

[15] VGG-16Net 34.4

[33] VGG-16Net 42.1

[34] VGG-16Net 43.3

[35] VGG-16Net 43.3

ZC VGG-16Net 36.2

7ZSC Finetuned VGG-16Net+HCS 46.2

Our full model Finetuned VGG-16Net+HCS+DA 49.5

Flowers-102 -

Table 3 Comparison of zero-shot learning approaches on the semantic vectors

Datasets Approaches Features Accuracy (%)
CUB-200-2011 [13] VGG-16Net 23.8
[14] VGG-16Net 22.3
[15] VGG-16Net 26.4
[36] VGG-16Net 29.0
7ZC VGG-16Net 24.2
ZSC Finetuned VGG-16Net+HCS 32.2
Our full model Finetuned VGG-16Net+HCS+DA 34.5
Flowers-102 (13] VGG-16Net 25.6
[14] VGG-16Net 27.3
[15] VGG-16Net 30.8
ZC VGG-16Net 26.7
7ZSC Finetuned VGG-16Net+HCS 34.2
Our full model Finetuned VGG-16Net+HCS+DA 35.8
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on semantic directed graphs is proposed for label infer-
ence. Experimental results on the benchmark fine-grained
classification datasets demonstrate that the proposed ap-
proach outperforms state-of-the-art zero-shot learning al-
gorithms. Our approach can be extended to the weakly
supervised setting (i.e., only fine-grained labels of train-
ing images are given) and has achieved better results
than the state-of-the-art. In future work, we will make
further improvements on developing more powerful word
vector extractors to explore better semantic relationships
among fine-grained classes and optimize the feature ex-
tractors with word vector extractors simultaneously.
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