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A generic selection system 
for improved expression and 
thermostability of G protein-
coupled receptors by directed 
evolution
Christoph Klenk, Janosch Ehrenmann, Marco Schütz† & Andreas Plückthun

Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors 
(GPCRs) have been largely hampered by the poor biophysical properties and low expression yields 
of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of 
stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands 
with sufficient affinity, which are required for selective binding to the correctly folded receptor, are 
often not available. Here we describe a novel procedure to improve receptor expression and stability 
in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have 
engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly 
integrated into the inner cell membrane and, thus, discriminates functional from non-functional 
receptor species. When we combined this method with a directed evolution procedure we obtained 
highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this 
procedure receptors with poor expression and/or low stability, for which no ligands or only ones with 
poor binding properties are available, can now be generated in quantities allowing detailed structural 
and biophysical analysis.

By relaying signals from the exterior to the interior of the cell, integral membrane proteins (IMPs) play a cen-
tral role in the physiological and pathophysiological processes of our body. With more than 800 members, G 
protein-coupled receptors (GPCRs) represent the largest superfamily of IMPs and are considered as one of the 
most important drug targets1,2. However, most GPCRs exhibit several unfavourable features which make them 
difficult to study. Major reasons for this are, on the one hand, the very low levels of endogenous expression and 
also the low achievable expression levels in most heterologous systems, resulting in low functional protein yields 
that can be isolated. On the other hand, owing to their inherent flexibility, most GPCRs are extremely unstable, 
and instability is further increased after solubilisation of the protein in detergents. Thus, the number of structural 
studies and studies requiring purified protein of GPCRs has remained limited, compared to the many investi-
gations within the past decades that have employed cell-biological and biochemical methods in whole cells3. 
Likewise, the development of new drugs targeting GPCRs using structure-based drug design or fragment-based 
drug discovery has remained a challenge4, as these methods also require access to purified protein of sufficient 
stability.

Among other methods, conformational stabilisation by introducing thermostabilising mutations has been 
a major advancement to improve the biophysical properties of GPCRs. Such modified receptors were the basis 
for several high resolution crystal structures5–9, and are well suited for extensive in vitro drug screening trials10. 
Stabilising mutations can be found, e.g., by performing successive alanine scans over the whole protein followed 
by screening for improved receptor stability of each individual mutant. Combinations of several beneficial muta-
tions then lead to highly stabilized receptors11–17. Recently, we have developed a more comprehensive approach to 
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identify such mutations by directed evolution of the receptor18, combined with cytometric selection19. The overall 
scheme of the FACS-based selection is shown in Fig. 1. Here, libraries of randomized receptors are expressed in 
E. coli such that functional receptors are integrated into the inner cell membrane. After selective permeabilisation 
of the outer membrane, fluorescently labelled ligands can bind to the receptor, thus allowing to select the best 
expressing receptor variants by fluorescence-activated cell sorting (FACS)18,20–23. Most of the highly expressing 
receptor variants obtained by this procedure exhibit improved thermostability21,22. With a recently developed 
technology relying on encapsulation of single E. coli cells it is even possible to directly select for protein stability 
in detergent20,24. Thus, directed evolution of GPCRs not only allows to test millions of receptor variants in a short 
time but also makes the full amino acid sequence space available to the search for advantageous mutations.

Each of these methods requires the availability of labelled ligands that specifically bind to the receptor of 
interest with high affinity. While for classical alanine scans typically receptor expression and stability is measured,  
individually for each mutant, with radioactively labelled ligands5,14–17, fluorescently labelled ligands are used 
for directed evolution to quantify functional receptor levels in the cell18,20,21. However, for many receptors these 
requirements are not easy to meet. Only for a small proportion of the large family of GPCRs high-affinity ligands 
with suitable radioactive or fluorescent labels are available, and many ligands exhibit unfavourable features that 
make them inappropriate for these applications. For the so-called orphan receptors not even a cognate ligand is 
known, and therefore these receptors have remained inaccessible to conformational stabilisation. But even when 
a suitable ligand is available, finding the optimal binding condition for each receptor-ligand combination can be 
laborious and time-consuming, thus preventing the fast processing of many different receptors in parallel, which 
would be of great interest, especially for drug screening.

The correct folding and integration into the plasma membrane is commonly believed as one of the main bot-
tlenecks for heterologous overexpression of IMPs in E. coli25–27. Likewise, our previous work suggests that many 
GPCRs which had been evolved for improved expression and stability exhibit improved biophysical properties, 
leading to higher folding efficiency and thus to better membrane integration8,18,23. We therefore hypothesized that 

Figure 1. Schematic representation of the directed evolution workflow. First, a random or designed GPCR 
library is cloned into a suitable expression vector. After expression in E. coli, the outer cell membrane is 
permeabilised and receptors are labelled with fluorescently labelled ligands. Most fluorescent cells are sorted 
by FACS and recovered in growth medium. To enrich highly expressing receptor variants, repetitive rounds of 
expression and selection are performed.
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a direct correlation between receptors that are successfully integrated into the inner cell membrane and func-
tional receptor levels may exist. Thus, quantifying receptor integration in the membrane would give a direct meas-
ure for the amount of correctly folded and functional protein in the cell. Based on this hypothesis, we devised a 
novel method to stabilise GPCRs without the need for a specific labelled ligand using directed evolution in E. coli. 
Our method is fast and should be easily applicable to a wide range of IMPs.

Results
Generic detection of functional levels of heterologously expressed GPCRs in E. coli. To over-
come the boundaries of ligand-dependent selection we searched for an alternative way to discriminate correctly 
folded, functional from non-functional receptor in E. coli that would then allow FACS-based selection for func-
tional expression in a generic way. It has been proposed that a fusion of GFP to the C-terminus can serve as a 
reporter for correct folding of cytosolic28 and also of integral membrane proteins29,30. It was therefore of interest 
to test whether such a simple system might also be useful for selecting improved receptors variants from random 
GPCR libraries. While indeed the stringent selection from a highly diverse library of neurotensin receptor 1 
(NTR1)22 for high GFP fluorescence leads to a rapid and very strong enrichment of cells with high GFP signals 
(Supplementary Fig. S1), these were identified as coming from a single deletion mutant, having lost practically 
the whole GPCR gene, thereby fusing GFP directly behind the promoter. Thus, this rapid and facile enrichment 
of a false-positive clone uncouples selection for GFP from selection for membrane protein integrity. Importantly, 
the GPCR library used for these experiments was the same as used for the successful selections described below.

We thus sought for an alternative strategy to quantify intact membrane proteins which would more directly 
be coupled to the correct membrane insertion. Therefore, we created a system to selectively detect GPCR lev-
els at the inner cell membrane by specifically labelling the extracellular part of the receptor in the periplasmic 
space with a fluorescent dye. We made use of the Designed Ankyrin Repeat Protein (DARPin) FADA3210 that 
had been developed recently in our group31. FADA3210 binds the weakly fluorescent malachite green deriva-
tive MG-2p32 with high affinity and enhances its fluorescence more than 10,000-fold upon binding. MG-2p is 
membrane-impermeable due to its short oxyethylene tail32, yet exhibits a molecular weight of only 931 Da, which 
is well within the limits to be introduced into the periplasmic space by selective permeabilisation of the outer cell 
membrane18,19.

To test the feasibility of this approach we measured GPCR expression in E. coli with a FADA3210 reporter. 
As in E. coli almost all GPCRs are expressed with fewer than 100 functional copies per cell, we initially used an 
evolved variant of the rat neurotensin receptor 1 (NTR1-TM86V) as a model, which exhibits high functional 
expression levels in E. coli22. To obtain optimal fluorescence activation, a cassette consisting of three FADA3210 
modules was fused to the N-terminus of NTR1-TM86V, separated by a short linker. The FADA cassette was 
preceded by maltose binding protein (MBP) and its signal sequence to target the receptor to the inner cell 
membrane18,33. After expression of this construct in the E. coli strain DH5α ,  conditions for optimal permeabi-
lisation of the outer membrane and fluorescence activation were tested using a series of buffers. Highest fluores-
cence activation and homogeneous labelling of cells were obtained with 5×  PBS or PBS-E after 2–4 h labelling 
time (Supplementary Fig. S2a). In contrast, no fluorescence activation of MG-2p with any of the tested buffers 
was observed after expression of a control construct (a direct fusion of the sensor to GFP in the cytoplasm; 
FADA-sfGFP) that is not found in the periplasm (Supplementary Fig. S2b), indicating that MG-2p in turn does 
not enter the cytoplasm under the chosen conditions. As PBS-E reduced cell viability slightly, 5×  PBS was chosen 
as a labelling buffer henceforth. The apparent affinity of MG-2p binding in the periplasmic space was approx. 
120 nM (Supplementary Fig. S2c), thus 1 μ M MG-2p was used for subsequent labelling experiments to ensure 
saturating conditions. With this labelling protocol, an approx. 12-fold increase in fluorescence activation of 
FADA-NTR1-TM86V compared to background FADA-sfGFP was achieved (Fig. 2a).

To test whether detection of MG-2p fluorescence at the inner cell membrane would allow quantitation of func-
tional receptor levels, wild-type NTR1 as well as 4 previously evolved variants thereof, covering a wide range of 
functional expression levels18,22,33, were analysed for functional receptor expression and MG-2p fluorescence. As 
shown in Fig. 2b, a strong correlation between binding of neurotensin and fluorescence activation was observed 
(R2 =  0.94), indicating that the detection of receptors at the inner cell membrane indeed can be used as a measure 
for functional expression of IMPs.

As the selection system needs to be applicable for directed evolution, we considered that truncated or spliced 
gene variants, which may occur in the initial libraries, might also be integrated into the inner cell membrane 
or even be exported into the periplasm together with the FADA-reporter, thus leading to false-positive selec-
tion results. We therefore also tested the ability of the FADA-reporter system to discriminate corrupted recep-
tor mutants from intact receptors. For this purpose, stop codons were introduced at various positions of the 
NTR1-TM86V gene to mimic truncated receptor variants. As expected, mutants with a stop codon proximal to 
helix 7 of the transmembrane bundle (residue 339) were defective for ligand binding. Importantly, fluorescence 
activation of these receptor mutants was likewise negligible, suggesting that the MG-2p selection should not be 
compromised by corrupted receptor mutants (Fig. 2c). This indicates that the short receptor fragments are not 
efficiently incorporated into the membrane and may be largely degraded. As an additional measure to exclude 
stop codons or frame shifts within the randomized receptor libraries, superfolder GFP (sfGFP) was fused to the 
C-terminal end of the receptor in the final expression vector pFADA, thus bracketing the receptor by two inde-
pendently selectable markers (Fig. 2d).

Directed evolution of NTR1 by MG-2p fluorescence selection. The above results encouraged us to 
apply the labelling system for directed evolution of a GPCR. A highly diverse binary library of the rat NTR1 
(based on variant NTR1-D03)22 was cloned into the pFADA-reporter construct and expressed in E. coli. Cells 
were labelled with 1 μ M MG-2p, and selections were performed by FACS. An initial non-stringent gate was set 
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for GFP-positive cells, merely to exclude mutants with premature stop codons or frame shifts. Thereof, the top 1% 
of MG-2p fluorescent E. coli population was sorted into fresh growth medium, recovered at 28 °C overnight and 
regrown for five subsequent selection rounds (Fig. 3a). After the first selection round, GFP-negative cells were 
fully depleted from the pool, and after selection round 3, a marked right-shift of both fluorescence signals was 
observed. Selections were continued until a stable plateau was reached, constraining the second sorting gate to the 
0.5% most fluorescent cells of the MG-2p population during the two final rounds (Fig. 3b). In line with increasing 
fluorescence, a strong rise in radioligand binding of the selected pool was observed after round 3 which further 
increased until selection round 6 (data not shown).

From the final selection round, 96 clones were isolated and sequenced. Interestingly, only 15 unique sequences 
were identified, with the two most frequent sequences accounting for 60% of the complete pool. Each sequence 

Figure 2. Construction of a generic fluorescent labelling system for periplasmic expression. (a) Selective 
activation of MG-2p fluorescence only in the periplasm. A 3×  FADA3210 cassette was expressed in E. coli in 
the cytoplasm as a GFP-fusion protein (FADA-sfGFP), or in the periplasm by anchoring to the N-terminus 
of NTR1-TM86V (FADA-NTR1-TM86V). Cells were permeabilised with 5×  PBS and labelled with MG-
2p. Fluorescence activation of MG-2p was measured by flow cytometry and is given as mean fluorescence 
intensity (MFI) ±  S.E.M. of 5 independent experiments. (b) MG-2p fluorescence activation correlates with 
functional receptor expression. 3×  FADA3210-fusion proteins of NTR1 and four evolved variants thereof 
were expressed in E. coli. Functional receptor expression was measured by saturating radioligand binding with 
[3H]neurotensin(8–13) and is expressed as receptors per cell. From the same expression cultures, cells were 
labelled with MG-2p, and fluorescence activation was measured by flow cytometry. The mean fluorescence 
intensities ±  S.E.M. from 5 to 8 independent experiments are given. (c) Non-functional receptor fragments are 
not detected by fluorescence activation. Stop codons were introduced into NTR1-TM86V at positions C142, C225, 
W339 and S409, respectively, and receptor mutants were expressed in E. coli. Functional receptor expression was 
quantified by radioligand binding, and periplasmic fluorescence activation was measured by flow cytometry 
after labelling with MG-2p. The means, relative to full length NTR1-TM86V expression (+ S.E.M.), from 3 
independent experiments are shown. (d) Schematic representation of the pFADA expression vector used 
for directed evolution. Maltose binding protein (MBP) including its signal sequence is used for targeting the 
receptor to the inner cell membrane of E. coli33, followed by three modules of the fluorescence-activating 
DARPin FADA3210 (3×  FADA3210). sfGFP is fused to the C-terminus as a reporter for frame shifts and stop 
codons.
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contained between 11 to 21 mutations compared to NTR1-D03 (Supplementary Fig. S3). Based on radioligand 
binding, each evolved mutant exhibited up to two-fold increased functional receptor expression compared to 
NTR1-D03 (Fig. 4a). All mutants were also screened for thermostability after solubilisation in a DDM/CHS/
CHAPS detergent mix. In comparison to NTR1-D03, each of the selected mutants was more stable after a 20 min 
heat challenge at 60 °C. Notably, the best variants NTR1_MG-2p-03, − 09, − 10 and − 11 were similarly stable as 
three of the most stable NTR1 variants (TM86V, C7E02, L5X) that had evolved when fluorescent neurotensin was 
used for selection22 (Fig. 4b). The apparent melting temperatures (Tm) of the most stable clones from the MG-2p 
selections were between 58.1 to 59.4 °C in the absence of ligand, giving an overall increase in Tm of 16 to 17 °C 
compared to NTR1-D03. In the ligand-bound state, Tm values of 65.1 to 68.0 °C were obtained, which was an 
increase of 8 to 11 °C over NTR1-D03 (Table 1). Overall, these data are in good agreement with previous experi-
ments where a similar extent of NTR1 thermostabilisation has been achieved22.

In conclusion, we present here a generic and versatile system based on a homogeneous fluorescent labelling 
assay which allows rapid generation and detection of evolved GPCRs in E. coli with high expression rates and 
improved thermostability.

Discussion
Protein stabilisation through engineering has proven to be a necessity for many biophysical and biochemical 
studies on GPCRs, foremost for structure determination and drug screening approaches. So far, however, these 
techniques are cumbersome and only applicable to a rather small set of proteins, as for each receptor suitable 
ligands have to be at hand and need to be validated. This is true for approaches based on alanine scanning, as well 
as those on directed evolution.

To overcome these limitations and to facilitate the workflow for receptor stabilisation, we set out to develop a 
stabilisation method based on directed evolution in E. coli which does not rely on labelled ligands. For this pur-
pose, a way had to be found to quantify functional receptors with a fluorescent reporter which would be generi-
cally applicable to a variety of different proteins and could be used at the single cell level without compromising 
cell viability. Notably, a well established approach of using a C-terminal GFP-fusion as a reporter for correct 
protein folding29,34 was found to be not suitable for directed evolution. In this case, after only few selection rounds 
we observed GFP expression to be uncoupled from receptor expression, mostly through deletion events on the 

Figure 3. Directed evolution of NTR1 using MG-2p selection. (a) Gating scheme for in-frame selection and 
high expression. A primary sorting gate was set for the top 50% of GFP fluorescent cells. From this population, 
the top 0.5–1% of MG-2p fluorescent cells were sorted. (b) Directed evolution of NTR1 by MG-2p selection. 
The synthetic library NTR1-D03SLN encompassing approx. 8.5 ×  108 variants of NTR1 was cloned into pFADA 
and expressed in E. coli. Cells were labelled with 1 μ M MG-2p and sorted as described above in in 6 repetitive 
rounds. Flow cytometry histogram plots for GFP (upper panels) and MG-2p (lower panels) of selection rounds 
1 to 6 (coloured open traces) in comparison to the naïve library (black traces filled in grey) are shown.
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plasmid, leading ultimately to the selection for soluble cytoplasmic GFP, which is much brighter than any fusion 
to an IMP.

From these observations we concluded that a more direct and robust assessment of receptor localization in 
the membrane was necessary. As a consequence we fused the fluorescence-activating DARPin FADA3210 to 
the extracellular part of a NTR1 variant, and sfGFP to the C-terminal end. As DARPins are fast folding and 
highly stable proteins35, we reasoned that a N-terminal fusion would not greatly impair receptor expression. In 
combination with the membrane-impermeable MG-2p fluorogen, which can be introduced exclusively into the 

Figure 4. Characterization of evolved NTR1 mutants for expression and thermostability. (a) Evolved NTR1 
variants exhibit strongly increased expression levels. 15 unique mutants from selection round 6 as well as the 
underlying variant NTR1-D03 were expressed in E. coli, and functional receptor expression was measured by 
radioligand binding. Means (+ S.E.M.) from 6 to 8 independent experiments are shown. (b) Evolved NTR1 
variants exhibit improved thermostability that is comparable to highly stable NTR1 variants. The thermostability of 
15 evolved NTR1 variants from selection round 6, as well as of NTR1-D03 and three highly stable NTR1 variants 
(TM86V, C7E02 and L5X 22) was measured after solubilisation in DDM/CHS/CHAPS. The stability index is given 
as the ratio of remaining ligand binding activity after 20 min of incubation at 60 °C compared to incubation at 4 °C.

GPCR

Tm (°C)

+NT(8–13) −NT(8–13)

NTR1_MG-2p-03 65.1 ±  2.3 59.4 ±  2.2

NTR1_MG-2p-09 68.0 ±  3.2 58.2 ±  1.9

NTR1_MG-2p-10 65.8 ±  2.3 59.8 ±  2.5

NTR1_MG-2p-11 66.0 ±  5.7 58.1 ±  1.4

NTR1-TM86V 66.8 ±  3.0 53.3 ±  1.3

NTR1-D03 56.8 ±  0.9 42.5 ±  0.6

NTR1 45.2 ±  0.1 39.2 ±  0.7

Table 1.  Melting temperatures of the most stable NTR1 variants from the MG-2p selection in comparison 
to NTR1, NTR1-D0318, and NTR1-TM86V22.
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periplasmic space through permeabilisation of the outer membrane, selective labelling of receptors embedded in 
the inner cell membrane in a generic way was possible. This is the key difference to the potential use of an auto-
fluorescent protein on the N-terminus of a GPCR, as FADA3210 in combination with MG-2p will only be fluo-
rescent when located in the periplasm. Moreover, we demonstrate that MG-2p activation directly correlates with 
functional receptor expression. In contrast to using the C-terminal GFP fusion exclusively, we did not observe 
uncoupling of MG-2p fluorescence from receptor expression. However, in combination with the FADA3210/
MG-2p read-out, the C-terminal GFP fusion was useful to prevent accumulation of stop codons or frameshifts.

Using FADA3210 as fluorescence reporter was a crucial step for successful selection of functional receptor 
variants. Interestingly, when we used a single-chain antibody engineered for MG-2p fluorescence activation32 
instead of the DARPin fusion, frameshifts and stop codons accumulated in the selected pools, which led to a 
complete loss of receptor expression within a few selection rounds. This was caused by proteolytic cleavage at the 
C-terminus of the antibody fragment, resulting in uncoupling of fluorescent reporter expression and receptor 
expression. In contrast, FADA3210 fused to several GPCRs showed no or only negligible signs of proteolytic sep-
aration (data not shown). Moreover, we found that truncated proteins consisting of only the periplasmic export 
signal, MBP and the FADA-reporter were largely not detected by MG-2p labelling, thus preventing the selection 
of incomplete and thus non-functional receptor species. Even though this observation is a critical feature of the 
selection system, at present we can only speculate on the underlying mechanisms. It is possible that the fast fold-
ing nature of DARPins interferes with their export36 more in soluble form than when anchored to an IMP.

After six selection rounds, a strong enrichment of highly expressing receptor variants was obtained, and the 
initially highly diverse library was reduced to only 15 individual mutants that were isolated from the final selec-
tion pool. Each of these receptor mutants displayed significantly higher expression rates than NTR1-D03. More 
importantly, all receptor mutants also exhibited higher thermostability, and the best mutants were equally stable 
as the best mutants that had been evolved from the same library using fluorescent neurotensin for selection22. This 
is even more remarkable, as in the present case, stabilisation was carried out in the absence of a cognate ligand, yet 
each of the evolved mutants was still able to bind neurotensin. Even though we cannot exclude that ligand bind-
ing properties may have been altered to some extent, we demonstrate here that GPCRs can be conformationally 
stabilised in the apo-state without loosing their pharmacological properties completely. In line with that, the best 
mutants exhibited an increase in Tm of more than 15 °C in the absence of ligand (Table 1). Notably, all variants 
identified in this study differed from previously described NTR1 mutants that had been optimised for improved 
expression and thermostability by directed evolution or alanine scans16,17,22. However several overlapping key 
residues were found: L119F and C332V were present in 13 and 11 of the selected variants, respectively, and were 
also found in clone L5X which had been evolved by directed evolution with fluorescent neurotensin22. More 
strikingly, A86L which had previously been demonstrated to be a critical determinant of receptor stability either 
by alanine scan16,17 or by directed evolution8,22 was also found in 11 of the receptor variants described in this study 
(Supplemental Fig. S3). In line with previous reports, our data suggest that different combinations of beneficial 
mutations can likewise improve the properties of a receptor17,23,37.

Such stabilised receptors may therefore be ideal candidates for the determination of GPCR structures in the 
apo-state which would give important insights into the basic mechanisms of ligand binding and receptor activa-
tion, but which has, with the exception of rhodopsin, not been accomplished today. Stabilisation of the apo-state 
is also pivotal for fragment screening, at least when orthosteric ligands are to be developed. Moreover, as our 
method can theoretically be applied to any IMP with an extracellular N-terminus, it may not have to be confined 
to the GPCR superfamily.

Material and Methods
MG-2p was kindly provided by Alan S. Waggoner (Carnegie Mellon University).

Plasmid construction. To obtain pFADA, three FADA3210 DNA fragments31 were amplified by PCR from 
a synthetic gene introducing a GGGS linker at the C-terminal end of each DARPin. The resulting fragments were 
assembled by overlapping PCR and cloned into pRGIII33 between MBP and thioredoxin (TrxA) via AgeI and 
BamHI restriction sites. In addition, TrxA was replaced by sfGFP38 carrying a C-terminal Avi-tag using NotI and 
HindIII restriction sites. A control reporter construct for intracellular expression of the FADA3210 cassette was 
constructed by fusing three N-terminal FADA3210 modules and C-terminal sfGFP by a short linker sequence. 
Receptor genes of rNTR1, NTR1-D03, NTR1-TM86V, NTR1-L5X and NTR1-C7E0218,22 were amplified by PCR 
and cloned into pFADA between the DARPin cassette and sfGFP using NotI and SpeI restriction sites. Point 
mutations to generate stop codons in pFADA-NTR1-TM86V were introduced by site directed mutagenesis.

Growth Conditions. E. coli strain ElectroMAX DH5α -E was obtained from Life Technologies. Cells were 
transformed with the respective plasmids by electroporation and were grown at 30 °C in 2×  YT supplemented 
with 10 mg/mL glucose and 100 μ g/mL ampicillin. After reaching saturation, cells were inoculated into fresh  
2×  YT medium supplemented with 2 mg/mL glucose and 100 μ g/mL ampicillin to an OD600 of 0.05 and grown at 
37 °C. At an OD600 of 0.5, cells were induced with 250 μ M IPTG, and expression was allowed to proceed at 20 °C 
for 20 h.

Membrane permeabilisation and analytical flow cytometry. Cells were collected by centrifugation 
and washed in ice-cold PBS buffer. Cells were labelled with MG-2p in 1×  PBS (137 mM NaCl, 2.7 mM KCl, 
8.1 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4), 2.5×  PBS, 5×  PBS, PBS-E (1×  PBS with 1 mM EDTA) or TKCl 
(50 mM Tris-HCl, 150 mM KCl, pH 7.4). If not stated otherwise, 1 μ M MG-2p was used and labelling was carried 
out for 4 h on ice. For analytical flow cytometry 2 ×  107 cells were labelled and analysed directly in labelling buffer 
in the presence of MG-2p on a FACSCanto II (BD Biosciences). sfGFP and MG-2p fluorescence were detected in 
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the FITC and APC channels, respectively, and for each measurement, 105 events were recorded. Flow cytometry 
data were analysed with FlowJo 7.6.5.

Library generation and sorting. A synthetic binary library based on NTR1-D03 (NTR1-D03SLN) with 
a theoretical diversity of 8.5 ×  108 was used22. The library was amplified by PCR, digested with BamHI and SpeI 
and ligated into pFADA. Ligation products were transformed into electrocompetent DH5α  cells (Thermo Fisher). 
Cells were recovered in 5 ml SOC medium for 1 h at 37 °C and further cultivated in 500 ml LB medium supple-
mented with 10 mg/ml glucose and 100 μ g/ml ampicillin for 12 to 16 h at 28 °C. The final library size was 1 ×  108 
as estimated from dilution series on agar plates. For library sorting, in each selection round 5 ×  108 cells were 
labelled with 1 μ M MG-2p in 5×  PBS as described above and sorted on a FACS Aria III automated cell sorter  
(BD Biosciences) into fresh growth medium. After 12 to 16 h recovery at 28 °C, glycerol stocks were prepared or 
fresh expression cultures were inoculated.

Receptor characterization. Radioligand binding experiments were essentially performed as described 
previously22. Briefly, 2 ×  107 cells were resuspended in TEBB buffer (50 mM Tris-HCl, 1 mM EDTA, 1 mg/ml 
bovine serum albumin and 40 μ g/ml bacitracin, pH 7.4) containing 20 nM [3H]neurotensin(8–13) (PerkinElmer) 
and incubated for 2 h at 4 °C. Nonspecific binding was determined in the presence of 5 μ M unlabelled ligand. 
Cells were applied to glass fiber filters (Millipore), separated from free ligand using a 96-well vacuum manifold 
(Millipore) and washed four times with TEBB buffer. Filters were dried for 1 h at 60 °C and allowed to dissolve 
in OptiPhase Super-Mix (PerkinElmer) for 14 h. Filter-bound radioactivity was measured by liquid scintillation 
counting (Microbeta 1450 Plus liquid scintillation counter, Wallac).

Stability measurements of evolved receptor variants were essentially performed as described previously21. 
Briefly, receptors expressed in E. coli were solubilised in buffer containing 50 mM Tris-HCl (pH 7.4), 200 mM 
NaCl, 30% (v/v) glycerol, 1 mM EDTA, Complete protease inhibitors (Roche), 40 μ g/mL deoxyribonuclease I 
(Roche), 10 mM MgCl2, and detergents (DDM, 1% (w/v); CHAPS, 0.5% (w/v); and CHS, 0.1% (w/v)) and immo-
bilized on Dynabeads MyOne Streptavidin T1 beads (Thermo Fisher). Aliquots of immobilized receptor were 
then heated to a specific temperature in a PCR thermocycler, washed with solubilisation buffer, and remaining 
receptor activity was measured by radioligand binding using 20 nM [3H]neurotensin(8–13). For stability meas-
urements in the agonist-bound state, receptors were saturated with 150 nM [3H]neurotensin(8–13) before the 
heat challenge. Data were analysed by nonlinear regression fitting using GraphPad Prism 6.
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