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The assimilation of organic nutrients by autotrophs, a form of mixotrophy, has been demonstrated in
the globally abundant marine picocyanobacterial genera Prochlorococcus and Synechococcus.
However, the range of compounds used and the distribution of organic compound uptake genes
within picocyanobacteria are unknown. Here we analyze genomic and metagenomic data from around
the world to determine the extent and distribution of mixotrophy in these phototrophs. Analysis of 49
Prochlorococcus and 18 Synechococcus isolate genomes reveals that all have the transporters
necessary to take up amino acids, peptides and sugars. However, the number and type of
transporters and associated catabolic genes differ between different phylogenetic groups, with low-
light IV Prochlorococcus, and 5.1B, 5.2 and 5.3 Synechococcus strains having the largest number.
Metagenomic data from 68 stations from the Tara Oceans expedition indicate that the genetic
potential for mixotrophy in picocyanobacteria is globally distributed and differs between clades.
Phylogenetic analyses indicate gradual organic nutrient transporter gene loss from the low-light IV to
the high-light II Prochlorococcus. The phylogenetic differences in genetic capacity for mixotrophy,
combined with the ubiquity of picocyanobacterial organic compound uptake genes suggests that
mixotrophy has a more central role in picocyanobacterial ecology than was previously thought.
The ISME Journal (2016) 10, 2946–2957; doi:10.1038/ismej.2016.64; published online 3 May 2016

Introduction

The prokaryotic world has conventionally been
divided into autotrophs and heterotrophs based on
carbon source, and phototrophs and chemotrophs as
dictated by energy source. In the past several
decades we have learned that a number of bacteria,
archaea and even eukarya do not easily fit into these
categories and are capable of using a mix of energy
and carbon sources, a trophic strategy known as
mixotrophy. Examples include photoautoheterotro-
phy, photoorganoheterotrophy and chemolithoauto-
heterotrophy (Perez and Matin, 1980; Jones, 2000;
Zubkov, 2009). In marine systems, bacterivory by
photosynthetic protists is now known to be common
in eukaryotes such as dinoflagellates (Jones, 2000).
According to Hartmann et al. (2012), the majority of
bacterivory in the Atlantic may be carried out by

phototrophs. Similarly, the ocean is populated by up
to 11% aerobic anoxygenic photoheterotrophic bac-
teria that combine phototrophy and carbon fixation
with organic compound uptake (Kolber et al., 1999;
Sieracki et al., 2006; Jiao et al., 2007; Kirchman et al.,
2014). Heterotrophic bacteria that utilize light to
pump protons via rhodopsin are abundant globally
as well (Béjà et al., 2000, 2001; Rusch et al., 2007),
making up an estimated 13% of the photic zone
bacteria in the Mediterranean and Red Seas (Sabehi
et al., 2005), 50% in the Sargasso Sea (Campbell
et al., 2008), and 48% in 116 marine and terrestrial
samples examined by Finkel et al. (2013). In addition
to using proteorhodopsin, some of these bacteria can
fix up to 30% of their total carbon (Palovaara et al.,
2014), suggesting a significant contribution to global
carbon fixation.

Some freshwater cyanobacteria have long been
known to employ photoautoheterotrophy (Rippka,
1972; Joset-Espardellier et al., 1978; Chen et al.,
1991; Paerl, 1991; Zubkov, 2009) and evidence is
growing that marine picocyanobacteria—the most
abundant marine phototrophs (Partensky et al.,
1999)—also have this capacity. The dominant
genera, Prochlorococcus and Synechococcus, are
known to take up amino acids (Church et al., 2004;
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Zubkov et al., 2003, 2004, 2008; Michelou et al., 2007;
Mary et al., 2008; Gómez-Pereira et al., 2013; Evans
et al., 2015), glucose (Gómez-Baena et al., 2008; Muñoz-
Marín et al., 2013) and dimethylsulfoniopropionate
(Vila-Costa et al., 2006), and analysis of 12 genomes has
shown that certain strains have genes for amino acid,
sugar, oligopeptide and phosphonate uptake (Rocap
et al., 2003; Martiny et al., 2006; Kettler et al., 2007).

The ability of these picocyanobacteria to take up
organic compounds raises the question of how
mixotrophic capacity is distributed phylogenetically
within this group. Prochlorococcus and marine
Synechococcus (hereafter designated marine pico-
cyanobacteria) can be divided into phylogenetic
clusters that generally correspond to physiologically
distinct ecotypes (West and Scanlan, 1999; West
et al., 2001; Ahlgren et al., 2006; Johnson et al., 2006;
Zinser et al., 2006, 2007; Malmstrom et al., 2010;
Sohm et al., 2015). In Prochlorococcus these eco-
types have different light and temperature optima,
which results in a partitioning of the water column
with depth, and different relative abundances along
latitudinal gradients (Moore et al., 1998; Moore and
Chisholm, 1999; Rocap et al., 2003; Johnson et al.,
2006; Zinser et al., 2007). Synechococcus ecotypes
can be defined by open ocean and coastal phyloge-
netic clusters (Dufresne et al., 2008; Ahlgren and
Rocap, 2012) as well as by temperature- and nutrient
concentration-related groups (Sohm et al., 2015).
Because of this ecotype partitioning along phyloge-
netic lines, if picocyanobacterial mixotrophic capa-
city is partitioned by phylogenetic group it suggests a
role for mixotrophy in niche adaptation. In flagel-
lates for example, mixotrophy can provide alterna-
tive sources of energy in light-limiting conditions
and alternative sources of nitrogen or phosphorous in
nutrient-limiting conditions (Rothhaupt, 1996a, b).
Furthermore, if mixotrophy is also universally
distributed among marine picocyanobacteria, it
indicates that it has a more central role in the
ecology of these genera than previously thought.

In order to determine the extent of mixotrophic
ability among picocyanobacteria in the global oceans,
we examined a collection of 67 Prochlorococcus
and Synechococcus isolate reference genomes
(Supplementary Table S1). Because these strains were
isolated from a limited number of locations, we also
examined data from the largest marine metagenomic
survey to date, the Tara Oceans expedition (Karsenti
et al., 2011; Sunagawa et al., 2015). This census of the
ocean microbiome allowed us to estimate the global
picocyanobacterial genetic capacity for mixotrophy
and examine how it is distributed among different
oceanographic regimes at a global scale.

Materials and methods
Isolation and sequencing of isolate genomes
Sixty-seven Prochlorococcus and Synechococcus
genomes were used as reference genomes in this

study (Supplementary Table S1). The genomes of
MIT1306, MIT1312, MIT1318, MIT1320, MIT1323,
MIT1327, MIT1342, MITS9504, MITS9508 and
MITS9509 are described by Cubillos-Ruiz (2015)
and Thompson (2015) and are publically available in
the National Center for Biotechnology Information
(NCBI) Genbank database.

Sampling
The Tara Oceans expedition is the first global
oceanographic expedition to combine analysis of
nutrient concentration, temperature, salinity and
particulate data with deep sequencing of environ-
mental DNA for metagenomic reconstruction at
multiple depths (4 to ~ 800m, Supplementary
Table S2, http://doi.pangaea.de/10.1594/PAN
GAEA.840721). The samples used in this study were
taken at 68 sites in the Atlantic, Pacific, Indian and
Southern Oceans, as well as in the Mediterranean
and Red Seas (Supplementary Table S2, Sunagawa
et al., 2015). Sample collection and preparation were
described previously (Logares et al., 2014; Pesant
et al., 2015; Sunagawa et al., 2015). The current
analysis focuses on 139 DNA samples from the two
smallest size fractions (0.2–1.6 μm and 0.2-3 μm).
These samples were taken from up to three different
depths: ~ 5m, the deep chlorophyll maximum, and
the mesopelagic zone.

Metagenomic DNA extraction, sequencing and
assembly
DNA extraction and Illumina sequencing were
described previously (Logares et al., 2014; Sunagawa
et al., 2015). A total of 7.2 terabases were sequenced
and processed using the MOCAT software package
(Kultima et al. 2012) to yield metagenomic assemblies
and gene predictions as summarized in Sunagawa
et al. (2015). In order to estimate gene abundances,
high-quality reads were mapped onto a non-redundant
reference database, the Ocean Microbial Reference
Gene Catalog (OM-RGC) including the genes from the
Tara Oceans expedition, the Global Ocean Sampling
expedition (Yooseph et al., 2007), the Moore Marine
Microbial Sequencing project, the Moore Viral Gen-
omes, the Pacific Ocean Virome study (Hurwitz and
Sullivan, 2013) and the NCBI Viral Reference Genomes
data set (Sunagawa et al., 2015). Mapped reads had a
minimum of 95% nucleotide identity to a reference
gene and a minimum length of 45 bp. Gene abun-
dances were estimated from read depths that were then
normalized by the reference gene length and the total
number of bases per sample in order to take into
account sequencing depth.

Extraction of 16S mitags/OTU classification
Reads mapped to 16S ribosomal RNA (rRNA)
sequences were extracted from the metagenomic
reads as described previously (Logares et al., 2014)
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and were designated 16S mitags. Sequences with 100
or more high-quality bases were then mapped via
UCLUST (v. 1.2.22) (Edgar, 2010) to an abridged
SILVA database (v. 108 clustered at 97% nucleotide
identity). Reads were required to have 97% or higher
identity to the reference sequence, and were
assigned to their best hit reference sequence. OTU
abundances were estimated based on read counts per
16S rRNA gene. These raw counts were then
normalized to the amount of DNA sequencing per
sample by dividing them by the total number of 16S
mitags for each sample. All data and count tables are
available at: http://ocean-microbiome.embl.de/com
panion.html.

Taxonomic classification of assembled contigs
In order to classify assembled contigs, the non-
redundant set of proteins of the OM-RGCwas compared
to UniProt using Rapsearch2 (Ye et al., 2011). Hits with
an E-value o10−3 were kept and the last common
ancestor was determined for each gene as described by
Hingamp et al. (2013).

Quantification of taxonomic groups
In order to quantify Prochlorococcus ecotype and
Synechococcus cluster abundances in each sample,
we considered using abundances of single-copy
genes that had been used for this purpose previously
by Li et al. (2010) and Martiny et al. (2009). Most of
the genes from the Li et al. analysis failed to properly
separate Synechococcus clusters, whereas abun-
dances based on the eight single-copy genes used
by Martiny et al. failed to correlate well with flow
cytometry counts. Thus, we selected only the rpoC1
RNA polymerase gamma subunit gene and the psbO
photosystem II manganese-stabilizing protein gene
from the Li et al. analysis for quantification. These
gene abundances correlate well with flow cytometry
counts (Pearson correlations from 0.43 to 0.54) and
maximum likelihood trees of their nucleotide
sequences generally agree with picocyanobacterial
internally transcribed spacer trees, allowing for
minor topological differences (Supplementary
Figure S1). The rpoC1 gene has previously been
used to classify ecotypes of both Prochlorococcus
and Synechococcus (Palenik, 1994; Ferris et al.,
1998; Mühling et al., 2005, 2006), and psbO is a
photosystem II protein that is not homologous to
other known proteins, making it an ideal candidate
for quantification of cyanobacterial genomes
(Raymond and Blankenship, 2004). The relative
abundances of rpoC1 and psbO in Tara Oceans
samples were highly correlated (0.84 Pearson r2). On
the basis of the maximum likelihood trees of these
genes and those found in the reference genomes, we
were able to assign Tara Oceans single-copy genes to
specific ecotypes or clusters.

Identification of transporter genes
In order to identify transporter genes, we utilized
the Transporter Classification Database (TCDB
http://www.tcdb.org/) (Saier et al. 2006). We speci-
fically looked for (oligo)peptide, amino acid and
sugar uptake transporters, excluding peptide trans-
porters involved in signaling. A list of the TCDB
families used is given in the Supplementary
Materials (Supplementary Table S3). A blastp
homology search was carried out against the TCDB
and hits were retained that had more than 30%
amino-acid identity over 70% or more of the
reference gene length with an E-value of less than
1×10− 5. The Pro1404 glucose transporter (Gómez-
Baena et al., 2008) was manually added to the
database. We recognize that a 30% amino-acid
identity threshold may not always be high enough
to indicate identical substrate specificity. Thus, the
substrate specificity of the transporters in this study
should be considered putative. We chose to use the
30% threshold because the TCDB is greatly lacking
in transporter genes from cyanobacteria. A higher
threshold would likely miss a substantial number of
transporter genes in marine picocyanobacteria.

For the reference genomes, genes were clustered
into orthologous groups, CyCOGs, as described by
Kelly et al. (2012). A list of CyCOG clusters of genes
used in these analyses is provided in Supplementary
Table S4. For the Tara Oceans OM-RGC, transporter
gene abundances were normalized to 16S mitag
abundances, assuming one copy of the 16S rRNA
gene per genome for Prochlorococcus and two copies
for Synechococcus. Samples with low abundance
of 16S rRNA genes in Prochlorococcus or Synecho-
coccus were omitted from the analyses if they
contained less than 10× average read coverage per
SILVA accession identified in the sample.

Gene context
Genes consistently found in clusters across prokar-
yotic taxa are frequently functionally related
(Dandekar et al., 1998; Huynen et al., 2000;
Rogozin et al., 2004; Karimpour-Fard et al., 2008;
Yelton et al., 2011). In order to further support the
annotation of organic compound transporter genes,
we examined their gene context to determine if they
were associated with other subunits of the same
transporters or metabolic genes that use the trans-
porter substrates. For the two ABC transporters
examined (3.A.1.3.18 and 3.A.1.5.-), most subunit
genes were found in gene clusters (Supplementary
Table S5). Overall three subunit genes were missing
from three separate genomes for the 3.A.1.5.- peptide
transporter and two subunit genes were missing from
two genomes for the 3.A.1.3.18 amino-acid transpor-
ter. In addition, both the glucose:H+ symporter, glcP
(2.A.1.1.32) and the recently discovered Pro1404
glucose porter (Gómez-Baena et al., 2008) were found
in clusters of genes with related functions. glcP is
adjacent to a sugar porin (1.B.19.1.4) in most
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Prochlorococcus genomes and two out of three Syne-
chococcus genomes with this gene (Supplementary
Figure S2). This porin is homologous to the glucose
inducible sugar porin oprB in Pseudomonas (Hancock
and Carey, 1980; Saravolac et al., 1991).

The Pro1404 glucose porter is a major facilitator
superfamily transporter that has been implicated
in glucose uptake in Prochlorococcus (Gómez-Baena
et al., 2008; Muñoz-Marín et al., 2013). This
transporter was consistently found in all picocyano-
bacterial reference genomes in a gene cluster with
a glycogen debranching enzyme (E.C. 3.2.1.-)
(Supplementary Figure S2), which functions in
glycogen degradation to glucose monomers in
Escherichia coli (Jeanningros et al., 1976; Dauvillée
et al., 2005) and has also been shown to affect
glycogen branching patterns in Synechococcus elon-
gatus PCC7942 (Suzuki et al., 2007). Thus, we expect
that the proteins coded by the Pro1404 gene and the
glycogen debranching enzyme gene both function in
providing the cell with glucose.

Statistical and phylogenetic analyses
Kolmogorov–Smirnov and Shapiro–Wilk tests indi-
cated that the transporter gene abundance data were
not normally distributed. Thus we used nonpara-
metric tests in all statistical analyses unless other-
wise noted. The correlations used were Spearman
correlations and hypothesis tests between popula-
tions were Mann–Whitney–Wilcoxon tests. Phyloge-
netic trees were made with the RaxML software
v. 7.3.0 (Stamatakis, 2006) and are maximum like-
lihood trees with 100 bootstraps. Evolutionary
reconstruction of ancestral traits was carried out
with the ace method of the ape (v. 3.3) R statistical
package (Team RDC, 2012). The evolutionary model
used assumes equal rates of transitions from one
state to another and uses maximum likelihood
ancestral state estimation (Cunningham et al., 1998).

Results and discussion
Mixotrophic capacity in cultured strains

Genetic capacity for organic compound uptake and
degradation. In order to determine if isolate pico-
cyanobacteria have the capacity for mixotrophy we
looked for genes for uptake and degradation of
organic compounds. All 67 picocyanobacterial refer-
ence genomes contained transporters for amino acid,
sugar and peptide uptake, indicating a universal
capacity for mixotrophy (Figure 1), and suggesting a
persistent advantage conferred by organic compound
uptake across the marine environments where these
picocyanobacteria live. Genes specific to degradation
of the sugars and amino acids taken up by these
transporters were also identified (Supplementary
Table S6). The presence of these genes along with
transporter genes suggests that these strains have the
ability to break down organic compounds for use

in central carbon, and in some cases nitrogen,
metabolism. Unsurprisingly, glucose degradation
genes were identified in all genomes along with
glucose transporter genes. Of the 36 cases where
alanine transporter genes were found, 35 also had an
alanine degradation gene, alanine dehydrogenase.
This enzyme is reversible, but has been implicated in
alanine degradation in Synechococcus elongatus
(Lahmi et al., 2006). The glutamate porter is found
in 56 genomes, but the glutamate degradation
dehydrogenase is found in only the low-light IV
(LLIV) Prochlorococcus and the CC9605 Synecho-
coccus strains. Only genomes that contain the
glutamate and alanine transporters contain the
degradation genes with one exception, WH5701,
which contains an alanine dehydrogenase. This
suggests that these strains are not only capable of
taking up amino acids, but can also degrade them to
obtain ammonium for use in biosynthesis. The co-
occurrence of the degradation genes with the
transporters also is consistent with the annotation
of these genes as glutamate and alanine transporters.

Mixotrophic capacity by phylogenetic group.
Within the Prochlorococcus ecotypes, there is a
trend of reduction in gene number of amino-acid
transporters from the common ancestor with Syne-
chococcus to the high-light II (HLII) ecotype
(Figure 1). This trend suggests gradual gene loss
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during the genome streamlining that began during
the divergence from Synechococcus and involved
genes that do not confer strong selective advantages
in new niches (Partensky et al., 2010; Sun and
Blanchard, 2014). Because of this streamlining,
transporter gene numbers are correlated with gen-
ome size (amino acid and sugar transporters Pearson
correlation 0.63 and 0.53, P-value o0.01). The
hypothesis of gradual organic compound transporter
gene loss is supported by evolutionary reconstruc-
tion of the number of amino acid and sugar
transporters from the common ancestor of Prochlor-
ococcus to the extant strains and is consistent with
the amino-acid transporter gene trees in these strains
(Supplementary Figures S3 and S4).

These results suggest a reduced selection pressure
for mixotrophic capacity in cells that dominate
surface waters, where the environment is character-
ized by higher light intensities and lower nutrient
concentrations than deeper euphotic zone waters.
The increase in amino acid and sugar transporter
genes in cells that are most prevalent in low light,
open ocean environments is consistent with the use
of organic compounds to supplement energy and
carbon under light limitation, but also indicates that
despite the potential for nitrogen limitation, surface
oligotrophic ocean waters do not favor the main-
tenance of a full suite of organic compound uptake
genes. This may be because many of the substrates
for these transporters are found at such low
concentrations in low nutrient surface ocean waters
(Keil and Kirchman, 1999; Kaiser and Benner, 2008)
that the energy and nutrients required to maintain
these transporters is greater than the advantage
they confer.

We next looked for patterns in the distribution of
organic compound transporter genes among Syne-
chococcus phylogenetic clusters. All major Synecho-
coccus groups have more genes per genome for
uptake of organic compounds than HLI, HLII and LLI
Prochlorococcus ecotypes (Figure 1). The 5.1A
Synechococcus subcluster has fewer organic uptake
genes than 5.2 and 5.3 Synechococcus genomes
(Figure 1, Supplementary Table S7). The 5.1A group
has previously been shown to dominate the Syne-
chococcus population in oligotrophic environments
(Dufresne et al., 2008). However, recent work
indicates that adaptation to oligotrophic waters
may not be a characteristic of the large 5.1A and
5.1B groups, but rather a clade-level adaptation
(Zwirglmaier et al., 2008; Ahlgren and Rocap, 2012;
Huang et al., 2012). Thus we looked for the specific
clades that dominated oligotrophic samples in the
Tara data set-waters with o0.1mg chlorophyll a per
m3 as defined by Behrenfeld and Falkowski (1997).
Clades II and III (both 5.1A clades) dominated the
Synechococcus community in oligotrophic versus
mesotrophic waters (P-values o0.05 and o0.01,
respectively). The reference genomes from these
oligotrophic clades had fewer organic compound
transporter genes versus the other Synechococcus

groups, though this difference was not significant
(Figure 2a). We made the same comparison between
coastal and open ocean samples, as determined by
Longhurst biome (Clade II dominated open ocean
waters in the Tara data set; P-value o0.05). In that
case, coastal reference genomes on average con-
tained more organic compound transporter genes
than open ocean genomes (Figures 2b; P-value
o0.05).

Mixotrophic potential in picocyanobacteria in the
global oceans

Comparison of reference genome data set with
wild populations. The availability of global meta-
genomic data allowed us to test whether our
picocyanobacterial reference isolate genomes were
representative of abundances of organic compound
transporter genes globally. Specifically we aimed to
determine whether global averages of organic com-
pound uptake genes per genome were similar to the
average numbers of these genes in our reference data
set. To this end, we estimated the average number of
transporter genes per Prochlorococcus and Synecho-
coccus genome in the global Tara data, normalized
to 16S mitag abundances, and compared these
estimates to normalized transporter gene numbers
in reference genomes. Transporter numbers in
reference genomes were averaged within each
ecotype and then normalized by multiplying them
by the proportion of their respective ecotype in the
Tara data set, based on single-copy gene abun-
dances. The results indicate that the Prochlorococ-
cus reference data set is adequately representative of
in situ populations (Figure 3). The overall average
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number of organic compound uptake genes in the
Tara Synechococcus data was similar to those in
reference genomes. However, the number of amino
acid uptake genes was higher in the in situ data,
whereas the number of sugar and peptide transpor-
ters was lower. This suggests that the Synechococcus
reference genomes do not cover the diversity seen
globally. Certain taxa within the Synechococcus
genus that are not represented in reference genomes
likely have widely varying numbers of organic
compound transporters. It is also possible that
taxonomic identification failed to identify in situ
Synechococcus transporter genes because of the
inadequacy of the reference data set, but this
scenario is unlikely, due to the low homology
threshold used (30% amino-acid identity) in anno-
tating the metagenomic genes.

Geographic distribution of organic compound
transporters. The global nature of the Tara Oceans
data allowed us to assess the worldwide geographic
distribution of picocyanobacterial mixotrophic capa-
city as we are defining it. We determined that
organic compound uptake transporters assigned to
Prochlorococcus and Synechococcus were ubiqui-
tous in the data set (Figure 4). This finding provides
the strongest evidence to date that the capacity for
mixotrophy is the dominant trophic strategy in
marine picocyanobacteria. Every sample that con-
tained Prochlorococcus or Synechococcus 16S rRNA
genes also contained picocyanobacterial peptide
uptake transporter genes. There was only one sample

that contained Prochlorococcus 16S genes but no
Prochlorococcus amino acid or sugar uptake trans-
porter genes—a sample from one of the three strong
oxygen minimum zone samples. Similarly, one
Southern Ocean sample lacked Synechococcus
organic compound transporter genes. These oxygen
minimum zone and Southern Ocean samples con-
sistently had among the lowest number of Prochlor-
ococcus and Synechococcus nutrient transporters
(data not shown). Oxygen minimum zones similar to
the one in question are dominated by novel LLV and
LLVI Prochlorococcus lineages (Lavin et al., 2010)
not present in current reference genome data sets.
Organic compound uptake transporter genes may not
have been detected for this reason or because of
some unknown ecological difference between oxy-
gen minimum zones and other open ocean habitats.

In addition to their ubiquity, picocyanobacterial
organic compound transporters also represent a large
portion of the total organic compound transporters
in samples dominated by Prochlorococcus. In these
samples, up to 13.8% of amino-acid transporters,
31.1% of peptide transporters and 6.4% of sugar
transporters were assigned to picocyanobacterial taxa.

No clear differences in transporter abundances by
ocean were recognizable. However, three ocean ‘hot
spots’ were identified where organic uptake trans-
porter gene abundances were very high. These
stations were characterized by very low (o3%) HLII
single-copy gene abundances as a proportion of all
Prochlorococcus single-copy genes. The Prochloro-
coccus single-copy genes from each station were as
follows: 95% LL and HLI strains at Station 68, 98%
HLI and unassigned HL strains at Station 94 and
95% unassigned HL strains at Station 128.

Relationship of transporter gene abundances to
environmental parameters. To explore the hypoth-
esis that organic compound uptake is more advanta-
geous to picocyanobacteria under low light
and relatively higher nutrient conditions, we exam-
ined relationships between number of organic
compound uptake transporter genes and environ-
mental variables including depth, nitrate and nitrite
concentration, proximity to the coast, and the
proportions of the different picocyanobacterial eco-
types present. We controlled for high light ecotype
abundance with partial Spearman correlations
because this ecotype is strongly correlated with
depth and nitrate concentration (−0.5 and − 0.35
correlation, respectively; Po1e− 4) and because high
light ecotype single-copy genes are on average 20
times more abundant than low light ones in this
data set (at depths of 50m or more). It is important
to note that the proportion of HLI and HLII genes
varied between samples even when holding the
total abundance of HL single-copy genes constant.
We found a significant positive correlation between
nitrate concentration and amino-acid transporter gene
abundances (Supplementary Table S8). As low light
ecotypes are rare in the Tara data, the correlation with
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nitrate may be due to the differential distribution of
HLI and HLII ecotypes at the surface. Because there is
no clear mechanistic link between increased nitrate
concentrations and organic compound uptake, it is
likely that the correlation is actually related to another
covarying environmental variable. One possibility
would be the concentrations of amino acids them-
selves, which are likely to be more expendable in
higher nitrate environments.

In addition to correlations with nitrate concentra-
tions, significant negative correlations were found
between the proportion of single-copy genes from the
HLII ecotype, and the number of organic compound
transporters per genome. The ecotype correlations
were consistent with results from the isolate genomes
where HLII genomes have the smallest number of
organic compound uptake genes (Figure 1). Finally, the
mean number of transporters per Synechococcus
genome was higher in coastal waters (based on
Longhurst biome) than in the open ocean (Table 1).

In order to estimate the average number of organic
compound uptake genes per phylogenetic group in
natural populations, we assigned single copy cyano-
bacterial genes to groups with maximum likelihood
trees (Supplementary Figure S1). We then estimated

group averages by taking the mean of the number of
transporters per genome in samples containing more
than 50% single-copy genes from this phylogenetic
group. Because LLII, III and IV ecotypes were
generally very low abundance, we were not able to
estimate in situ averages for them. The data show a
trend of increasing number of amino-acid transporter
genes per genome from the HLII to the LLI
Prochlorococcus ecotypes and no clear trend for
sugar and peptide transporters, consistent with
results from cultured strains (Table 2). The organic
compound uptake transporter ‘hot spots’ previously
identified are also consistent with this trend, as they
are characterized by an unusually low proportion of
HLII single-copy genes.

Diversity of Tara Oceans picocyanobacterial organic
compound transporters. The elevated numbers
of organic compound transporters in Prochlorococ-
cus and Synechococcus that live in lower light,
higher nutrient environments relative to other strains
could be indicative of several different types of
evolutionary strategies. Genome streamlining within
the Prochlorococcus lineage may have eliminated
paralogous transporter genes that served to increase

Table 1 Difference between transporter genes per genome in coastal vs open ocean picocyanobacteria (Wilcox test)

Transporter genes per genome Coastal mean Open ocean mean

Prochlorococcus amino-acid transporters 1.88 1.28
Prochlorococcus sugar transporters 0.9 0.91
Prochlorococcus peptide transporters 0.62 0.62
Synechococcus amino-acid transporters 3.76** 2.56**
Synechococcus sugar transporters 0.72 0.6
Synechococcus peptide transporters 0.5** 0.32**

**P-value o0.01.
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expression in a common ancestor. Alternatively,
multiple transporters may serve to transport the
same general substrate (for example, amino acids)
but different specific substrates (for example, gluta-
mate versus aspartate), allowing the cells to take
advantage of whichever resource is currently avail-
able. To differentiate between these possibilities,
we looked for paralogs. This analysis found only one
paralogous transporter gene in the reference gen-
omes: the 2.A.27.2.1 probable Glu/N-acetylglutamate
uptake porter (Supplementary Figure S3). In all other
cases, higher numbers of transporters per genome
were associated with a higher diversity of transporter
classes and substrates (Figure 5). The same is true
of the metagenomic data: samples with high num-
bers of picocyanobacterial transporters per genome
also have a more diverse set of picocyanobacterial
transporter classes and putative substrates (Figure 6;
Spearman P-value o0.05). Collectively, these obser-
vations suggest that picocyanobacterial strains with
more transporter genes have the capacity to take up a
wider variety of organic substrates. The association
of increased diversity with increased number of
transporter genes indicates that the cyanobacteria
with more of these genes have a more generalist
trophic strategy.

Conclusions

Picocyanobacterial mixotrophy genes are more
abundant in low light-adapted ecotypes of Prochlor-
ococcus and coastal groups of Synechocococcus. The
differences among phylogenetic groups can be
attributed to the loss of a diverse subset of transpor-
ter genes as picocyanobacteria expanded to new,
high light, more oligotrophic habitats. Because of
this evolutionary trajectory, we infer that a mixo-
trophic strategy is most advantageous to marine
picocyanobacteria in low light, mesotrophic envir-
onments such as the deep euphotic zone above the
deep chlorophyll maximum. These environments
have higher nutrient concentrations than the surface
ocean, but are still likely nutrient limited ted.
ndances (Cullen, 2015). Under these conditions,
cyanobacteria can supplement their energy stores
with organic carbon compounds and take advantage

of alternative nitrogen sources that are readily
available in amino acids and peptides. Results for
Prochlorococcus are compelling, but the lack of a
good reference database necessitates further work on
Synechococcus.

In addition to demonstrating a clear relationship
between phylogeny and capacity for organic com-
pound uptake in the genomes of cultured isolates, we
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Table 2 Estimates of global averages (± standard deviation) of
organic compound uptake transporter genes per genome, by
substrate, for different Prochlorococcus ecotypes

In situ abundance
450% of
Prochlorococcus

Sample
size

Amino
acid

Sugar Peptide

HLII 5 0.98±0.30 0.82±0.23 0.63±0.15
HLI 19 1.88±0.81 0.98±0.25 0.82±0.28
Unassigned HL 26 1.98±0.78 0.77±0.32 0.45±0.23
LLI 11 2.17±0.79 0.68±0.35 0.58±0.27
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have also determined that mixotrophic capacity is
ubiquitous in the Tara Oceans metagenomic data set,
covering all major oceans. We conclude from the near-
universal distribution of picocyanobacterial genes
involved in organic compound transport, that mixo-
trophy is a widespread strategy among these photo-
trophs. Given that picocyanobacteria are estimated to
contribute 25% of global marine net primary produc-
tivity (Flombaum et al., 2013), their potential contribu-
tion to the assimilation of organic carbon could be
significant. Furthermore, because picocyanobacteria
and obligate heterotrophs make up the vast majority of
marine prokaryotic communities, we postulate that
almost all prokaryotes in the surface oceans are
heterotrophs or mixotrophs, a finding that calls for
revision of oceanic carbon and energy flux estimates
between trophic levels.
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