
Research Article
Hybrid Online and Offline Reinforcement Learning for Tibetan
Jiu Chess

Xiali Li , Zhengyu Lv , Licheng Wu, Yue Zhao, and Xiaona Xu

School of Information and Engineering, Minzu University of China, Beijing 100081, China

Correspondence should be addressed to Xiali Li; xiaer_li@163.com

Received 13 February 2020; Revised 3 April 2020; Accepted 10 April 2020; Published 11 May 2020

Academic Editor: Ning Cai

Copyright © 2020 Xiali Li et al.(is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, hybrid state-action-reward-state-action (SARSA(λ)) and Q-learning algorithms are applied to different stages of an
upper confidence bound applied to tree search for Tibetan Jiu chess. Q-learning is also used to update all the nodes on the search
path when each game ends. A learning strategy that uses SARSA(λ) and Q-learning algorithms combining domain knowledge for
a feedback function for layout and battle stages is proposed. An improved deep neural network based on ResNet18 is used for self-
play training. Experimental results show that hybrid online and offline reinforcement learning with a deep neural network can
improve the game program’s learning efficiency and understanding ability for Tibetan Jiu chess.

1. Introduction

Compared with Go, chess, Shogi, and other games achieving
the top level of human beings by deep neural network and
reinforcement learning, the research of Tibetan Jiu chess is
still in the primary stage. (e current chess power of Jiu
chess is low, which has not defeated the primary players of
human beings. And the standard Jiu chess game data are
very few. At present, the complete Jiu chess manual obtained
is only about 300 games. Jiu chess game has 2 sequential
stages of layout and battle, and the layout stage can only
enter into the battle stage after all the blank intersections are
filled alternately, which leads to the lengthy search path for
an upper confidence bound applied to trees (UCT) search.
Considering the useless steps that the algorithm may take
during the exploration, the search path will be much longer
than that of chess and Go. In this case, how to improve the
efficiency of Jiu chess program in self-play learning under
the special rules and the limitations of laboratory hardware is
our study motivation.

In this study, the state-action-reward-state-action
(SARSA(λ)) and Q-learning algorithms are innovatively
used in different stages of UCT search for Jiu chess. In the
selection, expansion, and simulation section of the UCT
search, the SARSA(λ) algorithm is used to update the

quality of each action. In the backpropagation stage, the
Q-learning algorithm is used to update the quality of each
action. (e quality of each action is denoted by its Q-value.
(e Q-learning algorithm is also used globally after the end
of each game. Probability distribution function based on
two-dimensional (2D) normal distribution matrix is used
as feedback to SARSA(λ) and Q-learning for the layout
stage. (e feedback function for a time difference (TD)
algorithm based on important shapes [1, 2] is constructed
for the battle stage. ResNet18 structure is improved to be
suitable for the deep neural network training considering
its lower error rate and better performance in image
classification [3]. (e contribution of this study is outlined
in the following:

(1) Hybrid deep reinforcement learning algorithm is firstly
applied to Jiu chess game. (e proposed strategy can
preventmanyworthless or low value nodes generated by
the deep learning from wasting computing resources.
Using SARSA(λ) andQ-learning algorithms in different
stages of UCT search provides guarantee for learning
fine chess steps faster and improves the algorithm’s
learning efficiency; besides, final result can be fed back to
all steps to improve the accuracy of the return estimation
value.

Hindawi
Complexity
Volume 2020, Article ID 4708075, 11 pages
https://doi.org/10.1155/2020/4708075

mailto:xiaer_li@163.com
https://orcid.org/0000-0001-7950-6204
https://orcid.org/0000-0003-0718-305X
https://orcid.org/0000-0001-8715-1618
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4708075


(2) Constructing probability distribution function based
on two-dimensional (2D) normal distribution ma-
trix makes the reinforcement learning model have
the ability of prioritizing its learning tactics in the
center of the layout.

(3) (e proposed improved Resnet18-based network,
with very small parameter scale, has achieved a good
learning effect, reduced the use of computing power,
and significantly shortened playing time by training
on a common workstation or graphics processing
unit (GPU) server in a short time. (e experimental
results have demonstrated it.

Section 2 of the paper introduces the rules and diffi-
culties of Tibetan Jiu chess, and Section 3 introduces related
works on Tibetan Jiu chess. Section 4 discusses the hybrid
SARSA(λ) and Q-learning algorithm applied to different
stages of the UCTsearch and the improved RedNet18-based
deep neural network structure. Section 5 details the ex-
periment and data analysis. Finally, we outline the con-
clusions and propose future work.

2. Rules and Difficulties in Tibetan JIU Chess

(ere are two kinds of Tibetan chess, mi mang and Jiu,
which are widely played in Sichuan, Gansu, Tibet, Qinghai,
Yunnan, and other Tibetan areas [4] in China.(e process of
playing chess can be divided into two successive stages:
layout and fighting. In the layout stage, the central area is
occupied first in order to construct the dominant formation
(square, standard, etc.) for the fighting stage; hence, the
quality of the layout has an important impact on the final
victory. In the fighting stage, actions include moving chess
pieces, jumping capture, or even square capture. (e key to
victory is to take the lead in constructing a girdling for-
mation, and the necessary condition to constructing this
formation is to construct a square.

2.1. Tibetan Jiu Chess Rules. (e public Jiu board is 14 × 14
points. (e Jiu game process is divided into two sequential
stages: layout and battle. Jiu chess is a two-player game. (e
white side plays with white stones and the black side uses
black stones. Players alternate turns. Stones must be added
or moved to empty points on the game board. A Jiu game
starts with an empty board. (e task in the layout stage is to
place one stone on a point at each move until there are no
empty points on the board. (e goal in the battle stage is
moving or capturing stones until one player wins the game.
(e movements and capturing methods are similar to those
of international checkers [1, 2].

2.1.1. Layout Stage. In the layout stage, white plays first,
followed by black. (e first and second moves must be
placed on one of the points of the diagonal line of central
grids. (en, each side alternates in placing one stone on one
point until no empty points remain on the board. After
filling the board, game turns into battle stage.

2.1.2. Battle Stage. In the battle stage, there are three actions
to select in each turn.

(1) Move. Usually, a player moves a stone to the up,
down, left, or right adjacent empty point (see Figure 1(a)).
But there is the exception. If a player has no more than 14
stones left, he can move a stone to any empty cross point he
wants.(is exception is shown in Figure 1(c). Since the black
side only has no more than 14 stones left, the diamond black
stone moves to the point where the arrow directs. After this
move, the square is constructed. During this move, the point
of the diamond black stone is the beginning and the point of
the black stone directed by the arrow is the ending. In this
case, the black side can capture any one stone of its op-
ponent. (e dim diamond marked white stone is taken away
by the black side after this move.

(2) Jumping Capture. When the opponent’s stone is
adjacent to the player’s stone and there is an empty point
directly behind it, the player will perform a jumping capture.
(is action can be continued until the player cannot capture
stones or the player’s turn ends. As shown in Figure 1(b), the
diamond marked white stone is placed to the final empty
point where the arrows direct after four continuous
jumping. (is continuous jump begins from the point of the
diamond white stone and ends at the point of the white stone
directed by the arrow. (e white side captures all the four
black stones on the path where the arrows direct.

(3) Square Capture. In one turn, if a player constructs a
square with four adjacent stones, he will capture one of his
opponent’s stones located at any point on the board. (is is
called square capture. (ere are three important shapes
which are called gate, square, and dalian (or chain) asso-
ciated with square capture. Gate is the basic shape which is
shown in (A) in Figure 1(d). Square, one of the important
shapes, is shown in (B) in Figure 1(d). Dalian or chain is the
most important Jiu shape, which is shown in (C) in
Figure 1(d). (is shape is critical to the winning of the game.
It is comprised by seven stones of the same color and one
empty point. (e stone adjacent to the empty point is called
vital stone which is marked by the circle. By moving this vital
stone to any of the two empty points, a player can construct a
square and then capture one stone anywhere of its opponent
on the board in one turn. A player can capture his oppo-
nent’s stones by repeatedly moving the vital stone in dif-
ferent turns.

2.1.3. Winning the Game. If a player wants to be a winner, he
will make sure one of the following conditions is met:

(1) He must have at least one special shape like chain
while his opponent does not have any gates before
his opponent has less than 14 stones.

(2) He will win by taking away all stones of his opponent
when both sides have no special shapes or gates.

2.2. Difficulties in Tibetan Jiu Chess

(1) Deep and wide tree search space. (e layout stage is
closely connected with the battle stage. When the

2 Complexity



layout is finished, the battle begins. (e search space
of the game tree is huge and the search path is far
longer than that of general chess games.

(2) Special rules make much more low value states than
high value states. (e Jiu chess layout first covers the
central area and then gradually expands outward.
(e importance of position gradually decreases from
the center to the outside. It takes a long time for
ordinary deep neural networks to learn to choose
high value states from much more low value states.

(3) Extremely limited research and expert knowledge.
Jiu chess players are mostly distributed in Tibetan
areas, creating huge difficulties in collecting and

processing Jiu chess data. At present, we have only
collected and analyzed 300 complete chess record
data, represented as SGF files.

3. Related Work

Deep reinforcement learning agorithms used in the Atari
series of games, inlcuding Deep Q Network (DQN) algo-
rithm [5], 51-atom-agent (C51) algorithm [6], and those
suitable for continuous fieds with low search depth and
narrow decision tree width [7–15], have achieved or
exceeded the level of human experts. In the field of computer
games, pattern recognition [6, 16], reinforcement learning,

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a)

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b)

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c)

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

(A)

(B)

(C)

(A)

(B)

(C)

(C) (C)1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d)

Figure 1: Actions and shapes in Jiu chess. (a) Example state 1. (b) Example state 2. (c) Example state 3. (d) Important shapes.

Complexity 3



deep learning, and deep reinforcement learning algorithms
are used in Go, including Monte Carlo algorithm and upper
confidence bound applied to tree (UCT) algorithm [17–20],
temporal difference algorithm [21], the deep learning model
combined with UCT search algorithm [22], and DQN al-
gorithm [23, 24], and they have also achieved quite good
results in computer Go game, which shows that the idea of
deep reinforcement learning algorithm can adapt to the
computer game environment. In addition, the application of
deep reinforcement learning algorithm in Backgammon
[25–27], Shogi [28–30], chess [31–34], Texas poker [35, 36],
Mahjong [37], and Star Craft II [38] has achieved human
excellence and even exceeded human achievements. (ere is
no doubt that the deep reinforcement learning algorithm
will make a good progress in this field when it is applied to
Jiu chess.

At present, Jiu chess is little-known to the people because
it is mainly spread in Tibetan people gathering areaes. Due to
special rules and smaller players compared with Go or other
popular games, the research on Jiu chess is very limited. Jiu
chess is a complete information game, along with Go and
chess. However, completely different from Go or chess, Jiu
rules are very special with two consequential stages, which
makes the game tree search path very long.(ere are three Jiu
chess programs from all current literatures [1, 2, 39]. And all
of them have low chess power although they have different
playing levels. In [1], several important shapes of Jiu were first
recognized and about 300 playing records were collected and
processed. Strategies based on chess shapes were designed to
defend the opponent. It was the first Jiu program based on
expert knowledge, but it had very low power because of the
limited human knowledge. In [39], a Bayesian network model
which was designed to solve the problem of small sample data
for Jiu playing records estimated the chess board rapidly. (is
method alleviated the extreme lack of expert knowledge to a
certain extent, but the model was only useful in the layout
stage. In [2], a time difference algorithm was used to realize
the probability statistics and prediction of chess type, which
was the first time reinforcement learning was applied to Jiu
chess. It was verified that solely applying SARSA(λ) or
Q-learning algorithm with special different parameters was
helpful to improve the efficiency of recognizing and evalu-
ating chess board. However, it did not make important
contributions to the chess power because of not applying a
deep neural network or UCT search. Q-learning algorithm is
not only used in the games, but also widely used in other fields
such as the wireless network to reduce the cost of resources
[40]. It is very promising. So in our study, we first combine
SARSA(λ) and Q-learning algorithms in different stages of
UCT search to help us get the motivation of achieving better
performance under low hardware cost.

4. Learning Methodology

UCTsearch combined with deep learning and reinforcement
learning is of high performance for Go, chess, and other
games. However, it requires considerable hardware re-
sources to support exploration to the huge state space and
training for the deep neural network. To take advantage of

reinforcement learning and deep learning while reducing
hardware requirements as much as possible, this study
proposed an improved deep neural network model com-
bined UCT search, with hybrid online and offline time
difference algorithms for Tibetan Jiu chess, which is ex-
quisite and efficient in self-play learning ability.

Hybrid TD algorithms are applied to different stages of
the UCT search, which minimizes searching in low-value
state spaces. (ereby, the computational power consump-
tion and training time of the exploration state space are
reduced. According to the unique characteristics of Jiu chess,
a TD algorithm reward function is proposed based on a 2D
normal distribution matrix for the layout stage, enabling the
Jiu chess reinforcement learning model to more quickly
acquire layout awareness of Jiu chess priorities. (e reward
function for the battle stage is also designed based on Jiu
chess shapes. (e improved ResNet18-based deep neural
network based is used for self-play and training.

4.1.UCTSearch. (e reinforcement learning algorithm used
in this study is based on a UCT [41, 42] search algorithm (see
Figure 2), which combines Q-learning, SARSA(λ), and
expert domain knowledge. When the model performs self-
play learning, it searches from the root node, uses SARSA(λ)

combined with immediate feedback from domain knowl-
edge in the former three stages (selection, extension, and
default policy simulation), and uses Q-learning updation in
the backpropagation stage.

In the selection, extension, and default policy simulation
stages, the board situation is evaluated through expert
knowledge and this evaluated value is returned to each node
of the path using the SARSA(λ) algorithm updation method
(see the bold parts of the routes in the selection, extension,
and default policy simulation stages of Figure 2). In the
backpropagation stage, the board situation is evaluated
through Q-learning algorithm updation (see the bold part of
the route in the backpropagation step of Figure 2).

4.2. Hybrid SARSA(λ) and Q-Learning Algorithm. In this
study, the node of the UCT search tree is expressed as

S,W,N,P, V,Q,E{ }, (1)

where S represents the state of the node in the search tree;W
represents the value of each action of the node; N represents
the number of times the action of the node is selected, and
for each action a selected, N(s, a)⟵N(s, a) + 1; P rep-
resents the probability of selecting each action under the
state (calculated by the neural network); V is the winning
rate estimated by the neural network; Q is the winning rate
estimated by the search tree; and E is a variable of auxiliaryQ
updation. In the selection, extension, and simulation stages,
E is updated according to the SARSA(λ) algorithm, which is
expressed as follows:

E(s, a)⟵R(s, a) + cQ si+1, ai+1( 􏼁 − Q(s, a), (2)

where R(s, a) is the reward value of the current situation
which can usually be calculated by the board situation

4 Complexity



evaluation, c is learning rate, si+1 is the next state, searched
by taking action a, and ai+1 is the action selected in state si.

(e node (si, ai), which is previously searched in the
searching path, is updated in turn by the following equation:

Q si, ai( 􏼁⟵ 1 − c1( 􏼁Q si, ai( 􏼁 + c1λ
c− iE(s, a), (3)

where c1 is learning rate of SARSA(λ), i is denoted as the
state index satisfying 0≤ i≤ c, c is the number of steps from
the status of the root node to the status of the search ending
at the stage of value return in each turn, i � 0 represents the
searching is initialized by taking the current situation as the
search tree root node, and i � c represents the searching is
ended. Especially at the end of the game, c is simply the total
number of steps from the beginning to the end of the game.

In the backpropagation stage of UCT search or at the
time of each game end, equation (4) is used to update the
Q-values of all nodes on the path, where c2 is learning rate of
Q-Learning:

Q si, ai( 􏼁⟵ 1 − c2( 􏼁Q si, ai( 􏼁 + c2 maxQ si+1, ai+1( 􏼁,

(4)

and if si+1 is a leaf node, Q(si+1, ai+1) will be calculated by

Q si+1, ai+1( 􏼁 �
W si+1, ai+1( 􏼁

N si+1, ai+1( 􏼁
. (5)

In the selection, extension, and simulation stages of the
UCTsearch algorithm, this hybrid algorithm selects action a

with the maximum value from state s through equation (6)
by calculating the score of each alternative action:

a � argmaxa(Q(s, ·) + U(s, ·)). (6)

For each alternative action a at state s, there is the
comprehensive evaluation function which is represented by
the following equation:

Q(s, a) + U(s, a) � Q(s, a) + cpuctP(s, a)

���������
􏽐N(s, ·)

N(s, a) + 1

􏽳

,

(7)

where Q(s, a) is obtained by equation (3) or (4), which
depends on different tree UCT search stages, and U(s, a)

represents the estimation value by the UCBmethod which is
obtained by the following equation:

U(s, a) � cpuctP(s, a)

���������
􏽐N(s, ·)

N(s, a) + 1

􏽳

, (8)

where cpuct represents the parameter balancing the exploi-
tation and exploration of UCT algorithm.

4.3. Feedback Function Based on Domain Knowledge.
Q-value is updated by the combination of the SARSA(λ) and
Q-learning algorithms [43, 44]. SARSA(λ) is used to update
the nodes on the game path in the selection, expansion, and
simulation stages of the UCT [18]. In the backpropagation
stage, Q-learning is used to update the values of all nodes in
the search path.(e hybrid strategy enables the algorithm to
learn to prune the huge state space effectively, improving
computing speed and reducing the consumption of hard-
ware resources.

(e layout stage of Jiu chess plays a key role in the game
and its outcome [1]. (e value of the board position decays
from the center of the board to the outside, which is similar
to the probability distribution of a 2D normal distribution
matrix. (erefore, the importance of each intersection in the
layout stage can be approximated by the 2D discrete normal
distribution (see Figure 3).

In the battle stage, constructing the chess shapes discussed
in [1, 2] is very important in gaining a victory. (e feedback
function used by the SARSA(λ) and Q-learning algorithm is
shown in equation (9), 􏽐iVi(s) � Vchain+ Vgate + Vsquare:

Q + U

Q + U

Q + U

P w

w

w

w

w

Selection Expansion Default policy 
simulation

Backpropagation

Repeat

Q + U

Figure 2: UCT algorithm for Jiu chess.

Complexity 5



R(s, a) �
f(x, y), s in layout stage,

􏽐iVi(s), s in battle stage,
􏼨 (9)

where f(x, y) is the joint probability density of X and Y is
shown in the following equation [39, 45]:

f(x, y) �
1

2πσ1σ2
�����
1 − ρ2

􏽰 e
− 1/ 2 1− ρ2( )( )( ) x− μ1( )

2/σ21− 2ρ x− μ1( ) y− μ2( )/σ1σ2( )+ y− μ2( )
2/σ22( 􏼁( 􏼁

, (10)

where X and Y represent chessboard coordinates and μ
represents the mean value of the range of the chessboard
(x, y ∈ [0, 13], σ1 � σ2 � 2, μ1 � u2 � 6.5, ρ � 0).
Vchain, Vgate, and Vsquare are approximations summarized
through the Jiu chess rules [1, 2] and experience.
Vchain(s) � 7cchain, where cchain is the sum of the number of
squares on the chessboard in the current state;
Vgate(s) � 3cgate, where cgate is the sum of the number of
gates on the chessboard in the current state; and
Vsquare(s) � 4csquare, where csquare is the sum of the number of
squares on the chessboard in the current state.

Using the 2D normal distribution approximate ma-
trix probability distribution based on expert knowledge
as the feedback function of the TD algorithm in the
layout stage, we can produce better search simulations
and self-play game performance in the case of deep
search depths and large search branches and learn a
reasonable chess strategy in the layout stage better and
faster [46].

4.4. Improved Deep Neural Network Based on ResNet18.
Strategy prediction and board situation evaluation are re-
alized using a deep neural network, which is expressed as a
function with parameter θ, as shown in equation (11), where
s is the current state, p is the output strategy prediction, and
v is the value of board situation evaluation:

(p, v) � fθ(s). (11)
(e RESNETseries of deep convolution neural networks

shows good robustness in image classification and target
detection [3]. In this study, a ResNet18-based network is
used to transform the full connection layer. It can

simultaneously output strategy prediction p and board
situation evaluation v (see Figure 4).

Unlike ResNet18 [3], a public full connection layer
with 4096 neuron nodes is used as the hidden layer. (e
fully connected layer is replaced by a 196-dimensional
output fully connected layer to output drop strategy p and
a one-dimensional fully connected layer to output the
estimation v of the current board status. (e neural
network is used to predict and evaluate the state of nodes
that have not previously been evaluated. (e neural
network outputs p, v to the UCT search tree node so that
P(si) � p, V(si) � v.

(e number of input characteristic graphs is two. It
means that there are two channels. (e first channel is the
position and color of the pieces in the chessboard state.
White pieces are represented by −1 and black ones are
represented by 1. (e second channel is the position of the
falling pieces in the current state of the chessboard. (e
positions in which pieces do not fall are represented by 0
and the position of the falling pieces is represented by 1.
All convolution layers use ReLu as their activation
function and batch normalization is performed after
convolution.

At the end of the game, we play back the experience and
output the dataset i≤ 0≤fc |(s, π, z)i􏼈 􏼉 to adjust the pa-
rameters of the deep neural network. (e loss function used
is shown in the following equation:

l � (z − v)
2

− πT ln p + c‖θ‖
2
. (12)

In the i-th state of the path, πi � Ni/‖Ni‖ and
zi � Wi/Ni. (e training of the neural network is carried out

Z: static evaluation value 

X: horizontal coordinates of chess board

Y: vertical 
coordinates of

chess board

Figure 3: Approximate 2D normal distribution matrix.

6 Complexity



with amin-batch parameter of 100 and the learning rate is set
to 0.1. At the end of each game, the number of samples
(turns) sent to neural network training is about 1 × 103 to
2 × 103.

5. Results

(e experiment was performed with the following param-
eters: cpuct, step, and learning rate (see Table 1). We compare
the efficiency of three methods of updating the Q value:
hybrid Q-learning with SARSA(λ), pure Q-learning, and
pure SARSA(λ). (e server and hardware configuration
used in the experiment is shown in Table 1.

5.1.Ae Improvement of Learning and Understanding Ability.
It is important to measure the learning ability of a Jiu chess
agent that can quickly learn to form squares in the layout
stage. (erefore, we calculate the influence of the hybrid
update strategy compared to pure Q-learning or SARSA(λ)

algorithms on the sum of the squares of 200 steps of self-play
game training, as shown in Table 2. When using the hybrid
update strategy, the total number of squares in 200 steps is
almost the sum of the number of squares occupied when
only using pure Q-learning or SARSA(λ), proving that the
hybrid update strategy can effectively train a Jiu chess agent
to understand the game of Jiu chess and learn it well.

We also counted the number of squares per 20 steps in
the 200-step training process. Figure 5 shows that the
number of squares occupied when using the hybrid update
strategy is significantly more than that when using pure
Q-learning or SARSA(λ) algorithms. Especially in first 80
steps, hybrid updating strategy is significantly more effective
than pure Q-learning or SARSA(λ) algorithms. And from
step 140 to step 200, hybrid updating strategy has a little
drop compared to the first 120 steps. It is because parameter
cpuct at 0.1 must decrease to fit later training to avoid useless
exploration. (is result indicates that the chess power
trained by the hybrid update strategy is stronger than that of
pure Q-learning or SARSA(λ). In addition, this strategy

produces stronger learning and understanding as well as
better stability.

5.2. FeedbackFunctionExperiment. In order to improve the
reinforcement learning efficiency of Jiu chess, a feedback
function based on a 2D normal distribution matrix is
added to the reinforcement learning game model as an
auxiliary measure for updating value. To test the effect of
this measure, we conducted 7 days and 110 instances of
self-play training and obtained data with and without the
2D-normal-distribution-assisted feedback mechanism for
comparison.

Table 3 and Figure 6 show that the total number of
squares occupied when using the 2D normal distribution
assistant in the self-play training process is about three times
that of programs that do not; the average value is close to

Value

Policy

Improved
ResNet18 for 

JIU

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

Figure 4: (e deep neural network structure.

Table 1: (e experimental parameters.

Toolkit package CNTK 2.7
Runtime .Net 4.7.2
Operating system Windows 10
Central processing unit AMD 2700X@4.0GHz
Random access memory 32GB
Graphics processing unit RTX2070
(reads used 16
Development environment Visual Studio 2017 Community
cpuct 0.1
Step 200
Learning rate 0.001
c(Q-learning) 0.628
c(SARSA(λ)) 0.372

Table 2: Average number of squares per 20 steps in 200-step
training.

Q-learning + SARSA(λ) Q-learning SARSA(λ)

8604 4248 5571

Complexity 7



three times. (e total number of squares occupied when
using the 2D normal distribution assistant during training is
significantly more than that without the assistant. Two-di-
mensional normal distribution auxiliary matrix shows the
application of expert knowledge in fact. (e learning ability
to play in the layout has improved about 3 times with the
two-dimensional normal distribution auxiliary matrix.

We also compare the learning efficiency of using a 2D
normal distribution assistant program from the perspective
of the quality of specific layouts. As shown in Figure 7(a), in
10 days of training, the program without the aid of the 2D
normal distribution has little knowledge of the layout. After
using the 2D normal distribution matrix to assist in training,
the layout process can learn specific chess patterns faster,

Sq
ua

re
 co

un
t

Q-learning + SARSA(λ)
Q-learning
SARSA(λ)

0

10

20

30

40

50

60

20 40 60 80 100 120 140 160 180 2000
Training steps

Figure 5: Number of squares employing different algorithms.

Table 3: (e number of squares with 2D normalization on or off.

2D normalization off 2D normalization on
Sum 1524 5005
Average 13 45

Sq
ua

re
 co

un
t

2D norm on 2D norm off

50 1000
Training steps

0

30

60

90

120

Sq
ua

re
 co

un
t

0

30

60

90

120

50 1000
Training steps

Figure 6: Comparison of the number of squares with or without 2D normal distribution.

8 Complexity



form a triangle (chess gate), and even form squares (the most
important chess shape) in the fighting stage of Jiu chess
game, as shown in Figures 7(b) and 7(c).

(e above experiments show that the feedback function
based on the two-dimensional normal distribution matrix
can reduce the calculation amount of Jiu chess program and
improve the self-learning efficiency of the program because
in the layout stage, the importance of the chessboard po-
sition is close to the two-dimensional normal distribution
matrix. Because Jiu chess can have more than 1000 matching
steps and slow search iteration process, the evaluation of
layout stage is optimized by using two-dimensional normal
distribution matrix, which is actually the knowledge of
model experts. (e feedback value of the model indirectly
reduces the process of blindly exploring the transfer value of
chessboard state action, so it takes less time to get better
results.

6. Conclusion

In this study, the deep reinforcement learning model,
combined with expert knowledge, can learn the rules of the
game faster in a short time. (e combination of Q-learning
and SARSA(λ) algorithms can make the neural network
learn more valuable chess strategies in a short time, which
provides a reference for improving the learning efficiency of
the deep reinforcement learning model. (e deep rein-
forcement learning model has produced good layout results
obtained by the two-dimensional normal distributionmatrix
of expert knowledge modeling, which also proves that deep
reinforcement learning can shorten the learning time by
combining expert knowledge reasonably. (e better per-
formance of ResNet18, which was used to make the deep
reinforcement learning model training more effectively at
low resources cost, has been verified by experimental results.

Inspired byWu et al. [47, 48], we consider to improve Jiu
chess power not only from the state-of-the-art of technol-
ogies but also from the holistic social good perspectives in
the future work. We will collect and process much more Jiu
chess game data to establish the big data resource which can
turn big values for using light reinforcement learning model

to reduce the cost of computing resources. We will also
explore the possibilities of combining multiagent theory [49]
and mechanism [50] to reduce the network delay of the
proposed reinforcement model besides using the strategies
proposed in [39, 41].

Data Availability

Data are available via the e-mail xiaer_li@163.com.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is study was funded by the National Natural Science
Foundation of China (61873291 and 61773416) and the
MUC 111 Project.

References

[1] X. Li, S. Wang, Z. Lv, Y. Li, and L. Wu, “Strategies research
based on chess shape for Tibetan JIU computer game,” In-
ternational Computer Games Association Journal (ICGA),
vol. 40, no. 3, pp. 318–328, 2019.

[2] X. Li, Z. Lv, S. Wang, Z. Wei, and L. Wu, “A reinforcement
learning model based on temporal difference algorithm,”
IEEE Access, vol. 7, pp. 121922–121930, 2019.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–778, Las
Vegas, NV, USA, June 2016.

[4] D. SuodaChucha and P. Shotwell, “(e research of Tibetan
chess,” Journal of Tibet University, vol. 9, no. 2, pp. 5–10, 1994.

[5] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Playing atari with
deep reinforcement learning,” 2013, http://arxiv.org/abs/1312.
5602.

[6] D. Stern, R. Herbrich, and T. Graepel, “Bayesian pattern
ranking for move prediction in the game of go,” in Proceedings
of the 23rd International Conference on Machine Learning,
pp. 873–880, ACM, Pittsburgh, PA, USA, 2006.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

(a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

(b)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

A B C D E F G H J K L M N O

A B C D E F G H J K L M N O

(c)

Figure 7: Comparison of learning efficiency with or without 2D normal distribution. (a) 2D normalization off. (b) 2D normalization on.
(c) 2D normalization on and making a special board type.

Complexity 9

mailto:xiaer_li@163.com
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602


[7] W. Dabney, M. Rowland, M. G. Bellemare, and R. . Munos,
“Distributional reinforcement learning with quantile regres-
sion,” 2017, http://arxiv.org/abs/1710.10044.

[8] M. Andrychowicz, W. Filip, A. Ray et al., “Hindsight expe-
rience replay,” in Proceedings of the Advances in Neural In-
formation Processing Systems, pp. 5048–5058, Long Beach,
CA, USA, December 2017.

[9] F. Scott, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018, http://
arxiv.org/abs/1802.09477.

[10] T. P. Lillicrap, J. J. Hunt, P. Alexander et al., “Continuous
control with deep reinforcement learning,” 2015, http://arxiv.
org/abs/1509.02971.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: off-policy maximum entropy deep reinforcement
learning with a stochastic actor,” 2018, http://arxiv.org/abs/
1801.01290.

[12] M. Babaeizadeh, I. Frosio, T. Stephen, J. Clemons, and
J. Kautz, “Reinforcement learning through asynchronous
advantage actor-critic on a gpu,” 2016, http://arxiv.org/abs/
1611.06256.

[13] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods
for deep reinforcement learning,” in Proceedings of the In-
ternational Conference on Machine Learning, pp. 1928–1937,
New York City, NY, USA, June 2016.

[14] John Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz, “Trust region policy optimization,” in Proceedings
of the International Conference on Machine Learning,
pp. 1889–1897, Lille, France, July 2015.

[15] John Schulman, W. Filip, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” 2017,
http://arxiv.org/abs/1707.06347.

[16] S.-J. Yen, T.-N. Yang, C. Chen, and S.-C. Hsu, “Pattern
matching in go game records,” in Proceedings of the Second
International Conference on Innovative Computing, Infor-
mation and Control (ICICIC 2007), p. 297, Washington, DC,
USA, 2007.

[17] S. Gelly and Y. Wang, “Exploration exploitation in go: UCT
for Monte-Carlo go,” in Proceedings of the NIPS: Neural
Information Processing Systems Conference On-Line Trading of
Exploration and Exploitation Workshop, Barcelona, Spain,
2006.

[18] Y. Wang and S. Gelly, “Modifications of UCT and sequence-
like simulations for Monte-Carlo go,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games,
pp. 175–182, Honolulu, HI, USA, 2007.

[19] S. Sharma, Z. Kobti, and S. Goodwin, “Knowledge generation
for improving simulations in uct for general game playing,” in
Proceedings of the Australasian Joint Conference on Artificial
Intelligence: Advances in Artificial Intelligence, pp. 49–55,
Auckland, New Zealand, December 2008.

[20] X. Li, Z. Lv, S. Wang, Z. Wei, X. Zhang, and L. Wu, “A middle
game search algorithm applicable to low-cost personal
computer for go,” IEEE Access, vol. 7, pp. 121719–121727,
2019.

[21] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski, “Temporal
difference learning of position evaluation in the game of go,”
in Proceedings of the Advances in Neural Information Pro-
cessing Systems, pp. 817–824, Denver, CO, USA, 1994.

[22] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game
of go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[23] D. Silver, J. Schrittwieser, K. Simonyan et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550,
no. 7676, pp. 354–359, 2017.

[24] D. Silver, T. Hubert, J. Schrittwieser et al., “A general rein-
forcement learning algorithm that masters chess, shogi, and
go through self-play,” Science, vol. 362, no. 6419,
pp. 1140–1144, 2018.

[25] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[26] G. Tesauro, “Practical issues in temporal difference learning,”
in Proceedings of the Advances in Neural Information Pro-
cessing Systems, pp. 259–266, Denver, CO, USA, 1992.

[27] G. Tesauro, “Td-gammon, a self-teaching backgammon
program, achieves master-level play,” Neural Computation,
vol. 6, no. 2, pp. 215–219, 1994.

[28] D. F. Beal and M. C. Smith, “First results from using temporal
difference learning in shogi,” in Proceedings of the Interna-
tional Conference on Computers and Games, Springer, Tsu-
kuba, Japan, pp. 113–125, November 1998.

[29] R. Grimbergen and H. Matsubara, “Pattern recognition for
candidate generation in the game of shogi,” Games in AI
Research, pp. 97–108, 1997.

[30] Y. Sato, D. Takahashi, and R. Grimbergen, “A shogi program
based on monte-carlo tree search,” ICGA Journal, vol. 33,
no. 2, pp. 80–92, 2010.

[31] S. (run, “Learning to play the game of chess,” in Proceedings
of the Advances in Neural Information Processing Systems,
pp. 1069–1076, Denver, CO, USA, 1995.

[32] I. Bratko, D. Kopec, and D. Michie, “Pattern-based repre-
sentation of chess end-game knowledge,” Ae Computer
Journal, vol. 21, no. 2, pp. 149–153, 1978.

[33] Y. Kerner, “Learning strategies for explanation patterns: basic
game patterns with application to chess,” in Proceedings of the
International Conference on Case-Based Reasoning, Springer,
Sesimbra, Portugal, pp. 491–500, October 1995.

[34] M. Campbell, A. J. Hoane Jr., and F.-h. Hsu, “Deep blue,”
Artificial Intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[35] N. Brown and T. Sandholm, “Safe and nested subgame solving
for imperfect-information games,” in Proceedings of the Ad-
vances in Neural Information Processing Systems, pp. 689–699,
Long Beach, CA, USA, December 2017.

[36] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-
limit poker: libratus beats top professionals,” Science, vol. 359,
no. 6374, pp. 418–424, 2018.

[37] https://www.msra.cn/zh-cn/news/features/mahjong-ai-
suphx, 2019.

[38] V. Zambaldi, D. Raposo, S. Adam et al., “Relational deep
reinforcement learning.,” 2018, http://arxiv.org/abs/1806.
01830.

[39] S. T. Deng, “Design and implementation of JIU game pro-
totype system andmultimedia courseware,” Minzu University
of China, Beijing, China, Dissertation, 2017.

[40] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-
efficiency oriented traffic offloading in wireless networks: a
brief survey and a learning approach for heterogeneous cel-
lular networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 33, no. 4, pp. 627–640, 2015.

[41] T. Pepels, M. H. M. Winands, M. Lanctot, and M. Lanctot,
“Real-time Monte Carlo tree search in ms pac-man,” IEEE
Transactions on Computational Intelligence and AI in Games,
vol. 6, no. 3, pp. 245–257, 2014.

[42] C. F. Sironi and M. H. M. Winands, “Comparing randomi-
zation strategies for search-control parameters in monte-carlo

10 Complexity

http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1707.06347
https://www.msra.cn/zh-cn/news/features/mahjong-ai-suphx
https://www.msra.cn/zh-cn/news/features/mahjong-ai-suphx
http://arxiv.org/abs/1806.01830
http://arxiv.org/abs/1806.01830


tree search,” in Proceedings of the 2019 IEEE Conference on
Games (CoG), pp. 1–8, IEEE, London, UK, August 2019.

[43] C. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[44] F. Xiao, Q. Liu, Qi-M. Fu, H.-K. Sun, and L. Gao, “Gradient
descent Sarsa (λ) algorithm based on the adaptive potential
function shaping reward mechanism,” Journal of China In-
stitute of Communications, vol. 34, no. 1, pp. 77–88, 2013.

[45] E. Estrada, E. Hameed, M. Langer, and A. Puchalska, “Path
laplacian operators and superdiffusive processes on graphs. ii.
two-dimensional lattice,” Linear Algebra and Its Applications,
vol. 555, pp. 373–397, 2018.

[46] K. Lloyd, N. Becker, M. W. Jones, and R. Bogacz, “Learning to
use working memory: a reinforcement learning gating model
of rule acquisition in rats,” Frontiers in Computational
Neuroscience, vol. 6, p. 87, 2012.

[47] J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green
challenges: big data toward green applications,” IEEE Systems
Journal, vol. 10, no. 3, pp. 888–900, 2016.

[48] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information
and communications technologies for sustainable develop-
ment goals: state-of-the-art, needs and perspectives,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3,
pp. 2389–2406, 2018.

[49] B. Liu, N. Xu, H. Su, L.Wu, and J. Bai, “On the observability of
leader-based multiagent systems with fixed topology,”
Complexity, vol. 2019, pp. 1–10, 2019.

[50] H. Su, J. Zhang, and X. Chen, “A stochastic sampling
mechanism for time-varying formation of multiagent systems
with multiple leaders and communication delays,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 30, no. 12, pp. 3699–3707, 2019.

Complexity 11


