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In this report we shall investigate the automorphism group G(a/h)
of the reduced automaton A/H where A = (S, I, M) is a finite strongly
connected automaton and H is a subgroup of the automorphism group G(A) of
the automaton A- This problem and other related topics have been dealt

with recently by G. P. WEEG, A. C. FLECK, and B. BARNES [1, 2, 3, k, 5],

However, the particular problem to give an isomorphic representation of

G(a/h) for arbitrary A and H still remained open. Our present purpose is to
fill this gap.

For abbreviation we shall frequently use the following denotations:

ft S => S

H < G

H <J G

fog
a

N

for

for

for

for

for

for

a is a unique mapping of S onto S,
H is a subgroup of or equal to G,
H is a normal subgroup of or equal to G,
the function formed by composition of f and g,
the neutral element of I,
the order of the group G.

Furthermore, we shall deal only with finite strongly connected automata
A = (S, I, M), i.e. the set S of states of A is not empty and finite, the set I
of inputs is a free semigroup over some finite alphabet, and the machine

mapping M: S x I -> S has the properties:

(Vs e S) (y x , yel) M(s, xy) = M(m(s, x), y) [compatibility of M with I],
(Vs, teS) (3xel) M(s, x) = t [strong connectedness of A].

A mapping g: S =>Sis called an automorphism of A, iff (\/seS) (^xel) g(M(s, x)) =
- M(g(s), x). We shall sketch the properties of such an A as far as we shall
need them later j

i) (ysGS) M(s, g) =-s\
ii) G(.A) := (g/g is an automorphism of A) forms a group under
composition and /g(a)/ divides /S/.

iii) An automorphism of A is completely defined, if its value
is known for one arbitrary argument seS, i.e. (^g, h£G(A))
( (C3seS) g (s) = h(s))>((^ses) g(s) = h(s)) ).

iv) For an arbitrary subgroup H of G(a) the following reduced

automaton A/H can be defined:
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A/H := (S, I, M) with S being the set of transitivity classes
in S under H, i.e.
S := [!/ seS« s = (t/(3heH) t = h(s)}} and M being defined by
(VseS) (Vxel) M(s", x) := M~(s, x) . This definition of A/H
is consistent that means it is independent of the choice of
class representatives.

v) Be H an arbitrary subgroup of G(a) . Because of iv) we can
consider the automorphism group G(A/H) of A/H. Furthermore,

between G(a) and H there is a uniquely determined maximum
group K which has H as a normal subgroup, i.e. we can

GH

uniquely define K := max {Y/H<J Y < G(A)}. It has been
shown by A. C FLECK [k] for a special case and by R. BAYER
[6] in general that the factor group K /H is isomorphicGH

to a subgroup of G(A/H) .

In this last paragraph v) we made reference to a group K which
GH

was defined purely with the help of the subgroup lattice of G(A) for an
arbitrary pair of groups G, H with H < G. Since v) also suggests a
generalization of K in order to find an isomorphic representation of

GH

G(A/H) we shall establish a characterization of K in terms of the automat

involved by means of the following

on

THEOREM 1: Let A = (S, I, M) be a finite strongly connected automaton,
H be a subgroup of G(a), and K be the max {Y/H^d Y < G(a)}.

GH

Then for a mapping cP". S => S the following three propositions

are equivalent:

(a) <J>eKGH
.

(b) (Vh€H) GkeH) (VseS) (^xel) ho^ok (m(s, x)) = M(^(s), x).

(c) (Vh'eH) (3k'eH) (VseS) (Vxel) k*c^oh'(M(s, x)) = M(f(s), x)

Proof: First we shall show that (b) implies (c).
Proposition (b) states that there is a function k which maps H

into H such that for all heH, seS, and xelsho^okfh] (m(s, x)) =
= M(^(s), x) . We used here and shall use in the sequel brackets

for arguments of functions the value of which is a function. We

shall see that the function k is a one-to-one mapping of H onto H

and has, therefore, an inverse k " which also maps H one-to-one

onto H.
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i) Be k and k two automorphisms corresponding to a certain h
according to (b). Then we have for this particular h

(^seS) (Vxel) h o f o k (m(s, x)) = h o cf o kp (m(s, x)).
Now, since <0: S => S and S is finite, & has an inverse
(C : S => S and we can, therefore, apply d> "oh" which
leads to (VseS) (Vxel) k (M(s, x)) = k2 (M(s, x)).
This means that k n and k^ are two automorphisms which12
coincide for at least one argument, since neither S nor I
is empty. According to iii) we have, therefore, k = kr1 2

li
using this as the normal abbreviation for (t^s) k (s) = kp (s).
Be k[h J = k[h p ] for two elements h„ and hp of He Then we

have for these particular h and h„

(V'seS) (tfxel) h^cfo k[h ] (m(s, x)) = hp o cf o k[h ] (m(s, x))
'This means that h and hp coincide for at least one argument

and by the same reasoning as before in i) we find h = h .

Together, i) and ii) show that k is a one-to-one mapping of H into
and, hence onto H, since H is finite.
Having this we see immediately that (b) implies (c). We

have only to take k' - k (h'J for any h'eH in (c). The proof
that (c) implies (b) can be omitted. It runs analogously
mutatis mutandis.

Next we shall show that (b) implies (a).

i) Choosing the identity e as a particular heH and £ as a
particular xel we get from (b)

(VseS) ef o k[e] (s) =£f(s). Applying^"
1
we find (t^seS) k[e] (s)

and this means that k[e] = e. This result leads to a special

case of (b) for h = e: (VseS) (Vx£l) dj (m(s, x)) = M(f(s), x).
Therefore, tf is an automorphism.

ii) From (b) we deduct:
GfaeH)ft(seS)

f"
1 oh ocj(s) = df^o h o if (M(s, € ) ) =

= f"
1
o h o f o k[h] (MCk^O] (s), B )) =

= ^'
1
(M(«f(k"

1 [h](s)),€)).

Since we know already that eP is an automorphism, the last expression

-3-
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becomes M(k [h](s),£) = k [h](s). Therefore we have:

(Vheli) (^seS) df o h o d{ (s) = k~ [h](s), which means that

(VheH) <p o h o <f e H. From the theory on the subgroup

lattice of a given group we know that K = (y/yeG(A);
-, uH

(/heH) y "ohoyeH} and, since i) and ii) just showed
that <8 meets both conditions for a y to be in K , we find' GH

rfeK . Therefore, (b) implies (a). Finally we shall show* GH

that (a) implies (b).
Since <PeK and H<J K , we have' GH GH , -,

(^heH; QkGH) (VseS) (*xel) f
"
o h" o

^ (m(s, x)) = k(M(s, x)).
Applying h o <0 we get

(VheH) (^keH) 0/seS) (/xel) h o <£ o k (m(s, x)) = <£ (m(s, x)).
Now, since tfeK < G(A), we also have

* GH

(VseS) (^xel)^(M(s, x)) = M(«p(s), x) and, therefore,

(VheH) (3keH) (/seS) (Kxel) h o <J
> o k(M(s, x)) = M(f(s), x) .

This concludes the proof of theorem 1.

As we shall see later the generalization of K which we are looking for will
GH

be to allow in proposition (b) of theorem 1 the function k: H => H to

depend on seS and xel, i.e. we then will have for any seS and xel a function

H => Ho On the way towards our aim we shall need the following

Let A = (S, I, M) be a finite strongly connected automaton and

H be a subgroup of G(a) . Then for a mapping tf\ S => S the

following two propositions are equivalent:

(d) (tfieH) (\/seS) (Vxel) QkeH) h o^o k (m(s, x)) = M(f(s), x).
(e) (tfti'eH) (^seS) (/xel)' (3k' eH) k< o«^o h' (m(s, x)) = M(f(s), x

)

The proof can be omitted since it is essentially analogous to the equivalence
proof for propositions (b) and (c) in theorem 1. Only now we have throughout

sx

LEMMA:

the proof to consider the function k

sx

H => H for a given pair seS and xel

instead of the function k: H => H which was independent of s and x.

The similarity of propositions (d) and (e) to propositions (b)
and ^c) suggests and our main result later will justify the following

DEFINITION 1: Let A = (S, I, M) be a finite strongly connected automaton
and H be a subgroup of G(A) . Then a mapping <0: S => S is

•if-



called compatible with H in A , iff
(YheH) (^seS) (Vxel) (ikeH) h o c% o k(M(s, x)) - M(«f(s), x) .

This definition together with the lemma gives us immediately the following

COROLLARY: Let A = (S, I, M) be a finite strongly connected automaton
and H be a subgroup of G(A) . Then a mapping <0: S => S is
compatible with H in A, iff
(Vh'eH) (^seS) (Vxel) (3k'eH) k' o <£ o h

f (m(s, x)) = M(«p(s), x)

The mappings which are compatible with a subgroup of G(a) in A have an

important property which we shall state in the following

THEOREM 2: Let A = (S, I, M) be a finite strongly connected automaton,
H be a subgroup of G(A), and <J

>

be the set of all mappings
An

df which are compatible with H in A.

Then $ATJ forms a group with composition as its group operation.An

Proof: Since $ obviously contains K (compare definition 1 and
An On

theorem l), the identity e is an element of <l
>

° Furthermore,

the function composition is an associative operation. Therefore,
we can confine the proof to showing that c|

> is closed under
AH

composition and inversion.

H

m

■ ■ < . ; *»

■
v. k.tv

i) Be <f,e$ Arr and CPo€0 AU - Then, using the corollary we have for' 1 AH * d
. AH

^••(yh'eH) (tfseS) flfrel) fik^H) ^ o <f ± o h
! (m(s, x)) = Mty^s), x
)

From the corollary in a slightly modified Aversion we find for
-1

•H) fseS) (Vxel) (3k

;

eH) k' of 2 o k (M^'s), x))f 2 and f ± l (tfk^
= M(f 2 0^(5), x).

Stringed together these propositions yield

(tfh'eH) -(^seS) (Vxel) (ik^H) (3k *eH)

k"o# o tt oh 1 (M(s, x)) - k ' oif p ok o k o <P o h' (m(s, x
)
) =

= h'o£ o k^M^s), x)) = M(tf 2 of^s), x)

and, therefore, we have finally

(Kh'eH) (Vs e S
)

(tfxel) (3k ! eH) k'o^ o^ o h'<M(s, x))
=

= M(f 2 0^(5), x
)

which according to the corollary means that
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f2 °fl £ *AH' '
ii) Be df £<£„„ • Then., using definition 1 slightly modified we
have for^heH) faseS) (Vxel) (3keH) h o & o k (m(s, x)) =
= M(f(s), x).
Applying k o ^ o h we get

(Kh€H) (VseS) (*xel) (3keH)
k o/1 o h(M(«f(s), x)) = M(s, x) = M(<f _1 (<y(s)), x).

-1
Hence <f e$ according to the corollary, since <P maps S onto

S. This concludes the proof of theorem 2.

DEFINITION 2: Let A = (S, I, M) be a finite strongly connected automaton
and H be a subgroup of G(A) . Then the set

Y
AH
:= [y/y- s => S; (VseS) (3heH)-y(s) = h(s)}

Remark:

is called the extension of H in A .

The extension of a subgroup of G(a) in A forms a group under

composition.

The proof for this remark is part of the proof for the main result
of this report which will now be established in the following

THEOREM 3- Let A = (S, I, M) be a finite strongly connected automaton, H
be a subgroup of G(A), <

J> be the set of all mappings if which
are compatible with H in A, and T ATJ be the extension ofAn

Proof:

H in A. Then

(1) $. TT is a group under composition which contains ¥AH AH

as a normal subgroup, and

(2) the factor group <
£

/Y is isomorphic to the automorphism

group G(A/H) of the reduced automaton A/H.

We shall begin with (l). Since we know already that <
J> is a

An

group under composition we need only to show that ¥ -*S $.„•AH AH

First we shall show that ¥ forms a group under composition.
AH

From definition 2 it is obvious that H is contained in ¥ and
An

that, therefore, the identity e is an element of ¥ • Accordingly
AH

it suffices to show that ¥. is closed under composition and inversion.
AH

-6-



i) Be Y e¥ and f2eYAH' Then We haVe ^ seS ) (5h !eH ) VA S ) = h n ( s )

and

frseS) (3h2eH)y 2 (yi (s)) - ^(^(s)).
Together these propositions yield

(VseS) (3h1
, h
2 eH)^ 2 o-y/^s)

= h
2
o h^s)

and, since h„ oh eH, we find

(teeS) (3heH)^ 2 oy^s)
- h(s),

which means that y/„ oltt £^au°

ii) Be 1pe¥ . . Then we have

-(VseS) (3h eH) ^(^(s)) = h1 (^
1
(s)).

■1
Applying h , which is an element h of H, we get immediately

(VseS) (^heH) y1 (s) - h(s)
and, therefore, yi e^^-

Next we shall show that ¥ Arr < <
I>

° So be^ef . Using an obvious modificationAn An ' ^n

of definition 2 we have (^heH) (l/seS) (Vxel) (3k eH) ^(h(M(s, x))) =
= k (h(M(s, x)))o This proposition can be transformed as follows

(VheH) (\/seS) (Vxel) ^k neH) (Vk eH) 'U/(h(M(s, x))) = k n oho k

~ 1

(M(k (s), x))._ 1 d ' _L d c

We only inserted k o k„ exploiting that k„ is an automorphism., Now, since
d d d

^eY , we have of course (VseS) (3k peH) ^(s) - k p (s). Inserting this properly
into our previous proposition we find

(VheH) (VseS) (Vxel) (3k , k 2eH) y o h (m(s, x)) = k o h o k 2

~ 1

(M(y<s), x)).

Applying k p o h ok , which is an element k of H, we get

(VheH) (VseS) (Vxel) (3keH) k oy o h(M(s, x)) =-•M(y(s), x)).
y,Therefore, according to the corollary, ye$ . Now we shall prove that .' AH -. AH

normal in <£.„« So be ye^ and^e$ . Then we have (VseS) a? o y/ o (0 (s)

=^oy(M.(^(s),£)). SinceyeY^, we get

(VseS) (ah^H) <
f X

oyo<f{s) = f 1 o h 1 (M(^(s),5 )).
Using the corollary we find

(VseS) (3h xeH) (3h peH) f'
1

oyo<f{s) = h 2

_1

o h
g

o

<
f>

" "
o h

±

(yi(f(s) , e ))

= h "VC?

1^))^))

'T-

IS
ii

m*
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and this means that

(VseS) (3heH) <9~ oyjo(P{s) = h(s). Therefore, cp
~

o-y/oj? g¥ and Y is

indeed a normal subgroup of $,,„■> This concludes the proof for statement (l)
of theorem 3-

The proof for statement (2) comprises quite a few single steps.

For the sake of clarity we shall, therefore outline briefly which path we
are going to follow.

i) A mapping f will be defined with f: /¥ -* {f/f: S => S } •

ii) It will be shown that f indeed maps $ /l into G(A/H).
iii) The mapping f will be proved to be a one-to-one mapping.
iv) We shall see that f is a mapping of <S

>

/¥ onto G(A/H) •An AH

v
) It will be shown finally that f is a homomorphism.

Together i) up to v) prove statement (2).

i) 'The mapping f is defined as follows:

fmay denotate the class of $»„/¥.„ which contains 0e<& . Then
An An ' An

we define f[J] : = fy with (\fseS) Jf_(s) := *(s) .

For this definition we have of course to prove that it is
consistent, i.e. independent of the choice of class representatives,
and that each y- is indeed a mapping of S onto S.

Regarding the consistency we consider for arbitrary

y e¥ , <?£<§ , heH, and seS the following sequence of propositi
AH

ons;

ffyorf] (h(s)) = yo^oh(s) by definition of f ;

(3h eH) yo^oh ( s ) = h otfoh(s) by definition 2;

(3k gH) h o^oh(s) = h ok ok ctfoh(s) = h ok o(p(s) by the

corollary;

(Vh.,k gh) h ok

X

o^(s) = ^(s) by definition of S of A/H.

Hereby we have shown that

OtyG^) (Vfe$AH ) VheH) (^sgS) f$Zf] $^s)) = f{7j and,

therefore, the definition of f is consistent.

-8-



Next we shall show that

(Vfe$m ) ftyJ: S => S. So be f ty] (1^
= f[f](ip)

for arbitrary ^e$. ; s eS, and Sp£S. Then we have by

definition of f : <tf(s ) = <^(sp) which means

(3heH) tf(s ) = h ocp(s p ). Using definition 1 we get

(3h, keH)f ( Sl )
= h o f ( j^-J -1

#
-1

<^(k (s 2 )) and, applying

this means that s = k (s_) for some keH. Therefore,'1
" v 2'

s = s and f[cp] is indeed for each 4 a one-to-one mapping
of S into, hence onto S, since S is finite.

ii) Since we have already shown that (fape$ /¥ ) f [a] : S => S,An AH '

it suffices to show that f[<f] is a homomorphism of A/H for
each ^. So be $£<§.„/¥ , seS, and xel. Then we have f [<y] (m(s, x))
=
f[<?] (M(s, x/) by definition of M of A/H; fty] (M(s, x)) =

= #(M(s, x))" by definition of f ;
(3keH) ^"(M(s", xJT = k o <y (M(s, x)) = M(cp(s), x)' by definition
of S of A/H and using the corollary for h' = e;

M(<f(s), x) = M(^7J, x) = M(f[j](s"), x) by definition of M of

A/H and by definition of f. So finally we have found that
f[tf] is indeed a homomorphism of A/H for each tf.

iii) Be f[^j = f typ] for arbitrary ^±^AE/^m and <P2 g<|)AeAaH°
Then we have (>'s e S) ff^Ks) - f[<£p] (s) ; (Vs€S) ^(s) = f2 (s)
by definition of f;

(^s e S) (3heH) <f,(s) = h o <f2 (s) by definition of S.
This last proposition means that there is a mapping h* : S -* H
such that 0/seS) f (s) = h*[ s] (dp ? (s)) . The mapping y* ,

-1
defined by ()/seS)"w* (s) := h*[tf p

"L (s)](s), is clearly an
element of Y. TT. With that we can continue from our last

AH

proposition (^seS) tf (s) = 'y* (tfL ( s ) } and this means ^ = <9 .

iv) In order to prove this point we take an arbitrary g£G(A/H)

and shall define a mapping <P: S => S with the help of g

as fellows. Since each class seS contains exactly /H/
elements, we can find an index mapping

[1, 2, ..., /S/} X (1, 2, . .., /E/)=> S such that

(Vi = 1, 2, ., /S/) (VJ - 1, 2, ., /H/) s

±J
==
Bil .

Having chosen one such indexing we define (Vi, j)<^(s. .)

-*- J 'kj'



iff g(s ) - s in order to show that <o maps S onto S it
suffices to prove that k covers its full range, if i does
so. But this is indeed an immediate consequence of g
mapping S onto S. Similarly we find from the uniqueness of

g that (O is unique, since s . = s. . implies k n
k^ k

2 J
F

1 V
Next we shall show that <9e$ . First we find immediately' AH
from the definition of (0: (VseS) <o(s) - g(s). Therefore,
we have

(VheH) (tfseS) (Vxel) dpVh (M(s, x)) = g(h(M(s, x))) =
= g(M(s, x)) = g(M(s", x)) = M(g(s~), x) = M(^T, x) =
= M^s), x).
This means that

(tfheH) (^s e S) (Vxel) (3k eH) k odj o h(M(s, x)) = M(<f(s), x),

and according to the corollary tfe<̂ Au°

It remains to "be shown that f [^p] = g, and in fact we have
for all i and j»f[<f] (s. .) = (f(s . .) = g(s. .) which means
that fty] = g.

v) Be ^ 6 ^/^ and ^^AH^AH* Then W6 haV6

(^s £ S) fCfx
•
^2 ](F)
-
f[f|°5£] (s)

= f^^lsj = f^J^FT) =
= ft^jCft^jCs)) = f[fj_] o f[f2 ](s), which means that

f tyl "^ = f ffl^° f tf2^ "

This concludes the proof of theorem 3*

Considering the results of A. C FLECK and R. BAYER it would be interesting
to know in which cases K /H is isomorphic to the full automorphism group

GH

G(A/H), even if /K / < /S/. We can give an answer to this question through
GH

the following investigation.

Let us introduce an equivalence relation in $ such that the
An

equivalence classes will cover the classes of the factor group <
J> /f in a

An An
certain manner.

DEFINITION 3: Let A = (S, I, M) be a finite strongly connected automaton,

H be a subgroup of G(a), <
t>

be the set of all mappings which
AH

are compatible with H, and r be an element of S.

-10-



Then two elements dj and ($ of $ are called

r-equivalent (denotated by $ =&) > i^ tf
i
( r ) - ^>( r ) •

Obviously the relation just introduced is an equivalence relation.
Its main properties with respect to our purpose will be stated in the
following

THEOREM h: Let A = (S, I, M) be a finite strongly connected automaton,

H be a subgroup of G(A), K.„„ be the max [Y/H<i Y < G(a)},
Gxi

<
J> be the set of all mappings which are compatible with H,

AH

^ be the extension of H in A, and r be an element of S.
AH

Then we have:

i) Each element k of K is contained in an r-equivalence
GH

class of $.„»
AH

ii) 'The elements of K are pairwise r-unequivalent .

GH

iii) Each class of the factor group $. /f consists ofAH AH
exactly /H/ r-equivalence classes of c£

>

Proof: Statement i) is obviously true, since K C $

AH

Consequently,

definition 3 applies to the elements of K , and statement ii)
GH - AH
W

holds, since two arbitrary elements k and k of K are automorphisms
-L o. On

of a strongly connected automaton for which k (r) = kp(r) implies

k l :; k 2 ■

In order to prove iii) we shall first show that
frfl'f2 e<W(3l ?^2.)r ^W #

1 y°f2j Which means that
the r -equivalence containing an arbitrary fl^eO falls completelyJ d AH
into the cPn containing class & of the factor group ^.tt/^.tt-J c- * c. AH AH

So, be (t and <D arbitrary elements of <£ with <
f (r) = 3̂ (r )°

Then, exploiting the strong connectedness of A and the corollary

for h ; - e we have (VseS) (3xel) (3h , h 2eH)

h
1 o£f(s)

= h l of(M(r, x)) = M^Cr), x) = M(f 2 (r), x
) -

= ku o f 2 (M(r, x)) = h ocf 2 (s) and,
since h o bu is an element of H, this means

(^seS) (3heH) ^
,

(s) = h o ^ (s)° Defining a mapping y/ by
-1

(^seS)'Jp(s) := h[<p (s)](s), we see thaty/e^ and that for this

fwe have indeed (^s £ S
)

(0 (s) =-yo«(s), i.e.^ =y Qd>.

-11-



Next we shall show that (VfeQ ) (VyeY ) {3heH)fof = h of
which means that <2 consists of at most /h/ r-equivalence classes.
So, be <P£<$ and^e^ arbitrarily. Then we have by definition 2' AH An

(3heH) yo^(r) = h o^?(r), i.e. ip of'= h o^for some heH.

Finally we shall prove that for any pair h and hp of

different elements of H and an arbitrary 4 €.<$>.„ we have always
An

}i ocP^f- h? od?- This means that ^ consists of at least /H/
r-equivalence classes, since obviously H C Y and, therefore,— An

(VheH) h o q e <
f° So, be h and h„ two elements of H with

h ^ h p and be dpe<£ arbitrarily. Then we have h otfi(r) =
ft h po^(r),

since h and h„ as different automorphisms in a strongly connected
automaton cannot coincide for any argument. This shows that

h o^ihp o^ and we have concluded the proof of theorem k.

If we denotate by n the number of r-equivalence classes in <
l>

, then

we have shown in theorem k that /$.„/ =

;

AH 7 and also thatm
~7h7

n > /K /, the equalsign holding, if and only if each r-equivalence class= GH

of $ contains an element k of K .

An GH
So, if in a finite strongly connected

automaton for one of its states r each r-equivalence class of $ contains
AH

an e /K / . /¥ /lement k of K , then /<!> / becomes

;

GH

'

AH 7 , i.e., using theorem 3,
GH AH

7557

/g(VH)/ - /V*«/ " Affi/ 1 /- before, KGH /H is in this case
isomorphic to G(A/H), since we know from [6] that K /H is in general

GH

isomorphic to a subgroup of G(A/H).

On the other hand, if in such an automaton A for one of its states
r there is an r-equivalence class that does not contain any keK , then we

find /g(A/H)/ > /k /h/. Therefore, in this case K /H is not isomorphic

to G(A/H).

By this discussion of theorem h we have proved in fact the

following theorem 5 which gives a necessary and sufficient condition for

K /H to be isomorphic to G(A/h) .

THEOREM 5: Let A = (S, I, M) be a finite strongly connected automaton,

H be a subgroup of G(A), K„ be the max {Y/H<4 Y < OCA)},
GH

and r be an element of S.

-12-



Then the following two propositions are equivalent:

(a) The factor group K_ TT/H is isomorphic to the
GH

automorphism group G(a/h) of the reduced automaton

A/H.

(b) For each mapping <J>: S => S which is compatible with
H there is a mapping k in K such that k(r) = eP(r) .uH *

The fact that K /H is isomorphic to G(a/h), if /K / = /s/,
appears now as a special instance of theorem 5° Namely, in this case the

elements of K comprising /s/ automorphisms in a strongly connected
GH

automaton are forced to meet the condition (^r, seS) (iJkeK ) k(r) = s
GH

which means that proposition (b) of theorem 5 is implied by /K / = /S/.GH

We can obtain a stronger result through the following

THEOREM 6: Let A = (S, I, M) be a finite strongly connected automaton
and let H, K nzJ , $ , and r be defined as before. ThenGn AH

Proof:

we have (Vf&M ) (VgeG(A)) (<f( T ) = g(r)^ geK GH )

Be <ye$ and g£G(A) arbitrarily such that tf'(r) = g(r). Then,
using the strong connectedness of A and the main properties

of G(A) and <£ we get the following straight sequence of
AH

equations:

(VheH) (VseS) (3xei) (^en)
h o g(s) -ho g(M(r, x)) = h(M(g(r), x)) -
= h(M(ep(r), x)) =■h o h~" o cf o h (M(r, x))

= cPo h (s).
Together with definition 2 this yields:

(Vh€H) (3y^m ) hog^oy
Choosing the identity e as a particular h, we find g = ys o<&

-I e

and, therefore, (/heH) (jye^.-j) g
"
o h o g =y/, The mapping

g o h o g is apparently an automorphism and, therefore, the
corresponding *to too is an automorphism. Now, the only automorphisms

in ¥ are the elements of H and this s?iows that
AH ,

(\^h£H) g o h o g e H and, therefore, g is indeed an element of
K
GH"

Theorem 6 permits us to supplement theorem 5 by a proposition that is slightly

weaker than proposition (b):

-13-



COROLLARY: Let A, H, K , and r be defined as in theorem 5. Then the
GH

following three propositions are equivalent:

(a) as in theorem 5.

(b) as in theorem 5*

(c) For each mapping^: S => S which is compatible with
H there is an automorphism geG(A) such that g(r) =^(r).

This corollary contains the special case [6] that K /H is isomorphic toGn

G(A/H) ; if the automaton A is strongly connected and total, i.e. /g(a)/ = /S/

-ll+-
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