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1 Introduction

The algebraic D-modules theory is related with the study of modules over the Weyl
Algebra. Why D-modules?, as S. C. Coutinho points in his splendid book [16], is
a particularly easy to answer question. Hardly any area of Mathematics has been
left untouched by this theory: from Number Theory to Mathematical Physics and
from Singularity Theory to Representation of Algebraic Groups, to mention only
a bunch. Indeed, the theory of D-modules sits across the traditional division into
Algebra, Analysis and Geometry and this fact gives to the theory a rare beauty.

1.1 (Very) Brief historical tour

The interest of the Weyl algebra started when a number of people like Heisenberg,
Dirac or Born (1925) were trying to understand the behaviour of the atom, and
dynamical variables that did not commute were introduced. Weyl’s pioneer book
The theory of groups and quantum mechanics was perhaps its amazing debut in
society. Then Littlewood (1933) used the language of infinite dimensional algebras
to describe the objects, and Dixmier (1963) connected the Weyl algebra with the
Theory of Lie Algebras.

Of course, a natural environment for the Weyl algebra is the study of systems
differential equations –in this context the theory is often called Algebraic Analysis–
considering an equation as a module over a ring of differential equations. This
approach comes from people like Malgrange and Kashiwara (see for example [32]
and [24], [25]) and, at the same time, from Bernstein1 (see [6]).

The theory of D-modules can be studied under the analytic or algebraic point of
view, depending on the base variety. Highly sophisticated machinery (to begin with,
derived categories and sheaves) is needed for the analytic counterpart of the theory
and this approach will be out of the scope of these humble notes. Nevertheless,
any introduction to this subject has to mention (at least) the spectacular Riemann-
Hilbert correpondence, obtained at the same time by Kashiwara and Mebkhout (see
[26] and [33],[34]).

1He developed this theory to give an elementary new answer of a classic problem proposed by
Gelfand in the International Congress of Mathematics in 1954 about the extension of a certain
complex function. The old proofs used Hironaka’s resolution of singularities.
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The effective methods started with the works of J. Briançon, Ph. Maisonobe
([9]) and F.J. Castro-Jiménez ([11]) who adapted the theory of the Gröbner bases
to this context. As in many other branches of Mathematics, this computational
approach has taken a major role as the machines have been able to run efficiently
their algorithms.

In recent years, the works of T. Oaku (see [43] to begin with) and his collaborators
have given to this branch a substantial push. The most remarkable by far is the
celebrated work of T. Oaku and N. Takayama, [44], in which algorithms to compute
the main operations for the Weyl algebra were presented. A good list of references
can be obtained in [53] and we have tried to include the more actual ones in the
bibliography.

Although the algorithms for D-modules need to be improved in the future to
treat difficult examples, they have definitively given crucial tools to understand and
solve classical and still-open problems.

1.2 References

As well as the cited book of Coutinho ([16]), the books of Björk ([7],[8]) are usual
theoretical introductions to the subject. Their lists of references are very complete.

From the computational point of view [53] is an excellent introduction. The
theory of Gröbner bases is applied to the study of systems of multidimensional hy-
pergeometric partial differential operators, the so called GKZ systems —to pay hon-
our to Gel’fand, Kapranov and Zelevinsky who introduced the subject in the 1980’s
—. Using the algebraic analogue to classical perturbation techniques in analysis,
many problems are reduced to commutative monomial ideals. At the same time,
the mentioned book introduces the main new algorithms (the majority of them for
holonomic modules) for dealing with rings of differential operators discovered and
implemented in recent years.

Finally, as we have mentioned in the introduction, [44] plays a very important
role and it can be considered as an excellent starting point to study algorithms for
D-modules.

1.3 Packages

In our opinion, the most important available packages for working with D-modules
are:

• The D-module package for Macaulay 2 (see [18]) written by A. Leykin and
H. Tsai. It is powerful, user friendly and contains many predefined functions
to calculate the interesting issues (b-functions, dimensions, cohomological ob-
jects, free resolutions,...).

• The very promising new Plural/Singular written by V. Levandovskyy (see [19]
and [28]), with the very well known capabilities of Singular and the possibility
of computing in the more general context of Poincaré-Birkhoff-Witt algebras.
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Some intractable problems in the Weyl algebra have been solved in a slightly
different context (see 4.2) using this system.

• The amazing Risa/Asir system (see [40]) written by Noro et al., that is able to
manage intractable problems for Macaulay 2 too. It can be taken as a whole
with the system kan/sm1 (see [55]) designed by N. Takayama.

• And last , but not least, the new CoCoA 5 (see [10]) written by the CoCoA
team in Genova, which has joined this noble family. We hope that, with the
wonderful heritage of the CoCoA’s new design, it has important things to say
in the future.

2 The Weyl algebra and its basic properties

In this section we will define the Weyl Algebra and present its basic properties: it
is a domain, simple and noetherian. Finally, we will consider the modules over the
Weyl algebra to define the dimension.

2.1 The Weyl Algebra

Let k be a field of characteristic 0.

Definition 2.1.1 The n-th Weyl algebra An(k) is the non commutative free asso-
ciative algebra k〈x1, . . . , xn, ∂1, . . . , ∂n〉 over the (two-sided) ideal generated by the
elements

∂ixi − xi∂i − 1, i = 1, . . . , n,
∂ixj − xj∂i, 1 ≤ i 6= j ≤ n
xjxi − xixj, 1 ≤ i, j ≤ n
∂j∂i − ∂j∂i, 1 ≤ i, j ≤ n.

We will denote x = (x1, . . . , xn), ∂ = (x1, . . . , ∂n) and A = An(k) if there is no
confusion.

Lemma 2.1.2 We have

∂α
i xβ

i =

min{α,β}∑
k=0

α(α− 1) · · · (α− k + 1)β(β − 1) · · · (β − k + 1)

k!
xβ−k∂α−k.

Proposition 2.1.3 The set B = {xα∂β, α, β ∈ Nn} is a basis of A as a k-vector
space.

An element P ∈ A is said to be written in normal form if it is expressed with
respect to the basis B. B′ = {∂βxα, α, β ∈ Nn} is a basis too.

There is an alternative definition of the Weyl algebra as a subalgebra of the k-
linear endomorphisms over k[x1, . . . , xn]. Both definitions do not coincide if k has
positive characteristic.
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2.2 First properties

Definition 2.2.1 The degree of P ∈ A, P =
∑

α,β cα,βxα∂β is

deg(P ) = max{|α|+ |β|, where cα,β 6= 0}.

Lemma 2.2.2 Let P, Q be elements of A. We have:

• deg(P + Q) ≤ max{deg(P ), deg(Q)}.

• deg(PQ) = deg(P ) + deg(Q).

• deg([P, Q]) ≤ deg(P ) + deg(Q)− 2

As two easy consequences we have

Proposition 2.2.3 A is a domain.

Proposition 2.2.4 A is simple. In particular, every endomorphism of A is injective
and there are no non-trivial two-sided ideals.

From now on we will work only with left ideals in A (see why is enough in section
2.4).

2.3 The Weyl algebra is noetherian

It is very useful to manage the concept of homogeneous operator. Due to the non
commutativity of A, we will need the concept of filtrations over a k-algebra in order
to do so. Associated graded algebras are obtained in this way.

Definition 2.3.1 The Bernstein filtration of A is the increasing sequence F of vec-
tor subspaces Fj of A:

Fj =
{ ∑

cα,βxα∂β such that |α|+ |β| ≤ j
}

for j ∈ Z.

Clearly, the Bernstein filtration verifies the needed properties:

•
⋃

j≥0 Fj = A.

• For every i, j ≥ 0 we have FiFj ⊂ Fi+j.

For the Bernstein filtration the last inclusion is an equality. In addition, F verifies
that Fk = {0} if k < 0, F0 = k. Furthermore the Fj have finite dimension. Once we
have the filtration we can defined the correspondent graded algebra grF (A),

grF (A) =
⊕
i≥0

F (i) =
⊕
i≥0

Fi

Fi−1

.
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Definition 2.3.2 Given P ∈ A, P 6= 0, P ∈ Fs\Fs−1, s is the order of P with
respect to F . The symbol of P with respect to F , σF (P ), is

σF (P ) = P + Fs−1 ∈ grF (A).

The order of P = 0 is −∞ and σ(0) = 0.

The terminology initial part of P with respect to F , inF (P ) instead of the symbol
of P is usual too, and we will adopt it in the next section. With the above definitions,
there is a canonical isomorphism from A to grF (A) as vector spaces: associate to
P ∈ A the sum of its homogeneous components in grF (A). We have

Proposition 2.3.3 grF (A) is canonically isomorphic to a ring of polynomials k[x1, . . . , xn, ξ1, . . . , ξn].

Now it is easy to deduce the main result of this section:

Proposition 2.3.4 The ring A is a left (resp. right) noetherian ring, i.e. every left
(resp. right) ideal is finitely generated.

2.4 Modules over the Weyl algebra

There is an antihomomorphism φ between the category of left and right A-modules
defined as follows:

1. φ(λ) = λ if λ in k
2. φ(xi) = xi for i = 1, 2, . . . , n
3. φ(∂j) = −∂j for j = 1, 2, . . . , n,

and by recurrence φ(PQ) = φ(Q)φ(P ) for any P, Q ∈ A. Thus it is only necessary
to study left A-modules2.

Given an A-moduleM and given a filtration F for A, you can consider a filtration
Γ and the correspondent graded grF (A)-module grΓ(M). As in A you can naturally
define the order and the symbol of an element m ∈M.

In order to define the concept of dimension of an A-module we take the Bernstein
filtration F for A and what is called a good filtration Γ with respect to F for M:
Γ is a good filtration for M if grΓ(M) is a finitely generated grF (A)-module. The
existence of such a filtration is equivalent to the condition for M to be finitely
generated.

Definition 2.4.1 Let M be a finitely generated A-module and Γ a good filtration
with respect to F , the Hilbert-Samuel polynomial associated to (M, Γ), P (t,M, Γ)
is the correspondent Hilbert-Samuel polynomial P (t) of the finitely generated graded
module grΓ(M) over the ring of polynomials grF (A) = k[x, ξ]. The degree of P (t)
—that does not depend on the chosen Γ— is the dimension of M, d(M).

One of the biggest differences between the modules over the polynomials and the
modules over A is the theorem of Bernstein:

Theorem 2.4.2 If M 6= 0 is a finitely generated A-module, then d(M) ≥ n.

The modules whose dimension is equal to n are called holonomic A-modules.

2It is the classical option: the endomorphisms are usually written acting on the left.
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3 Gröbner bases in the Weyl algebra

A real vector (u, v) = (u1, . . . , un, v1, . . . , vn) is a weight vector for the Weyl algebra
if ui + vi ≥ 0 for i = 1, 2, . . . , n. Generalizing the results of the previous section, it
can be defined the associated graded algebra gr(u,v)(A) with respect to the filtration
defined by

F (u,v)
m =

{ ∑
uα+vβ≤m

cαβxα∂β
}
.

Note that gr(u,v)(A) is not always a commutative algebra. For P ∈ A, P 6= 0 we
define in(u,v) in the natural way.

Definition 3.0.3 Let I be an ideal in A and (u, v) any weight vector. The ideal
in(u,v)(I) := 〈in(u,v)(P )|P ∈ I〉 ⊂ gr(u,v)(A) is the initial ideal of I with respect to
(u, v). A finite subset G of I is a Gröbner basis of I with respect to (u, v) if I is
generated by G and in(u,v)(I) is generated by {in(u,v)(P )|P ∈ I}.

To compute a Gröbner basis we need to define a multiplicative monomial order
≺, that is,

1. 1 ≺ xi∂i for i = 1, 2, . . . , n.
2. xα∂β ≺ xa∂b implies xα+s∂β+t ≺ xa+s∂b+t for every (s, t) ∈ N2n.

A multiplicative monomial order ≺ is a term order if 1 is the least element with
respect to ≺. A non term order has infinite strictly decreasing chains. For the most
frequently used term orders in the commutative setting see [1] or [27].

Once you have fixed a multiplicative monomial order ≺, the initial monomial
in≺(P ) of an element P ∈ A is the largest monomial with respect to ≺ in the
normal form of P . In the same way for any ideal I ⊂ A

in≺(I) = {in≺(P )|P ∈ I}.

Here, the concept of Gröbner basis with respect to ≺ is absolutely analogous to the
case of weight vectors. The relationship between both concepts is straightforward:
if (u, v) ∈ R2n is a weight vector and ≺ is a term order, then we naturally define a
new multiplicative monomial order ≺(u,v) as follows:

xα∂β ≺(u,v) xa∂b ⇐⇒ αu + βv < au + bv or αu + βv = au + bv and xα∂β ≺ xa∂b.

The new order is a term order if and only if (u, v) is a non-negative vector. The
important theorem is

Theorem 3.0.4 Let I ⊂ A be an ideal, (u, v) a weight vector and ≺ a term order.
If G is a Gröbner basis for I with respect to ≺(u,v) then

1. G is a Gröbner basis for I with respect to (u, v).
2. in(u,v)(G) is a Gröbner basis for in(u,v)(I) with respect to ≺.

6



So the problem of computing Gröbner bases with respect to weight vectors has
been reduced to the calculation of Gröbner bases with respect to multiplicative
monomial orders. The non term orders need a new construction, the homogenised
Weyl algebra where ∂ixi = xi∂i + h2, for h a new variable that commutes with the
rest, in order to assure the finiteness of the computations. This idea of using a Rees
algebra appeared first in [12]. It has very important applications in many algorithms
for the Weyl algebra3.

If we have a term order the situation is very similar to the commutative case:
we have a division algorithm that produces a standard representation of any P ∈ A
in terms of a Gröbner basis G, S-pairs of two elements of A with multipliers chosen
to cancel the initial monomials . The Buchberger algorithm is correct with the same
S-pair criterium to finish. You can consider reduced Gröbner basis too.

Remark 3.0.5 The reader shouldn’t think that absolutely all the technical details of
the Buchberger algorithm and Gröbner bases for the commutative case are applicable
for A. As a sample note that the coprimality test (to accelerate the Buchberger
algorithm) (see [1] or [27] for example) is no longer valid in A.

Exercise: In A = A2(C), compute the Gröbner basis with respect to the weight
vector ((1, 1), (1, 1)) of the ideal I generated by the elements

3x1∂1 + 2x2∂2 + 6, 3x2∂1 + 2x1∂2.

4 Applications

We will treat in these notes three computational techniques to study three problems
in D-module theory:

1. Computing the characteristic variety and the dimension of the module A/I,
where I is an ideal of A.

2. The computation of the formal annihilator of f s, where f ∈ C[x1, . . . , xn] and
the Bernstein-Sato polynomial of f .

3. Logarithmic approximations of AnnA(1/fα) where −α is the least integer root
of the Bernstein-Sato polynomial of f .

The first two problems are classical. The third is close to the field of research of
the authors.

3Add [2] or [3] to your list of readings in computational D-module theory.
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4.1 Application 1: Testing holonomicity.

Let I ⊂ A be an ideal. The characteristic ideal of M = A/I is the ideal

cch(M) = Ann(grΓM)

where Γ is a good filtration (see chapter 11 of [16] to see that the definition does not
depend on the chosen good filtration). The characteristic variety of M is the affine
variety

Ch(M) = V(cch(M)) ⊂ C2n,

that is the zeros locus of the characteristic ideal. It is an important invariant of M.
It is a result of Oaku that

cch(M) = in(0,e)(I),

where (0, e) = ((0, . . . , 0), (1, . . . , 1)). By theorem 3.0.4, it is enough to calculate a
Gröbner basis of I with respect to the weight vector (0, e).

The dimension of M coincide with the dimension of its characteristic variety.

Exercise.- Let A = A4(C). Calculate the characteristic variety of M = A/I and
test if M is holonomic for the ideal I generated by the following four operators:

∂2∂3 − ∂1∂4, x1∂1 − x4∂4 + 1− 1, x2∂2 + x4∂4 + 1, x3∂3 + x4∂4 + 2.

4.2 Application 2: Calculation of AnnA[s](f
s) and the Berns-

tein-Sato polynomial

Let f be a polynomial in C[x] = C[x1, . . . , xn] and A = An(C) = C[x, ∂x]. Let us
consider the algebra A[s] = A⊗CC[s] with the trivial action of the elements of C[s].

The Bernstein-Sato polynomial or global b-function of f , bf (s), is the generator
of the principal ideal of the elements b(s) ∈ C[s] such that

b(s) · f s = P • f s+1, for some P ∈ A.

One possible way of computing bf (s) —it can be derived from [43]— is the
following algorithm, divided in two steps:

Step A.- Calculation of AnnA[s](f
s): Consider the new ring A[u, v, t, ∂t], where

t, ∂t is a new Weyl Algebra pair of variables and u, v conmute. Then:

1.- Calculate the intersection If ∩ A[t, ∂t] (using any elimination order with u, v
greater than the rest), where

If = 〈1− uv, tu− f, ∂i +
∂f

∂xi

v∂t for i = 1, 2, . . . , n〉.

2.- Each of the generators of the ideal computed in 1.- is of the form

ta · p(x, ∂x, t∂t) · ∂b.
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Replace each one by

[t∂t]
a · p(x, ∂x, t∂t − b) · [t∂t]b ∈ A[t∂t].

3.- Replace t∂t by −s − 1 in each of the operators computed in 2. The output
obtained is AnnA[s](f

s).

Step B.- Compute (AnnA[s](f
s) + 〈f〉) ∩C[s] (using again an elimination order ≺

with x, ∂x � s). The output is a principal ideal whose generator is bf (s).

Exercise.- Compute the annihilator of f s and the global b-function of f for the
following cases:

• f = x2 + y3 ∈ C[x, y].

• f = x2 − y3 ∈ C[x, y].

• f = x4 + y5 + xy4 ∈ C[x, y], if it is possible4!

• f = x3 + y3 + z3 ∈ CC[x, y, z].

4.3 Application 2: Logarithmic approximations to the ideal
AnnD(1/fα)

The ring R = C[x1, . . . , xn] is a left A-module for the natural action defined as
follows:

xi • f = xif, ∂i • f =
∂f

∂xi

for any f ∈ R. In fact, R is isomorphic, as an A-module, to the quotient of A by
the left ideal generated by ∂1, . . . , ∂n.

Let us consider f ∈ R. The localization ring Rf (i.e. the ring of rational functions
with poles along f) is the ring of quotients

Rf = { g

fm
| g ∈ R, m ∈ N}.

Rf is a R-module and a left A-module in a natural way: the action ∂i • g
fm is just

defined as the partial derivative of a rational function. Of course Rf is not a finitely
generated R-module.

One of the main results in D-module theory is the following theorem (see [6] or
[7]):

Theorem 4.3.1 Given any f ∈ R, the left A-module Rf is finitely generated. In
fact, there exists a positive integer number α such that Rf is the left A-module
generated by the rational function 1

fα .

4A challenge for any system.
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The left A-module generated by 1
fk is just the set

A
1

fk
= {P • 1

fk
, P ∈ A} ⊂ Rf .

The main ingredient in the proof of the last theorem is the existence of the called
b-function bf (s) which has the following property: if −α is the least integer root of
bf (s) then

Rf = A
1

fα
.

Bernstein proved ([6]) that the dimension of the characteristic variety of Rf is
n, so Rf is holonomic.

In computational D-modules theory a natural problem is the following:

Problem.- Given a polynomial f ∈ R:

a) Compute a positive integer number −α such that Rf = A 1
fα and

b) Compute a system of generators of the annihilator AnnA(1/fα), i.e. compute a
presentation

Rf =
A

AnnA( 1
fα )

.

It is well known that there are algorithms to answer both questions: the global
b-function was treated in the last section and it is well known that AnnA(1/fα)
is obtained from AnnA[s](f

s) setting s = −α. Unfortunately, in many cases the
available implementations of these methods can not obtain the results due to the
unmanageable size of the Gröbner bases computations needed by the algorithms. It
is possible to build —in the context of the so called logarithmic D-modules— some
natural approximations of AnnA(1/fα).

Definition 4.3.2 Let f be a polynomial in R. A derivation δ is called logarithmic
for f , f ∈ Der(log f), if δ(f) = m · f for some m ∈ R.

Given an element δ = a1∂1 + · · ·+ an∂n ∈ Der(log f), such that δ(f) = mf it is
clear that δ +α ·m annihilates 1/fα. So, if −α is known to be the least integer root
of bf (s), a natural approximation to AnnA(1/fα) is the ideal

Ĩ log f,−α) = 〈δ + α ·m such that δ(f) = m · f〉.

Remark 4.3.3 Note that, if the b-function or −α are unknown5 it is far from being
clear which is the correct logarithmic approximation!

The point here is that Der(log f) and Ĩ log f,−α are computable calculating syzy-
gies among f and its derivatives:

(a0, a1, . . . , an) ∈ Syz(f,
∂f

∂x1

, . . . ,
∂f

∂xn

) ⇐⇒ (
n∑

i=1

ai∂i − αa0) • (1/fα) = 0.

5There are many results about the roots of the b-functions for special cases and sometimes it
is known the least integer root independently of the expression of bf . It is the case of the plane
curves, for example, for which -1 is the least integer root (Varchenko).
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A very nice open problem6 is:

Problem.- Given a polynomial f ∈ R, is AnnA(1/fα)
?
= Ĩ log f,−α?.

Exercise.- Check that AnnA2(C)(1/f) = Ĩ log f,−1 for f = x2 + y3.

Exercise.- Calculate Ĩ log f,−1 for f = x4+y5+xy4 ∈ C[x, y]. Prove that AnnA2(C)(1/f) 6=
Ĩ log f,−1 using the (commutative) calculation of the elements of AnnA2(C)(1/f) of to-
tal degree at most 2 in the derivatives.

Exercise.- Do the ideals AnnA3(C)(1/f) and Ĩ log f,−2 coincide for f = x3 + y3 + z3 ∈
C[x, y, z]?
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