
© Copyright Khronos Group 2017 - Page 1

Vulkan, OpenGL, and OpenGL ES

SIGGRAPH 2017

© Copyright Khronos Group 2017 - Page 2

Agenda

• OpenGL

- Piers Daniell, NVIDIA

• OpenGL ES

- Tobias Hector, Imagination Technologies

• Vulkan

- Tom Olson, ARM

- …with the Vulkan working group and

community

• Par-tay!

- Everyone

© Copyright Khronos Group 2017 - Page 3

OpenGL Update

Piers Daniell, NVIDIA
OpenGL Working Group chair

© Copyright Khronos Group 2017 - Page 4

New OpenGL working group chair
Barthold Lichtenbelt

ARB Chair 2006 - 2016

11 OpenGL releases!

Piers Daniell

OpenGL Chair 2016 - ?

1 release...

Thanks Barthold!

© Copyright Khronos Group 2017 - Page 5

New OpenGL working group chair
Principal Software Engineer at NVIDIA

OpenGL/Vulkan core driver team

With ARB working group since 2008

Also in the Vulkan working group

API specification editor: Jon Leech

GLSL specification editor: John Kessenich

From the OpenGL 4.6 press release:

“The OpenGL working group will continue to respond to

market needs and work with GPU vendors to ensure

OpenGL remains a viable and evolving graphics API for all

its customers and users across many vital industries.“

said Piers Daniell, chair of the OpenGL Working Group at

Khronos

© Copyright Khronos Group 2017 - Page 6

Happy 25th Birthday OpenGL!

© Copyright Khronos Group 2017 - Page 7

Happy 25th Birthday OpenGL!
OpenGL 1.0 - 1992

OpenGL 1.1 - 1997

OpenGL 1.2 - 1998

OpenGL 1.3 - 2001

OpenGL 1.4 - 2002

OpenGL 1.5 - 2003

OpenGL 2.0 - 2004

OpenGL 2.1 - 2006

OpenGL 3.0 - 2008

OpenGL 3.1 - 2009

OpenGL 3.2 - 2009

OpenGL 3.3 - 2010

OpenGL 4.0 - 2010

OpenGL 4.1 - 2010

OpenGL 4.2 - 2011

OpenGL 4.3 - 2012

OpenGL 4.4 - 2013

OpenGL 4.5 - 2014

OpenGL 4.6 - 2017

© Copyright Khronos Group 2017 - Page 8

Happy 25th Birthday OpenGL!
OpenGL 25th Anniversary T-Shirt and

stuff available to purchase from the

Khronos store:

https://www.khronos.org/store/

https://teespring.com/opengl-25th-

anniversary-black

Commemorative drink koozie

BOF Blitz After-Party

https://www.khronos.org/store/
https://teespring.com/opengl-25th-anniversary-black

© Copyright Khronos Group 2017 - Page 9

OpenGL Then and Now

1992 Workstation

Reality Engine

8 Geometry Engines

4 Raster Manager boards

2017 Mobile

NVIDIA Tegra X2

2017 PC

NVIDIA TITAN Xp

Triangles / sec (millions) 1 ~1,200 (x1,200) ~20,000 (x20,000)

Pixel Fragments / sec (millions) 240 19,600 (x81) 152,000 (x633)

GigaFLOPS (fp32) 0.64 750 (x1,170) 10,960 (x17,125)

Power consumption 1.5kW <15W 250W

Ideas in Motion - SGI DOOM 2016 - id Software

1992 - 2017

© Copyright Khronos Group 2017 - Page 10

Evolution of the OpenGL draw call

Version Function Character count

OpenGL 1.0 glBegin/glVertex/glEnd 8

OpenGL 1.1 glDrawElements 14

OpenGL 1.2 glDrawRangeElements 19

OpenGL 1.4 glMultiDrawElements 19

OpenGL 3.1 glDrawElementsInstanced 23

OpenGL 3.2 glDrawElementsInstancedBaseVertex 33

OpenGL 4.2 glDrawElementsInstancedBaseVertexBaseInstance 45

OpenGL 4.6 glMultiDrawElementsIndirectCount

© Copyright Khronos Group 2017 - Page 11

Announcing…

4.6
Credits:

Eric Lengyel,

Terathon Software

© Copyright Khronos Group 2017 - Page 12

OpenGL 4.6 Design Philosophy
Raise the baseline OpenGL feature set

More features for developers that require core functionality

Raise OpenGL quality with substantial conformance improvement

Now available as open source on GitHub

Support existing hardware

Remain 100% compatible with OpenGL 4.5 and before

Fold widely supported and popular extensions into core

Easy for hardware vendors to implement

© Copyright Khronos Group 2017 - Page 13

What’s new in OpenGL 4.6?
Shader functionality

ARB_gl_spirv

ARB_spirv_extensions

ARB_shader_group_vote

ARB_shader_atomic_counter_ops

AZDO (Approaching Zero Driver Overhead) functionality

ARB_indirect_parameters

ARB_shader_draw_parameters

Improving rendering quality

ARB_texture_filter_anisotropic (finally)

ARB_polygon_offset_clamp

Other functionality

ARB_pipeline_statistics_query

ARB_transform_feedback_overflow_query

KHR_no_error

© Copyright Khronos Group 2017 - Page 14

OpenGL 4.6 Specs and Drivers
OpenGL 4.6 and GLSL 4.60 specifications:

https://www.khronos.org/registry/OpenGL/index_gl.php

OpenGL 4.6 beta drivers from NVIDIA:

https://developer.nvidia.com/opengl-driver

Most features already implemented in Mesa:

https://www.mesa3d.org/

https://mesamatrix.net/

https://www.khronos.org/registry/OpenGL/index_gl.php
https://developer.nvidia.com/opengl-driver
https://www.mesa3d.org/
https://mesamatrix.net/

© Copyright Khronos Group 2017 - Page 15

© Copyright Khronos Group 2017 - Page 16

Using GLSL Shaders with OpenGL

© Copyright Khronos Group 2017 - Page 17

Using SPIR-V Shaders with OpenGL

© Copyright Khronos Group 2017 - Page 18

GLSL -> SPIR-V compiler
glslang in GitHub already updated to support GLSL 4.60

https://github.com/KhronosGroup/glslang

Supports all new features:

ARB_shader_group_vote

ARB_shader_atomic_counter_ops

ARB_shader_draw_parameters

#version 460

https://github.com/KhronosGroup/glslang

© Copyright Khronos Group 2017 - Page 19

AZDO Features
New buffer binding

glBindBuffer(GL_PARAMETER_BUFFER);

Buffer source for reading the indirect draw count

Two new draw commands:

glMultiDrawArraysIndirectCount(mode, indirect, drawcount,);

glMultiDrawElementsIndirectCount(mode, type, indirect, drawcount,);

Uses same indirect structs in GL_DRAW_INDIRECT_BUFFER as before:

New vertex shader builtins:

gl_DrawID - index of draw command vertex belongs to

gl_BaseVertex, gl_BaseInstance - from command buffer

struct DrawArraysIndirectCommand {

GLuint count;

GLuint primCount;

GLuint first;

GLuint baseInstance;

};

struct DrawElementsIndirectCommand {

GLuint count;

GLuint primCount;

GLuint firstIndex;

GLint baseVertex;

GLuint baseInstance;

};

© Copyright Khronos Group 2017 - Page 20

Anisotropic Texture Filter
Improve texture rendering quality of long and narrow textures

© Copyright Khronos Group 2017 - Page 21

Polygon Offset Clamp
Eliminates light cracks with large depth-slope shadow cast rendering

glPolygonOffsetClamp(factor, units, clamp);

Image credit: Eric Lengyel

© Copyright Khronos Group 2017 - Page 22

Other Extensions
GL_KHR_parallel_shader_compile

Bring native multi-threaded compile support to OpenGL ES

Conformance coverage coming soon

Cross-process and cross-API interop extensions:

GL_EXT_memory_object

GL_EXT_memory_object_win32

GL_EXT_memory_object_fd

GL_EXT_semaphore

GL_EXT_semaphore_win32

GL_EXT_semaphore_fd

GL_EXT_win32_keyed_mutex

New window extensions for GL_KHR_no_error:

WGL_ARB_create_context_no_error and GLX_ARB_create_context_no_error

© Copyright Khronos Group 2017 - Page 23

OpenGL Ecosystem Update
GLEW - The OpenGL Extension Wrangler

Updated with OpenGL 4.6 and the latest OpenGL extensions

http://glew.sourceforge.net/

Thanks Nigel Stewart!

OpenGL 4.6 reference card now available

https://www.khronos.org/files/opengl46-quick-reference-card.pdf

Pick up a free copy here at the Khronos BOF!

OpenGL Conformance Test Suite (CTS) improvements:

Khronos investing in new coverage

New coverage inherited from OpenGL ES

Now open-source: https://github.com/KhronosGroup/VK-GL-CTS

OpenGL 4.6 CTS coming soon with lots of new coverage:
Complete 4.6 coverage

Additional 3.x - 4.x coverage

http://glew.sourceforge.net/
https://www.khronos.org/files/opengl46-quick-reference-card.pdf
https://github.com/KhronosGroup/VK-GL-CTS

© Copyright Khronos Group 2017 - Page 24

Conclusion
OpenGL 4.6 improves the baseline feature

set in the core specification

OpenGL will continue to evolve to serve the

needs of its customers

Will remain a viable 3D graphics API choice:

Legacy 3D applications

Higher-level API

Innovation platform

Happy 25th Birthday!

© Copyright Khronos Group 2017 - Page 25

25th Anniversary Trivia Prize!
OpenGL 25th Anniversary T-Shirt

© Copyright Khronos Group 2017 - Page 26

Bonus 25th Anniversary Trivia Prize!
NVIDIA GeForce GTX…

© Copyright Khronos Group 2017 - Page 27

Bonus 25th Anniversary Trivia Prize!
NVIDIA GeForce GTX USB thumb drive

Loaded with complete OpenGL-Registry

© Copyright Khronos Group 2017 - Page 28

OpenGL ES Update

Tobias Hector, Imagination Technologies
OpenGL ES Working Group chair

© Copyright Khronos Group 2017 - Page 29

OpenGL ES: Status
•OpenGL ES is extremely prevalent

-3.x has >60% market penetration*

-3.1 / 3.2 adoption still increasing

•No plan for new core version

-Vulkan’s momentum is displacing it

-Extensions still being developed

-Continuing to watch market

•Focused on quality of life

-Addressed the issue backlog

-Looking to publish spec updates soon

-GLSLang support for #version 320 es

-Huge progress in CTS

* Sources:

https://developer.android.com/about/dashboards/index.html

http://hwstats.unity3d.com/mobile/gpu.html

https://developer.android.com/about/dashboards/index.html
http://hwstats.unity3d.com/mobile/gpu.html

© Copyright Khronos Group 2017 - Page 30

OpenGL ES: Conformance
• Conformance was open sourced in January

- Got there in the end!

- One remaining part that is closed-source
- ES is poised to remove that dependency soon

• 3 releases so far, more on the way

- CTS still very actively maintained

- Funding secured for further development

- Addressing important holes in coverage

- Working through backlog of issues

© Copyright Khronos Group 2017 - Page 31

OpenGL ES: Extensions
• Many EXTs added over the last year

- Members addressing market needs

• Various bits of new functionality

- A number of minor features

- Platform interactions

- GL/ES and Vulkan content sharing

- KHR_parallel_shader_compile

EXT_conservative_depth

EXT_clear_texture

EXT_draw_transform_feedback

EXT_multisampled_render_to_texture2

EXT_texture_compression_astc_decode_mode

EXT_texture_compression_astc_decode_mode_rgb9e5

EXT_EGL_image_array

EXT_memory_object

EXT_semaphore

EXT_memory_object_fd

EXT_semaphore_fd

EXT_memory_object_win32

EXT_semaphore_win32

EXT_win32_keyed_mutex

EXT_external_buffer

EXT_texture_compression_rgtc

EXT_texture_compression_bptc

KHR_parallel_shader_compile

© Copyright Khronos Group 2017 - Page 32

Vulkan Update

Tom Olson, ARM
Vulkan Working Group chair

© Copyright Khronos Group 2017 - Page 33

Vulkan

Design goals
• Clean, modern architecture

• Low overhead, explicit

• Portable across desktop and mobile

• Multi-thread / multi-core friendly

• Efficient, predictable performance

Emergent properties
• Community-facing and responsive

• Recognize central role of the ecosystem

• Strong commitment to open source

© Copyright Khronos Group 2017 - Page 34

Vulkan at SIGGRAPH 2016

A typical six-month-old
• Loads of potential

• Getting a lot of attention

• Not really doing that much

Photo credit: Lou Haach

https://www.flickr.com/photos/lourdes_fisio/6877521944

© Copyright Khronos Group 2017 - Page 35

Vulkan at SIGGRAPH 2017

At 18 months…
• Still a work in progress

• But, enormously more capable!

• Growing and changing in all directions

• A bit chaotic, but a lot more fun

https://www.flickr.com/photos/johnath/5358512977

Photo credit: Johnathan Nightingale

© Copyright Khronos Group 2017 - Page 36

Availability
Production drivers from all three desktop GPU vendors

• No more betas*!

• *some assembly required

Platforms

• Linux, Windows, Steam / SteamVR

• Standard interface exposed in Android 7.x

Mobile

• Phones and tablets from Google, Huawei, Samsung, Sony, Xiaomi,…

• Both premium and mid-range devices

• Nintendo Switch, NVIDIA Shield / Shield TV

For the latest, see http://vulkan.gpuinfo.org/

http://vulkan.gpuinfo.org/
http://www.amd.com/

© Copyright Khronos Group 2017 - Page 37

Games and Game Engines

• At SIGGRAPH 2016

- The Talos Principle

- Dota2, UE4, Doom

• Today

- UE4, Unity 5.6

- Serious Engine

- Oculus SDK

- Mad Max (beta)

- CryEngine 5.4 (beta)

• Rumors

- Quake Champions, Ashes of the Singularity, Wolfenstein II, …

© Copyright Khronos Group 2017 - Page 38

Mobile too!

• UE4

• Unity 5.6

• Galaxy on Fire 3 – Manticore

• Lineage2 Revolution

• Heroes of Incredible Tales

• GRID Autosport

• Score! Hero

• Dream League Soccer

• …the list goes on

© Copyright Khronos Group 2017 - Page 39

Developer Interest

• LunarG SDK download rate has more than doubled since launch

• Available at LunarXchange: http://vulkan.lunarg.com

http://vulkan.lunarg.com/

© Copyright Khronos Group 2017 - Page 40

GitHub Activity

At SIGGRAPH 2016

Today

© Copyright Khronos Group 2017 - Page 41

Recent Examples

© Copyright Khronos Group 2017 - Page 42

Khronos / Working Group Activity

• 30 new KHR extensions

- Bug fixes and new tech

• GLSLang

- Extensive HLSL support

• Many SDK improvements

• Conformance Test progress

- Current release has 198K test cases

- Up from 107K last year

• Specification is now accepting pull requests!

© Copyright Khronos Group 2017 - Page 43

Up Next…

4:00 Working Group Status Updates Piers Daniell, NVIDIA

Tobias Hector, Imagination

Tom Olson, ARM

4:45 New Features in Vulkan Jan-Harald Fredriksen, ARM

4:40 Vulkan Portability Initiative Neil Trevett, NVIDIA

4:55 Vulkan Compute: Porting OpenCL C to Vulkan Ralph Potter, Codeplay

5:05 HLSL in Vulkan Hai Nguyen, Google

5:15 LunarG Vulkan Ecosystem Update Karen Ghavam, LunarG

5:25 Vulkan on UE4: Summer 2017 Rolando Caloca, Epic Games

5:35 Q&A You!

5:45 Party Time! Everyone

© Copyright Khronos Group 2017 - Page 44

New Features in Vulkan

Jan-Harald Fredriksen, ARM

© Copyright Khronos Group 2017 - Page 45

New features
• Vulkan Next in active development

- Core spec in definition

- Many features available as extensions

• 38 Khronos ratified extensions (KHR)

• 3 Khronos ratified experimental extensions (KHX)

- NOT recommended for use in production code

• 15 cross-vendor extensions (EXT)

• >30 vendor extensions

© Copyright Khronos Group 2017 - Page 46

The first few
• VK_KHR_maintenance1

- Render to slices of 3D image

- vkCmdCopyImage between 3D slice to 2D array layer

- Negative viewport height to support left handed NDC

- VK_FORMAT_FEATURE_TRANSFER_*_BIT_KHR for staging only resources

- vkCmdFillBuffer on transfer-only queues

- vkTrimCommandPoolKHR to return command pool memory to the system

• VK_KHR_shader_draw_parameters

- New built-in shader variables

- BaseInstance, BaseVertex, and DrawIndex

• Making structures extendable – used by other extensions

- VK_KHR_get_physical_device_properties2

- VK_KHR_get_memory_requirements2

- VK_KHR_get_surface_capabilities2

© Copyright Khronos Group 2017 - Page 47

Sharing memory
• Needed for compositors and other system integration

- Resource sharing at memory object level

- Works across logical devices, process, and API boundaries

- No longer KHX

• Platform independent core

- VK_KHR_external_memory

- VK_KHR_external_memory_capabilities

• Platform specific types

- VK_KHR_external_memory_fd

- VK_KHR_external_memory_win32

• Support for backing data resources with single memory allocations

- VK_KHR_dedicated_allocation

- May be required for sharing in some circumstances

© Copyright Khronos Group 2017 - Page 48

Sharing synchronization primitives
• Also need to synchronize access to shared memory

• Semaphores

- VK_KHR_external_semaphore

- VK_KHR_external_semaphore_capabilities

- VK_KHR_external_semaphore_win32

- VK_KHR_external_semaphore_fd

- VK_KHR_win32_keyed_mutex (DX11)

• Fences

- VK_KHR_external_fence

- VK_KHR_external_fence_capabilities

- VK_KHR_external_fence_win32

- VK_KHR_external_fence_fd

© Copyright Khronos Group 2017 - Page 49

Cross API sharing
• Related set of GL / GLES extensions to import Vulkan memory

- GL_EXT_memory_object

- GL_EXT_semaphore

- GL_EXT_memory_object_fd

- GL_EXT_semaphore_fd

- GL_EXT_memory_object_win32

- GL_EXT_semaphore_win32

- GL_EXT_win32_keyed_mutex

© Copyright Khronos Group 2017 - Page 50

Multi-GPU
• Native multi-GPU support for NVIDIA SLI and AMD Crossfire platforms

- VK_KHX_device_group

- VK_KHX_device_group_creation

• Supports explicit AFR, SFR and VR rendering algorithms

• Device mask to select which physical device to use

© Copyright Khronos Group 2017 - Page 51

VR and Display
• VK_KHX_multiview

- For stereo rendering

- One command to multiple views

- Extends render pass

- View mask, offset, correlation

• VK_KHR_shared_presentable_image

- Application and presentation engine can access an image at the same time

- Reduced latency

• VK_KHR_incremental_present

- Provide damage regions in vkQueuePresentKHR

© Copyright Khronos Group 2017 - Page 52

Updating descriptor sets
• VK_KHR_descriptor_update_template

- Use to updating same set of descriptors in many descriptor sets with same

layout

• VK_KHR_push_descriptor

- Update small number of descriptors from the command buffer

- Driver managed instead of descriptor sets

- Can make it easier to port existing code

App structure
VkWriteDescriptorSet

vkUpdateDescriptorSets

App structure

vkUpdateDescriptorSetWithTemplateKH
R

VkDescriptorUpdateTemplateCreateInfoKHR

VkDescriptorUpdateTemplateKHR

vkCreateDescriptorUpdateTemplateKHR

© Copyright Khronos Group 2017 - Page 53

Compute and shading language
• VK_KHR_16bit_storage

- 16-bit types in shader input and output interfaces, and push constant blocks

• VK_KHR_variable_pointers

- Invocation-private pointers into uniform and/or storage buffers

• See next presentation!

• VK_KHR_storage_buffer_storage_class

- New SPIR-V StorageBuffer storage class

- Distinguishes Uniform and StorageBuffers without extra decorations

- Used to describe constraints – HW treats these storage classes differently

• VK_KHR_relaxed_block_layout

- Relax restrictions on offset decorations – for HLSL compatibility
NEW!

© Copyright Khronos Group 2017 - Page 54

In the pipeline
• Maintenance2

- Allow depth-stencil images be read-only / writeable per aspect

- View compressed image formats as integers

- Fix tessellation domain origin

- Describe the clipping behavior of points

• Subgroup operations

- Expose cross-lane/warp operations

• Enabling features like VR cinema

- Protected memory to display DRM protected content

- YCbCr formats with color space conversions

© Copyright Khronos Group 2017 - Page 55

Vulkan Portability Initiative

Neil Trevett, NVIDIA
Khronos President / Vulkan Portability TSG chair

© Copyright Khronos Group 2017 - Page 56

Market Demand for Universal 3D Portability

Games

Engines

Native

3D Apps
Browser

Engines Games

Engines

Native

3D Apps

Browser

Engines

Vulkan Universally
Portable Subset

JavaScript and

WebAssembly Native bindings

for ‘nexgen WebGL’

Community Outreach at GDC 2017
Create a hybrid Portability API?

Feedback - AVOID CREATING A FOURTH API!!!

Would need new specification, CTS, Documentation.
Additional developer learning curve.

A whole new specification to name, brand, promote.
Would INCREASE industry fragmentation

Tools Layers
API Libraries

Shader Translators

MAP Vulkan to Metal
and DX12

© Copyright Khronos Group 2017 - Page 57

Vulkan Portability TSG Process

API

Overlap

Analysis

Metal Shading

Language

HLSL

Vulkan Portability Deliverables
1. Vulkan Subset Diff Spec

2. Vulkan Subset Development Layer

3. Vulkan Subset API Library over DX12/Metal

4. SPIRV-Cross Translator

5. Vulkan Subset Conformance Tests

Expand/test existing

open source SPIRV-Cross Tool

Possible proposals for Vulkan extensions for

enhanced portability (and possibly Web

robustness) sent to Vulkan WG

Identify Vulkan

features not directly mappable

to DX12 and Metal

New Vulkan functionality may affect the

overlap analysis

Layers, APIs, Translators and Tests all to be

developed and released in open source

Open source project with identical goals

already underway - come and help!
https://github.com/gfx-rs/gfx

https://github.com/gfx-rs/gfx

© Copyright Khronos Group 2017 - Page 58

OpenCL and Vulkan

2011

OpenCL 1.2
OpenCL C Kernel

Language

OpenCL 2.1
SPIR-V in Core

2015

SYCL 1.2
C++11 Single source

programming

OpenCL 2.2
C++ Kernel Language

2017

SYCL 2.2
C++14 Single source

programming

Industry working to bring

Heterogeneous compute to

standard ISO C++
C++17 Parallel STL hosted by

Khronos
Executors – for scheduling work

“Managed pointers” or “channels” –
for sharing data

OpenCL for DSPs
- Embedded imaging, vision and inferencing

- Flexible reduced precision
- Conformance without IEEE 32 Floating Point

- Explicit DMA

Single source C++ programming.
Great for supporting C++ apps,

libraries and frameworks

Help bring OpenCL-
class compute to

Vulkan

© Copyright Khronos Group 2017 - Page 59

Vulkan Long Term Goal

Vulkan

Universal

Portability

OpenCL-class

compute in

Vulkan

Universally
Portable

Graphics and

Advanced
Compute

And a great first step…

Clspv open-source OpenCL C to Vulkan Compiler Project
Adobe has ported 200K lines of OpenCL C to Vulkan

Proof-of-concept that OpenCL compute can be brought seamlessly to Vulkan

© Copyright Khronos Group 2017 - Page 60

Vulkan Compute

Ralph Potter, Codeplay

Porting OpenCL C to Vulkan

Introduction
Experimental work bringing a large OpenCL C codebase to Vulkan compute

Collaboration between Google, Codeplay, and Adobe

Evaluated over 200K lines of production code selected from Adobe products

Compiler implementation driven by real world needs

Need to resolve differences between Vulkan’s SPIR-V execution environment

and OpenCL C’s requirements

Alternatively, OpenCL C’s programming model, compared to GLSL

Required a prototype compiler, and new extensions

VK_KHR_16bit_storage/SPV_KHR_16bit_storage

VK_KHR_variable_pointers/SPV_KHR_variable_pointers

Proof-of-concept for other pointer-based languages

Vulkan Adoption

Cross Platform

All Major GPU Companies shipping Vulkan Drivers – for Desktop and Mobile Platforms

Mobile, Embedded and Console Platforms Supporting Vulkan

Embedded LinuxAndroid TVAndroid 7.0 Nintendo Switch

http://www.amd.com/

16-bit Storage
VK_KHR_16bit_storage enables the SPV_KHR_16bit_storage SPIR-V extension

Enables the use of 16-bit types in shader interfaces

16-bit types in shader input and output interfaces, storage buffers and push

constant blocks

Potential bandwidth reductions from smaller types

Also helps us tackle OpenCL C’s 16-bit types

Supports OpLoad, OpStore, and conversion to/from 32-bit types

Variable Pointers
VK_KHR_variable_pointers enables the SPV_KHR_variable_pointers SPIR-V

extension

Enables per-invocation dynamic pointers into storage buffers and optionally

work-group storage

More constrained than “generic” pointers

Provides pointers to externally visible storage

Without the potential performance impact of more general form

Two variants and corresponding capabilities/feature flags

VariablePointers - Addresses all storage buffers and work-group storage

VariablePointersStorageBuffer - Constrained to a single interface block

CLSPV Compiler
Prototype OpenCL C 1.2 to Vulkan compiler

Tracks top-of-tree LLVM and clang, not a fork

Open-sourced: https://github.com/google/clspv

Map OpenCL address spaces to SPIR-V storage classes

Translate OpenCL C builtins to GLSL.std.450 extended instruction set

Map pointer arithmetic to VariablePointers

https://github.com/google/clspv

CLSPV Compiler

OpenCL C Clang

(OpenCL C Frontend)

SPIR 1.2

(LLVM IR)

CLSPV Module Passes
Descriptor

Map
Vulkan SPIR-V

Example
kernel

void interleave(global float *dst,

global float *src_a,

global float *src_b)

{

int id = get_global_id(0);

global float *src =

(id % 2) ? src_a : src_b;

dst[id] = src[id / 2];

}

// Pointers to StorageBuffer src_a, src_b

%28 = OpAccessChain %2 %24 %14 %14

%29 = OpAccessChain %2 %25 %14 %14

// Load GlobalInvocationId

%30 = OpAccessChain %11 %17 %14

%31 = OpLoad %6 %30

// Src = (GlobalInvocationId & 1 == 0) ?

// src_b : src_a

%32 = OpBitwiseAnd %6 %31 %15

%33 = OpIEqual %12 %32 %14

// Dynamically select between two pointers

%34 = OpSelect %2 %33 %29 %28

// Load Src[GlobalInvocationId / 2]

%35 = OpSDiv %6 %31 %16

%36 = OpPtrAccessChain %2 %34 %35

%37 = OpLoad %1 %36

// Store Dst[GlobalInvocationId]

%38 = OpAccessChain %2 %23 %14 %31

OpStore %38 %37

OpReturn

Limitations
OpenCL builtins without Vulkan/GLSL equivalents are not supported

bitselect, nextafter, prefetch, printf, async_work_group_copy…

8/16-wide vectors

Numerical precision matches Vulkan’s SPIR-V environment

OpenCL has strict precision rules for builtin functions

Anything that relies on pointer sizes

Byte-addressable data types

Despite these limitations, we only need to modify ~30 lines out of > 200K LOC

https://github.com/google/clspv/blob/master/docs/OpenCLCOnVulkan.md

https://github.com/google/clspv/blob/master/docs/OpenCLCOnVulkan.md

Acknowledgements

David Neto

John Kessenich

Neil Henning

JinGu Kang
Eric Berdahl

© Copyright Khronos Group 2017 - Page 70

HLSL in Vulkan

Hai Nguyen, Google

Overview

● How Does HLSL Work in Vulkan?

● HLSL Compilers for Vulkan

○ Glslang

○ Shaderc

○ DXC

HLSL in Vulkan

How Does HLSL Work in Vulkan?

● By compiling to SPIR-V of course!

● Vulkan had the necessary bits to support most of HLSL

○ Most of required plumbing had a direct mappings of concepts

○ Some other concepts required a bit of fitting to work

● Changes in Vulkan to accommodate HLSL

○ Added HLSL-style unaligned buffer access via extension

■ EEnables [float, float3] layouts within a 16 byte boundary for StructuredBuffers

● Ongoing work to add more coverage of HLSL in tools

HLSL in Vulkan

Glslang (Khronos/Google/LunarG)

● First compiler to support HLSL in Vulkan

● HLSL support is complete enough for real world projects

○ DOTA 2 (Valve)

○ Ashes of Singularity (Oxide Games)

● What shader models are supported?

○ Mostly SM5.0 and some SM5.1

■ Largely driven by community asks

HLSL in Vulkan

Glslang HLSL (1/2)

● All shader stages work

○ VS=vert, HS=tesc, DS=tese, GS=geom, PS=frag, CS=comp

● For supported features HLSL source can be compiled unmodified

● HLSL registers map to binding numbers

○ Normally descriptor set 0, but can override

■ --resource-set-binding

■ GLSL syntax or HLSL spaceN parameter in register()

● Location for I/O variables is based on declaration order

HLSL in Vulkan

Glslang HLSL (2/2)

● Supports all CBV/SRV/UAV types

○ UAVs that have counters will consume 2 binding slots

■ 1 for resource

■ 1 for counter buffer (hidden and not referenced in HLSL source)

○ Mapping HLSL resource types to Vulkan resource types can be tricky

■ Samplers -> Samplers

■ Textures -> Images

■ cbuffer/ConstantBuffer -> Uniform Buffer

HLSL in Vulkan

Glslang

● Working with HLSL in Vulkan

○ Command options to shift binding number offsets for Vulkan

■ --shift-sampler-binding <value>

■ --shift-texture-binding <value>

■ --shift-cbuffer-binding <value>

■ --shift-uav-binding <value>

■ Resolves overlap in binding numbers translated from register

○ Binding number offsets can also be auto assigned

HLSL in Vulkan

Shaderc (Google)

● Shaderc depends on glslang so HLSL support is roughly the same

○ There’s a bit of lag since Shaderc uses to Google’s glslang repo instead of the Khronos repo

● Can optionally execute spirv-opt as part of the build process

● Working with HLSL in Vulkan

○ Command line options for binding number offsets is different

■ -ftexture-binding-base [stage] <value>

■ -fsampler-binding-base [stage] <value>

■ -fubo-binding-base/-fcbuffer-binding-base [stage] <value>

HLSL in Vulkan

Spiregg in dxc (Google/Microsoft)

● dxc

○ Based on LLVM and Clang 3.7

○ Only supports HLSL

○ Targets SM6.0 and higher

● Google contributing SPIR-V codegen (spiregg)

○ Actively developing

○ Actively merged into dxc mainline on official repo

● SPIR-V progress

HLSL in Vulkan

© Copyright Khronos Group 2017 - Page 79

LunarG Vulkan Ecosystem Update

Karen Ghavam,
LunarG, Inc.

CEO/Engineering Director

© Copyright Khronos Group 2017 - Page 80

LunarG Vulkan Ecosystem Update

VK_LAYER_LUNARG_device_simulation

New SPIR-V Optimizations

For more information, email info@lunarg.com

mailto:info@lunarg.com

© Copyright Khronos Group 2017 - Page 81

VK_LAYER_LUNARG_device_simulation

L
o

a
d

e
r

ICD

DevSim

GPU

Application

Fewer capabilities,

filtered from

configuration

All actual device

capabilities

Actual device capabilities are exposed Simulated capabilities are exposed

L
o

a
d

e
r

GPU

ICD

Application

All actual device

capabilities

Without Device Simulation With Device Simulation

© Copyright Khronos Group 2017 - Page 82

VK_LAYER_LUNARG_device_simulation

• Test application without requiring all actual devices
-Modifies results from Vulkan queries

-Device configuration defined by JSON file

•Use cases
-Exercise fall-back code paths, when a capability isn’t available.

-Find unintentional assumptions (triggers validation errors)

-Test application behavior under severe resource constraints

•Simulation, NOT Emulation
-Simulation: Changes query results from more-capable device to simulate less-capable

device

-Not emulation: Does not remove (enforce) capabilities that are actually present on actual

device

-Not emulation: Doesn’t add more capabilities not already present in actual device

© Copyright Khronos Group 2017 - Page 83

Device Simulation Layer Resources

• JSON schema for validating configuration files
-Verify configuration files are correct

-https://schema.khronos.org/vulkan/devsim_1_0_0.json#

• Integrated with Sascha Willems database
-https://vulkan.gpuinfo.org/

-Device data is already accessible in DevSim schema-compliant JSON format

•Development continues, more features to implement:
-Extensions, Formats

-Memory, Queues

-Others? Suggestions?

•Available now
-Source at https://github.com/LunarG/VulkanTools

-Please submit issues

-Binaries in the next Vulkan SDK release

-Developed by Mike Weiblen: mikew@lunarg.com

https://schema.khronos.org/vulkan/devsim_1_0_0.json
https://vulkan.gpuinfo.org/
https://github.com/LunarG/VulkanTools/issues
mailto:mikew@lunarg.com

© Copyright Khronos Group 2017 - Page 84

Announcing New SPIR-V Optimizations

HLSL GLSL

glslangValidator

SPIR-V

spirv-opt

SPIR-V

spirv-remap

SPIR-V

© Copyright Khronos Group 2017 - Page 85

New SPIR-V Optimizations - What’s next

HLSL GLSL

glslangValidator

SPIR-V

spirv-opt

SPIR-V

spirv-remap

SPIR-V

Vulkan on UE4

Summer 2017

Rolando Caloca

Epic Games

Last season, on UE4...

● Feb 2016: Vulkan SDK

publicly released

Last season, on UE4...

● Feb 2016: Vulkan SDK

publicly released

● Protostar!

○ Samsung S7 launch event

○ Mobile Renderer

■ Feature Level ES3.1

Last season, on UE4...

● Feb 2016: Vulkan SDK

publicly released

● Protostar!

● Lineage 2 Revolution

Today

● ShooterGame

Today

● InfiltratorDemo

Today

● Unreal

Tournament

Today

● Editor

Today

Today

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

○ Previously was SM4 - D3D10 (no compute techniques)

○ Run it today! UE4Editor -vulkan

Today

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

○ Previously was SM4 - D3D10 (no compute techniques)

○ Run it today! UE4Editor -vulkan

■ Caveat emptor: Still some bugs

● So please report them :)

Today

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

● RHI API Update

○ More compliant with modern style APIs

○ Renderer tells more information upfront to the RHI

■ Explicit transitions

Today

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

● RHI API Update

○ More compliant with modern style APIs

○ Renderer tells more information upfront to the RHI

■ Explicit transitions

■ Pipeline states are now first-class citizens of the Renderer and RHIs

Today

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

● RHI API Update

○ More compliant with modern style APIs

○ Renderer tells more information upfront to the RHI

■ Explicit transitions

■ Pipeline states are now first-class citizens of the Renderer and RHIs

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

● RHI API Update

● Focus on stability and visual parity with D3D11

Today

Today

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

● RHI API Update

● Focus on stability and visual parity with D3D11

● Tons of fixes for Vulkan on 4.17

○ Refactored descriptor set management

○ Fixed a lot of gfx issues

○ Validation warning messages drastically down

○ Ongoing work! More fixes coming to main/github

● Shader Model 5 is the default renderer/RHI for Vulkan desktop

● RHI API Update

● Focus on stability and visual parity with D3D11

● Tons of fixes for Vulkan on 4.17

● Goal: Default RHI on Linux

Today

#todo

● CPU

○ Descriptor Sets

■ Improve layouts

#todo

● CPU

○ Descriptor Sets

■ Improve layouts

■ Optimize run-time updates

#todo

● CPU

○ Descriptor Sets

○ Parallel RHI threads

■ Generate command buffers going wide

■ Intra-thread layout/barrier tracking
Render

RHI

#todo

● CPU

○ Descriptor Sets

○ Parallel RHI threads

■ Generate command buffers going wide

■ Intra-thread layout/barrier tracking
Render

RHI

RHI

RHI

#todo

● CPU

● GPU
○ Some missing features (eg DFAO)

○ Deep dive with Radeon GPU Profiler & RenderDoc!

■ Redundant transitions/barriers

■ Redundant/empty render passes

■ Harness multiple/async queues

● Render Passes as first-class citizen of the RHI

○ Will allow the RHI to stop guessing what the Renderer wants to do

○ Less tracking

○ Also helps with transitions!

RHI

RHI

RHI

#todo-next

Render

● Render Passes as first-class citizen of the RHI

○ Will allow the RHI to stop guessing what the Renderer wants to do

○ Less tracking

○ Also helps with transitions!

RHI

RHI

RHI

#todo-next

Render

ERPBRP

ERPBRP

ERPBRP ERPBRP

#todo-next

● Render Passes as first-class citizen of the RHI

● Offline/Cooked PSOs

○ Conservative shader compilation

■ ‘Dynamically spawn point light with atmospheric fog for a skeletal mesh that has

morph targets using a blueprint’

#todo-next

● Render Passes as first-class citizen of the RHI

● Offline/Cooked PSOs

○ Conservative shader compilation

○ Plan

■ Reduce # vertex formats using dynamic vertex fetch

■ Mark pipelines (vertex/pixel pairings) ahead of time

■ Gather possible render target formats

■ + we know material state (blend, depth) ahead of time...

■ => Can pre-create PSOs at cook time

● Other changes in state will hopefully not cause a full recompile (eg cull state)Vertex Inputs Shaders RT Formats Material State

#todo-next

● Render Passes as first-class citizen of the RHI

● Offline/Cooked PSOs

○ Conservative shader compilation

○ Plan

○ Side Gain: Reduces total # of shaders compiled!

Vertex Inputs Shaders RT Formats Material State

#todo-next

● Render Passes as first-class citizen of the RHI

● Offline/Cooked PSOs

○ Conservative shader compilation

○ Plan

○ Side Gain: Reduces total # of shaders compiled!

○ Helps with hitches creating PSOs at runtime

■ (Meanwhile we still have the save pipeline cache to disk solution)

Longer Term...

● Tessellation

● Multi-GPU support

● Use validation layers

● Use RenderDoc

● Use Radeon Graphics Profiler

● Add debug modes to submit command lists:
○ After every EndRenderPass

○ After every Dispatch

○ After every Blit/Copy

● Add debug mode to WaitForIdle after every submit
○ Great for tracking GPU hangs!

● Keep shader source at runtime to cross-reference

Debugging Tips

● RenderDoc/BaldurK

● LunarG & glslang teams

● AMD for Radeon Graphics Profiler

● Vulkan Working Group

Thanks!

© Copyright Khronos Group 2016 - Page 117

