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*is paper proposes a novel method to improve the variational mode decomposition (VMD)method and to automatically acquire
the sensitive intrinsic mode function (IMF). First, since fault signals are impulsive and periodic, a weighted autocorrelative
function maximum (AFM) indicator is constructed based on the Gini index and autocorrelation function to serve as the op-
timization objective function. *e mode number K and the penalty parameter α of VMD are automatically obtained through an
optimal parameter searching process underpinned by the improved particle swarm optimization (PSO) algorithmwith a variety of
inertia weights. *is improvement solves one of the major drawbacks of the conventional VMD method, that is, the need to
manually set parameters. *en, an optimal IMF automatic selecting process is performed for single-failure faults and compound
faults, according to the principles of the maximum weighted AFM indicator and maximum spectrum peak ratio (SPR), re-
spectively.*e sensitive IMFs are then subjected to an envelope demodulation analysis to obtain the fault characteristic frequency.
*e results of simulations and experiments show that the proposed method can effectively identify fault characteristics early,
especially compound faults, demonstrating great potential for real-world applications.

1. Introduction

Developing techniques for monitoring rolling bearing
conditions and diagnosing faults are key to realizing the
transition from traditional regular maintenance to condi-
tion-based maintenance. Owing to harsh working envi-
ronments and changing conditions, vibrations of rolling
bearings are typically characterized by strong background
noise, unsteadiness, and coupling modulation, which make
it difficult to extract and identify fault characteristics.
Nonetheless, accurately extracting fault characteristic fre-
quencies from a mix of complex, nonstationary, and non-
linear vibration signals is essential for early fault
identification [1].

Time-frequency analysis methods simultaneously pro-
vide local information about nonstationary signals in both
the time domain and frequency domain and can be used to

extract fault characteristics from weak signals. Some com-
monly used time-frequency analysis methods include em-
pirical mode decomposition (EMD) [2], ensemble empirical
mode decomposition (EEMD) [3], and local mean de-
composition (LMD) [4]. All of these are based on recursive
decomposition and, thus, have the same disadvantages, such
as endpoint effects and modal aliasing, which can impact
accuracy in early detection of weak fault characteristics [5].

Dragomirestkiy and Zosso [6] recently proposed the
VMD method, which is based on solid mathematical
foundations and can be used for broad applications in the
field of mechanical fault diagnosis. *e VMD method in-
troduces a secondary penalty factor and a Lagrange mul-
tiplier to transform the constrained variational problem into
a nonconstrained variational problem. *is nonrecursive
decomposition approach avoids some of the problems of
recursive decomposition, such as the endpoint effect and the
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need to determine conditions for terminating the decom-
position, and, in addition, effectively remedies the defi-
ciencies of conventional decomposition methods and
achieves high computational efficiency and good noise ro-
bustness. However, the VMD method also has a number of
drawbacks. Most notably, the mode number K and the
penalty parameter α must be set before starting the de-
composition. Moreover, problems like aliasing between
mode components or excessive decomposition may occur if
parameters are not set properly. *erefore, adaptive ac-
quisition of VMD parameters is of crucial importance.

To tackle this challenge, Shi and Yang [7] proposed a
step-by-step parameter optimization strategy which
achieved good results in validation experiments using a wind
turbine. Wang et al. [8] used the minimum average envelope
spectrum entropy as the objective function and PSO to
optimize the VMD parameters.*emethod was shown to be
superior to EMD, LMD, and other envelope and wavelet
transformmethods. Yan et al. [9] proposed a composite fault
detection method for rotating machinery based on optimal
variational mode decomposition (OVMD) and a 1.5-di-
mensional envelope spectrum. *e envelope spectrum en-
tropy value was used as the objective function, and the
optimal VMD parameters were obtained using the genetic
algorithm, thereby achieving adaptive acquisition of the
mode number and penalty parameter. In another approach,
Zhang et al. [10] proposed a grasshopper optimization al-
gorithm- (GOA-) based adaptive VMD parameter analysis
method that works in the following way: a weighted kurtosis
indicator is constructed based on the kurtosis and corre-
lation coefficient; VMD parameters are optimized using the
GOA algorithm with the weighted kurtosis indicator as the
objective function; and the sensitive IMF is selected fol-
lowing the principle of maximum weighted kurtosis for
extracting the fault characteristics. Liu et al. [11] used the
principle of maximum kurtosis to obtain the optimal values
of parameter pair K and α in order to achieve an accurate
VMD. Lian et al. [12] proposed an adaptive VMD method
that uses the principle of maximum kurtosis as an evaluation
criterion to automatically determine the mode number.

Based on the above studies, it can be concluded that
constructing a suitable objective function and selecting an
appropriate optimization algorithm are two critical issues in
the adaptive acquisition of VMD parameters. Some indi-
cators such as kurtosis [10–14], correlation coefficient [15],
autoregressive (AR) model parameters [16], and entropy [8]
have proven extremely useful in vibration signal analysis and
fault characteristics extraction. As a sparse indicator, kur-
tosis is widely used in the fault diagnosis of rotating ma-
chinery and can effectively extract impulsive components of
signals. *e principle of maximum kurtosis is useful for
constructing the objective function for VMD parameter
optimization. However, kurtosis is more suitable for mea-
suring the most important pulses in a signal. In addition to
not being robust enough, kurtosis-based techniques focus
more on individual pulses than on the desired periodic
pulses [17].

*e Gini index is widely used to measure income in-
equality in countries and has recently been used in fault

diagnosis of rotating machinery [18]. *e index is not only
very effective in identifying fault pulses but offers superb
performance in preventing random pulses and disturbances.
Miao et al. [19] used the Gini index to improve the kurtosis
guidance map and were able to identify the resonance band,
which contains the richest information. More specifically,
the resonance band contains the fault pulse rather than
interferences caused by fault modulation and random
pulses. Kurtosis and the Gini index are both used as indi-
cators but share the same shortcoming; that is, both mea-
sures are aimed at detecting the impact of fault pulses and
ignore recurring periodic pulses.

*e autocorrelation function retains periodic signal
information; however, phase information of the original
signal is not retained. For white noise signals, the auto-
correlation function quickly decays to zero at the fastest
decay rate. For an impulse signal, the autocorrelation
function also acquires impulse characteristics while
retaining periodic characteristics. *e autocorrelation
function of a noise-containing impulse signal decays rapidly,
but its amplitude becomes large during the impulse. *is
suggests that the autocorrelation function of an impulse
signal combines characteristics of the autocorrelation
function of white noise and impulse signal. Chen et al. [20]
proposed an AFM indicator based on this particular feature
of the autocorrelation function, which was then used as a
quantitative evaluation criterion of the IMF value after
complementary EEMD processing and achieved good
results.

Up to now, most studies in the literature have focused on
single-failure faults (e.g., inner ring failure, outer ring faults,
and rolling element faults of rolling bearings). In practice,
most faults are compound and composed of two or more
different types of faults. At present, there are many research
studies on the diagnosis of compound faults. Wang et al. [21]
proposed a modified VMD (MVMD) based on noise-
assisted data analysis (NADA), which can extract compound
fault features of gearbox under a strong noise environment.
Yang et al. [22] proposed a fault diagnosis framework based
on a novel dual-extreme learning machine (ELM) network
that can quickly detect single and simultaneous failures in a
multistage gearbox. Zhong et al. [23] proposed a fault feature
extraction framework based on feature extraction and
support vector machine (SVM), and the experimental results
show that the method can effectively diagnose single and
simultaneous faults of the gas turbine generator system
(GTGS). Wang et al. [24] proposed a gearbox integrated
fault diagnosis method based on ensemble LMD, defined as
CELMD (Complementary Ensemble Local Mean Decom-
position) which overcomes the pattern mixing phenomenon
and can be used to extract composite fault features. Wang
[25] proposed a method based on Multipoint Optimal
Minimum Entropy Deconvolution Adjusted (MOMEDA)
and EEMD, which is suitable for searching complex fault
pulse signals under strong noise environment. Wang et al.
[26] proposed a maximum kurtosis spectrum deconvolution
(MKSED) applied to the fault diagnosis of the gearbox, and
the experimental results show that the compound faults of
gearbox can be successfully diagnosed by using MKSED.
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In this paper, a method for improving the VMD is
proposed; a new weighted AFM indicator is constructed to
serve as the objective function for parameter optimization.
*e improved PSO with a variety of inertia weights is used for
optimal parameter searching. Mutual information of the
decomposed components and the original signal is used to
detect overdecomposition, upon which the decision to per-
form the search again is made. *e VMD is performed after
the optimal decomposition parameters are obtained. For
single-failure faults, the weighted AFM indicator is used to
select the sensitive IMF and for compound faults, SPR is used.
Finally, the selected IMF undergoes an envelope demodu-
lation analysis to extract the fault characteristic frequency.*e
following sections are arranged as follows. *e VMDmethod
is introduced in Section 2. *e construction of weighted
WAFM index, IPSO algorithm, mutual information, and the
method proposed in this paper are introduced in Section 3.
*e simulation signal and test signal are analyzed using the
proposed method, respectively, in Section 4 and Section 5.
Finally, the conclusions of this paper are drawn in Section 6.

2. VMD

*e VMD is an adaptive signal processing technique first
proposed in 2014 that can be used to decompose a signal into
a series of finite-bandwidth IMFs in a nonrecursive manner,
thereby creating the right conditions for effective signal
separation [6]. Migrating the signal decomposition process
into the variational framework, VMD accomplishes signal
decomposition by seeking the optimal solution of the var-
iational model.

2.1.Constructionof theVariationalProblem. With VMD, the
signal is decomposed into K mode functions, each with a
center frequency of ωk. *erefore, the VMD can be
expressed as the variational problem of solving K mode
functions whose aggregated bandwidth is the smallest,
constrained by the sum of all mode functions which must be
equal to the original signal:

min
uk{ }, ωk{ }

􏽐
k

zt δ(t) +
j
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where ωk􏼈 􏼉 � ω1,ω2, . . . ,ωk􏼈 􏼉 represents the center fre-
quency of each mode.

*e VMD can be obtained using the following
procedure.

*e Hilbert transform is performed on each mode
function uk to obtain the analytical signal:

δ(t) +
j

πt
􏼒 􏼓uk(t). (2)

*en, a preliminary estimation is performed on the
center frequency e− jωkt of the analytical mixed signal of each
mode.*e frequency of each mode component is modulated
by its corresponding baseband frequency:

δ(t) +
j

πt
􏼒 􏼓uk(t)􏼔 􏼕e

−jωkt
. (3)

*e square of the gradient 2-norm of the above
demodulated signal is calculated and the bandwidth of each
modal function is estimated.

2.2. Solution to the Variational Problem. To solve the vari-
ational problem presented in Section 2.1, the secondary
penalty factor α and Lagrange multiplier λ(t) are introduced
and used to transform the constrained variational problem
into an unconstrained variational problem. *e secondary
penalty factor serves as a guarantee of the accuracy of signal
reconstruction when Gaussian noise is present, while the
Lagrange multiplier makes the constraint more stringent.
*e augmented Lagrange expression is as follows:
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(4)

Both the IMF and its center frequency are continuously
updated using the alternate direction method of multipliers
(ADMM). Finally, the saddle point of the above formula is
obtained, and this is the optimal solution. *e IMF of all
frequency domains along with their center frequencies can
be obtained using the following formulae:

􏽢u
n+1
k (w) � 􏽢f(w) −

􏽐
i≠ k

􏽢ui(w) +(􏽢λ(w)t/2)

1 + 2α ω − ωk( 􏼁
,

(5)

􏽢ωn+1
k �

􏽒
∞
0 ω|􏽢u(w)|2dω

􏽒
∞
0 |􏽢u(w)|2dω

, (6)

where 􏽢un+1
k (w) is the result of the current residual amount

􏽢f(w) − 􏽐 􏽢ui(w) after Wiener filtering.
*e above is an adaptive decomposition procedure of

VMD, which is in essence a Wiener filtering process. Signal
decomposition is realized by iteratively searching for the
optimal solution of the variational model in the variational
problem framework. *e approach achieves good noise
robustness and effectively avoids the endpoint effect and
modal aliasing problem.

3. WAFM-IPSO-VMD

To eliminate the need to set parameters in advance, which is
a drawback of the VMD, this paper proposes a method for
improving the VMD by enabling adaptive parameter ac-
quisition. *e method includes three aspects: first, the
weighted AFM indicator is constructed as the objective
function; second, the improved PSO is used to search for the
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optimal parameters of the VMD algorithm and mutual
information of the decomposed components, and the
original signal is used to detect overdecomposition, and thus
to decide whether or not to perform the search again; third,
an optimal IMF automatic selecting process is performed for
the single-failure fault and compound faults following the
principles of the maximum weighted AFM and maximum
SPR, respectively.

3.1. WAFM. When searching for the optimal parameter
combination using the improved PSO, construction of the
objective function is a critical step. If a fault occurs, a pe-
riodic impulse signal will appear in the mixed signal. As
described before, the Gini index aims to detect the impact of
fault pulses and ignores periodic pulses that repeatedly occur
when a fault is present, whereas AFM can effectively extract
periodic characteristics of the signal. To enable more ef-
fective fault detection, this paper proposes constructing the
weighted AFM indicator based on characteristics of the Gini
index and the AFM.

3.1.1. Gini Index. *e Gini index is an inequality index that
is often used in economics to reflect the overall income gap
[27]. In mechanical fault diagnosis, the sequence elements
must be positive in order to calculate the Gini index;
therefore, the envelope spectrumGini index has been used to
extract the bearing fault signal [19] and achieved good re-
sults. *e envelope spectrum Gini index can be defined as
follows:

Gini � 1 − 2 􏽘
N

n−1

x(n)

‖ x
→

‖

N − n +(1/2)

N
􏼠 􏼡, (7)

where the vector x
→ is the envelope spectrum of the signal;

x
→

� [x(1), x(2), . . . , x(N)] is a sequence of points in the
envelope spectrum arranged in ascending order of ampli-
tude; and (1), (2), (3), . . . , (N) are the new index numbers
after sorting.

0≤Gini≤ 1. In economics, the closer the Gini index is to
zero, the more equal the income distribution is; the closer
the Gini index is to 1, the more uneven the income dis-
tribution is. *us, extracting a bearing fault signal from the
vibration signal of a faulty machine by applying the principle
of the maximum Gini index of the envelope spectrum is
feasible.

3.1.2. AFM. *e autocorrelation function is extremely ef-
fective in ascertaining the periodicity of a signal and can
determine whether the signal is noisy [20].

*e autocorrelation function describes how similar a
signal is to itself at different times. For a random process
xt􏼈 􏼉, a signal that occurs at a certain moment in time is
denoted xt and the same signal becomes xt+k after a certain
period k. Self-covariance of the signal can be defined as

yt � cov xt, xt+k􏼂 􏼃 � E xt − x( 􏼁 xt+k − x( 􏼁􏼂 􏼃. (8)

*e autocorrelation coefficient of xt and xt+k is

ρk �
E xt − x( 􏼁 xt+k − x( 􏼁􏼂 􏼃

�������
Var xt( 􏼁

􏽱 ���������
Var xt+k( 􏼁

􏽱 . (9)

For a stationary process, Var(xt) � Var(xt+k) � σ2x. So,
the autocorrelation coefficient of xt and xt+k can be defined
as

ρk �
E xt − x( 􏼁 xt+k − x( 􏼁􏼂 􏼃

σ2x
. (10)

*e autocorrelation coefficient sequence
ρk, k � 0, 1, . . . , k with the time interval of k serving as a
variable is called the autocorrelation function and can be
defined as

Rxx(k) �
1

Tσ2x
􏽘

T−k

t�1
xt − x( 􏼁 xt+k − x( 􏼁. (11)

*e autocorrelation function is an even function. When
performing the analysis, it is enough to analyze one-half of
the autocorrelation function corresponding to the positive
half of the axis. In signal processing, the autocorrelation
function is defined as

Rx(k) �
1
T

􏽘

T−k

t�1
xt · xt+k. (12)

As a sequence, the autocorrelation function cannot
describe the characteristics of the signal. To convert the
autocorrelation function into a quantitative indicator, the
root mean square value of the maximum value sequence
(denoted as AFM [20]) of the autocorrelation function can
be used as an index for evaluating the IMF. *e AFM can be
expressed by the following formula:

AFM �

�����

􏽘
N

n�1

P2
n

N

􏽶
􏽴

, (13)

where Pn is the maximum point sequence of the autocor-
relation function of the signal envelope and N is the se-
quence length.

3.1.3. WAFM. In view of the impulsive and periodic nature
of fault signals, this paper uses the product of the Gini index
and the AFM as the objective function for VMD parameter
optimization. Since 0≤Gini≤ 1 , multiplying the AFM by
the Gini index is equivalent to multiplying the AFM by a
weight. Hence, the new indicator is defined as the weighted
AFM:

WAFM � Gini · AFM. (14)

3.2. Improved PSO. *e PSO algorithm is a population-
based random search method proposed by Kennedy and
Eberhart [28]. *e algorithm can be detailed as follows:

Suppose that the population space dimensions are
N × D, where N represents the number of populations, D
represents the dimensionality of particles; the D-
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dimensional vector Xi � (xi1, xi2, . . . , xiD) represents the
position (i � 1, 2, . . . , N) of the ith particle and its velocity
can be expressed as Vi � (vi1, vi2, . . . , viD);
pbest � (pi1, pi2, . . . , piD) represents the individual extre-
mum; and gbest � (g1, g2, . . . , gD) represents the global
extremum. After the individual and global extrema are
obtained, the particle velocity and position are updated
using the following formulae:

vij(t + 1) � wvij(t) + c1r1 pij(t) − xij(t)􏽨 􏽩

+ c2r2 pgi(t) − xij(t)􏽨 􏽩,
(15)

xij(t + 1) � xij(t) + vij(t + 1), (16)

where c1 and c2 are learning factors, r1 and r2 are random
numbers uniformly distributed within [0, 1], and w is the
inertia weight.

*e inertia weight affects local convergence and global
exploration ability of the algorithm. Global exploration is
performed when the weight is large and a local search is
carried out when the weight is small. *e PSO algorithm
with a nonlinear decrease of the inertia weight improves
upon on the inertia weight w [29]. *e improved PSO al-
gorithm is more effective since the solution space is analyzed
during the initial search period such that the algorithm
quickly approaches the optimal solution. In the late stage of
search, higher accuracy can be achieved through iterative
fine-tuning. *e formula for improving the weight is as
follows:

w �
itermax − iter

itermax
􏼠 􏼡

n

wmax − wmin( 􏼁 + wmin, (17)

where wmax is the inertia weight after initialization, wmin is
the final inertia weight, itermax is the total number of iter-
ations, iter is the current number of iterations, and n is the
nonlinear adjustment factor.

3.3. Automatic Acquisition of IMF. For single-failure faults,
the sensitive IMF is automatically obtained using the
principle of the maximum weighted AFM. For compound
faults, the sensitive IMF is automatically obtained using the
maximum SPR principle.

*e SPR can effectively extract the periodic impulse
components of the signal and is immune to interference
from abnormal spikes in time-domain signals [30]. A larger
value of SPR indicates a larger periodic impulse component
of the fault signal:

SPRI �
k 􏽐

H
i�1 pI(h)

􏽐
K
i�1 s(k)

, (18)

SPRO �
k 􏽐

H
i�1 pO(h)

􏽐
K
k�1 s(k)

, (19)

SPRB �
k 􏽐

H
i�1 pB(h)

􏽐
K
k�1 s(k)

, (20)

SPRC �
k 􏽐

H
i�1 pC(h)

􏽐
K
k�1 s(k)

. (21)

Here, s(k) denotes the amplitude of each point on the
envelope spectrum, k � 1, 2, . . . , K denotes the number of
envelope lines; pI(h), pO(h), pB(h), pC(h) denote the am-
plitude peaks corresponding to the fault characteristic fre-
quencies of the estimated bearing inner ring’s
frequencies—that is, the bearing outer ring, roller, and cage,
respectively. Parameters h � 1, 2, . . . , H denote the number
of harmonic waves (for the purpose of this paper, h� 3).

3.4. Mutual Information. Mutual information (MI) [31] can
quantitatively represent the correlation between two random
variables, and it is more accurate than the correlation co-
efficient method. Mutual information can effectively mea-
sure the coupling degree between IMF components. *e
stronger the coupling of variables is, the greater the mutual
information is. It is defined as follows:

MI(X, Y) � B
s

fx,y(x, y)log
fx,y(x, y)

fx(x)fy(y)
dx dy, (22)

where S is the domain of X and Y, fx,y(x, y) is the joint
distribution of X and Y, and fx(x) and fy(y) are the
marginal distributions of X and Y, respectively.

3.5. Proposed Method. A flowchart of the method proposed
in this paper is shown in Figure 1. *e procedure is as
follows:

(1) Input vibration signal f; set the range of the VMD
parameter c � (K, α) to be optimized and initialize
the IPSO parameters.

(2) Randomly initialize the particles’ positions, calculate
the objective function of each particle, and save the
position corresponding to the maximum WAFM.
*at is, the parameter combination c � (K, α).

(3) Construct a weighted AFM indicator as the objective
function for optimization. Use the IPSO algorithm to
update the position of the particle swarm and cal-
culate the objective function of the particle swarm.
Determine whether overdecomposition occurs using
the minimum value of mutual information from
each decomposed component and the original signal.
If the minimum value of mutual information is less
than 0.1, the current optimal solution is not updated;
otherwise, the optimal solution is updated.

(4) Judge whether the stop condition is met: if so, exit to
with optimal solution; if not, repeat step 3.

(5) Perform VMD on the original signal using the de-
termined optimal parameter set c � (K, α). For a
single-failure fault, the sensitive IMF is automatically
obtained using the principle of the maximum
weighted AFM. For compound faults, the sensitive
IMF is automatically obtained using the maximum
SPR principle.
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(6) Envelope demodulation analysis is performed on the
IMF to obtain the fault characteristics.

4. Simulation Signal

In order to verify the effectiveness of themethod proposed in
this paper, the following model is used to simulate the vi-
bration signal of the failure of the bearing outer ring, and add
random noise with an amplitude of 2. *e simulation signal
is as follows:

y1(t) � y0e
− ξωnt sinωn

������

1 − ξ2t
􏽱

, (23)

y(t) � y1(t) + n(t), (24)
where y1(t) denotes the impact signal of a bearing fault, an
intrinsic frequency fn � 3000Hz, ωn � 2πfn; a displace-
ment constant y0 � 1, a damping coefficient ξ � 0.1, an
impact fault frequency of 100Hz, and a sampling frequency
fs � 20 kHz, with a sampled point count of N � 4096. *e
waveform of the simulation signal is shown in Figure 2.

It can be seen from Figure 2 that, under the interference
of random noise, the periodic pulse in the simulation signal

has been buried, and it is difficult to find the periodic im-
pulse signal in the time-domain waveform. *e envelope
demodulation analysis of the simulation signal is conducted,
and the resulting envelope spectrum is shown in Figure 3, in
which failure characteristic components cannot be observed.

4.1. Optimization of the VMD Parameters. *e simulation
signal is being decomposed by the parametric adaptive VMD
method proposed in this paper (search range of K: [2, 12];
search range of α: [100, 5000]). *e setting of PSO pa-
rameters in this paper is obtained by adjusting according to
experience and previous studies on PSO. In this paper, two
parameters need to be optimized, so the dimension of the
particle is 2. According to the literature [32], PSO is not
sensitive to population size. At present, the study of learning
factors c1 and c2 is limited to the application of the problem.
Considering the computational complexity and reliability,
the population size was set as 10, c1 as 1.7, and c2 as 1.5
according to the experience after several tests and adjust-
ments. *e authors of literature [33] found that when the
inertia weight belongs to [0.4, 0.95], the performance of

Set ranges of VMD 
parameters and initialize 

improved PSO

Signal decomposition
using VMD and calculate 

WAFM of each IMF

Calculate mutual 
information of each IMF 

and original signal
Updated parameters

Vibration signal

Whether the stop 
condition is reached?

Obtain the optimal 
parameters of VMD

Execute VMD using the 
optimal parameters

Select the sensitive IMF 
using WAFM and SPR

Envelope 
demodulation analysis 

and fault diagnosis
No Yes

Whether the 
Min (mutual 

information) > 0.1?

Update the current 
optimal solution

Yes

No

Figure 1: Flowchart of the parametric adaptive VMD method.
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particle swarm optimization algorithm will be greatly im-
proved. So, this paper sets maximum inertia weight wmax �

0.95 and minimum inertia weight wmin � 0.4. Initialize the
IPSO, and set the population size N� 10, particle dimension
D� 2, maximum evolutionary generation number t� 20,
acceleration coefficients c1 � 1.7, c2 � 1.5, maximum inertia
weight wmax � 0.95, minimum inertia weight wmin � 0.4,
and nonlinear modulation index n� 1.2 [29]. Figure 4 shows
the iteration curve for the optimization search, from which
approximate a global maximum max (WAFM)� 0.0782 and
the optimal parameter combination of [10, 3146] can be
obtained.

4.2. VMD and Sensitive IMF Selection. On this basis, the
optimal parameter combination [10, 3146] is used to per-
form the VMD of the original signal. *e waveform of each
IMF component after decomposition is shown in
Figure 5(a). *e histogram of IMF-WAFM is shown in
Figure 5(b), in which it can be seen that the WAFM value of
IMF4 is the highest, so it is selected for further envelope
spectrum analysis, and the effect is shown in Figure 5(c).

Envelope spectrum analysis was also performed on the
other IMF components. Due to limited space, only envelope
spectrums of IMF3 and IMF5 were given, as shown in
Figures 5(d) and 5(e). In the envelope spectrum of IMF5 in
Figure 5(e), failure characteristic components cannot be
observed. Although prominent spectral line can be observed
at the fault characteristic frequency fo in Figure 5(d), there is
a lot of background noise. In contrast, in the envelope
spectrum of sensitive IMF in Figure 5(c), the spectral lines at

the fault characteristic frequency fo and double frequency
2fo are more prominent. In Figure 5(c), the rotation fre-
quency fr can also be observed significantly. *is suggests
that the improved VMD method proposed in this paper can
effectively decompose the signal component containing fault
characteristic components from the original signal buried by
noise, which proves the effectiveness of the method.

4.3. Comparison with Other Methods. In order to verify the
advantages ofWAFM index proposed in this paper, the same
optimal combination [10, 3146] is used for VMD, and
sensitive IMF is selected through the maximum kurtosis
principle. It is found that IMF6 is a sensitive IMF and that no
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Figure 3: Hilbert envelope spectrum of simulation signal.
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Figure 5: Analysis results of simulation signal. (a) *e modes obtained by the improved VMD method. (b) WAFM indexes of IMF
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Figure 6: Envelope spectrum of sensitive IMF component.
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fault characteristic components can be observed from its
envelope spectrum, as shown in Figure 6.

To verify the advantages of the optimization method
introduced in this paper, the combinations of parameters
[10, 400] and [5, 3000] are artificially selected for VMD. *e
sensitive IMF envelope spectrum selected with WAFM can
be seen in Figure 7. According to our findings, fault char-
acteristic components cannot be observed in Figure 7(b).
*e fault characteristic frequency fo can be observed on the
envelope spectrum of sensitive IMF in Figure 7(b), but it has
been buried by noise. *is reveals the fact that there is a gap
between the method of artificial parameter selection and the
method proposed in this paper.

For the purpose of further validating the advantage of the
method proposed in this paper, EMD and EEMD algorithms
were adopted to decompose the simulation signal. *e two
parameters of EEMD, ensemble number and amplitude
coefficient, were set as 100 and 0.01 in [34]. After decom-
position, maximum kurtosis principle is adopted to select
the acquired IMFs. *e time-domain waveforms of the
sensitive IMFs are shown in Figures 8 and 9 [35, 36], in
which fault characteristics cannot be observed. It is clear that
the VMD method proposed in this paper is superior to both
EMD and EMMD.

5. Experimental Signal Analysis

In order to verify the effectiveness of this method, it is
applied to the actual data for analysis.*e test rig is shown in
Figure 10. *e bearing type is HRB6304, the sampling
frequency is 10 kHz, and 4096 data points are sampled every

1 minute. Failure of bearing inner ring of bearing and
compound failure of inner and outer ring were selected for
analysis, respectively, and the failure diagrams are shown in
Figure 11. Table 1 shows the multiple of fault frequency of
each bearing component.

5.1. Single FaultDataAnalysis. *is section analyses the data
of inner race fault, and the 111th minute signal of the ex-
periment is extracted for decomposition. *e velocity of the
signal is at 3,000 rpm, and the bearing inner race fault
characteristic frequency fi � 136.74Hz can be calculated
according to Table 1. *e time-domain waveform and its
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Figure 8: Time-domain waveform of sensitive IMF component by the EMD method.
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Figure 9: Time-domain waveform of sensitive IMF component by the EEMD method.
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envelope spectrum of this signal are shown in Figure 12. It
can be observed that no periodic impact is visible on the
time-domain waveform, and there is no prominent spectral
line near the fault characteristic frequency in Figure 12(b), so
it is impossible to judge the state of bearing accurately.

By using the method proposed in this paper, the signal is
decomposed, and the approximate global maximum max
(WAFM)� 0.1356 and the optimal parameter combination

[K, α]� [10, 2416] can be obtained. On this basis, the optimal
parameter combination [10, 2416] is used to perform the
VMD of the original signal. *e waveform of each IMF
component after decomposition is shown in Figure 13(a).
*e histogram of IMF-WAFM is shown in Figure 13(b), in
which it can be seen that the WAFM value of IMF8 is the
highest, so it is selected for further envelope spectrum
analysis, and the effect is shown in Figure 13(c).

Inner race
fault

(a)

Inner race
fault

Outer race
fault

(b)

Figure 11: *e tested bearing with fault. (a) *e tested bearing with inner race fault. (b) *e tested bearing with compound fault.

Table 1: Multiple of fault frequency of each bearing component.

Type Inner race Outer race Cage Ball
6304 4.43 2.566 0.367 1.742
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Figure 12: Waveform and envelope spectrum of inner race fault signal. (a) Waveform of fault signal. (b) Envelope spectrum of fault signal.
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Figure 13: Continued.
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Envelope spectrum analysis was also performed on the
other IMF components. Due to limited space, only envelope
spectrums of IMF7 and IMF9 were given, as shown in
Figures 13(d) and 13(e). In the envelope spectrum of IMF9
in Figure 13(e), failure characteristic components cannot be
observed. *e envelope spectrum of IMF9 component in
Figure 13(d) shows that prominent spectral lines cannot be
observed obviously at the inner race fault characteristic

frequency fi. In contrast, in the envelope spectrum of
sensitive IMF in Figure 13(c), the spectral lines at the fault
characteristic frequency fi are more prominent. On this
basis, the following conclusion can be drawn: the bearing
inner ring has serious local defects.

Similarly, in order to verify the advantages of WAFM
index proposed in this paper, sensitive IMF is selected
through the maximum kurtosis principle. It is found that
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A
m

pl
itu

de
 (m

·s–2
)

×10–3

0 100 200 300 400 500

Frequency (Hz)

600 700 800 900 1000

3

2.5

2

1.5

1

0.5

0

fr

(e)

Figure 13: Analysis results of inner race fault signal. (a) *e modes obtained by the improved VMD method. (b) WAFM indexes of IMF
components. (c) Envelope spectrum of IMF8 component. (d) Envelope spectrum of IMF7 component. (e) Envelope spectrum of IMF9
component.
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IMF10 is a sensitive IMF, and its envelope spectrum is
shown in Figure 14. Although the envelope line amplitudes
at the fault characteristic frequency fi and double frequency
2fi can be observed, there is a lot of background noise, so it
shows that the effect is not as good as that of the method
proposed in this paper.

EMD and EEMD are used for signal decomposition, and
kurtosis was used to select sensitive IMF. As shown by their
time-domain waveform and envelope spectrum, although
fault characteristic frequency fi can be observed in Fig-
ure 15, there are more noise interference patterns in the
envelope spectrum obtained in this way, so the effect is less

obvious than that in Figure 13(c). Failure characteristic
components cannot be observed in Figure 16. It is, thus, clear
that the VMD-based decomposition method proposed in
this paper is superior to both EMD and EEMD.

5.2. Analysis of Compound Faults Data. A dataset of inner-
outer ring coupling faults was used as a sample for analysis.
*e rotational speed indicated by the data was 2020 r/min.
According to Table 1, the characteristic frequency of the
inner ring fault was fi � 149.14Hz and the characteristic
frequency of the outer ring fault wasfo � 86.39Hz.*e time
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Figure 17: Waveform and envelope spectrum of compound fault signal. (a) Waveform of fault signal. (b) Envelope spectrum of fault signal.
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domain waveform diagram and envelope spectrum of the
group of signals are shown in Figure 17. No salient periodic
impact can be observed in Figure 17(a). In the envelope
spectrum as shown in Figure 17(b), the characteristic of the
outer ring fault can be clearly observed; however, the
characteristic of the inner ring fault cannot, making it
difficult to determine the bearing condition.

By using the method proposed in this paper, the signal
is decomposed, and the approximate global maximummax
(WAFM) � 0.2203 and the optimal parameter combination
[K, α] � [6, 4605] can be obtained. On this basis, the optimal
parameter combination is used to perform the VMD of the
original signal. *e waveform of each IMF component after
decomposition is shown in Figure 18(a). *e histograms of
IMF-SPRI and IMF-SPRO are shown in Figures 18(b) and
18(c), in which it can be seen that the SPRI value of IMF1 is
the highest and the SPRO value of IMF6 is the highest, so
the IMFs are selected for further envelope spectrum
analysis, and the effects are shown in Figures 18(d) and
18(e).

As shown in Figure 18(d), the fault characteristic fre-
quency fi of the inner ring can be observed in the envelope
spectrum of the IMF1 component. Salient lines can be

observed near the characteristic frequency fo of the outer
ring fault and its double frequency 2fo in the envelope
spectrum of the IMF6 component in Figure 18(e). *is
indicates serious defects on both the inner and outer rings.

Signal decomposition was performed using EMD and
EEMD, and the sensitive IMF was selected using SPR. After
EMD processing, the sensitive IMF component obtained
through SPRI-based selection or via SPRO-based selection
were the same, as shown in Figure 19.*e fault characteristic
frequency is clearly buried in noise to the extent that no
prominent spectral lines can be observed at the location of
the fault characteristic frequency.

After EEMD processing, the sensitive IMF of the inner
ring fault obtained via SPRI-based selection is IMF3 and the
sensitive IMF of the outer ring fault obtained through SPRO-
based selection is IMF5. *e envelope spectrum is shown in
Figure 20. No fault characteristic frequency can be observed
in the sensitive IMFs of the inner ring and outer ring, in-
dicating that the VMD-based decomposition method pro-
posed in this paper is superior to EMD and EMMD.

In order to verify the advantage of SPR index, this paper
uses WAFMmaximum principle, AFMmaximum principle,
and kurtosis maximum principle to select sensitive IMFs.
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Figure 18: Analysis results of compound fault signal. (a) *e modes obtained by the improved VMD method. (b) SPRI indexes of IMF
components. (c) SPRO indexes of IMF components. (d) Envelope spectrum of IMF1 component. (e) Envelope spectrum of IMF6
component.
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Figure 20: Envelope spectrum of sensitive IMF component by EEMDmethod. (a) Sensitive IMF component of inner race fault. (b) Sensitive
IMF component of outer race fault.
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*e two sensitive IMFs with the maximumWAFM value
selected byWAFMmaximum principle and AFMmaximum
principle are IMF2 (Figure 21) and IMF6 (Figure 18(e)),
respectively. IMF6 can observe the fault characteristic fre-
quency of the outer ring, which is the same as the IMF
selected by SPR, while IMF2 cannot observe the fault
characteristic frequency.

*e two sensitive IMFs with kurtosis maximum prin-
ciple are IMF2 (Figure 21) and IMF4 (Figure 22), respec-
tively. IMF2 cannot observe the fault characteristic
frequency, and the fault frequency of inner and outer ring
can be found in the envelope spectrum of IMF4, but there
are many interferences, and the effect is not as good as that of
the method in this paper.

6. Conclusions

(1) *is paper proposes a method for improving VMD
and automatically acquiring the sensitive IMF. *e
proposed strategy solves the problem of setting
parameter combination for the conventional VMD
method.

(2) *e weighted AFM indicator constructed in this
paper takes into account the impulsive and periodic
nature of fault signals and makes it possible to search
for the optimal VMD parameter set using the IPSO
algorithm. Moreover, the proposed method has the
benefit of adaptive parameter acquisition and the
decomposition result was found to be superior
compared to that of other methods such as EMD and
EEMD.

(3) In view of the differences between single-failure
faults and compound faults, this paper proposes
using two different principles (principle of maxi-
mum weighted AFM and principle of maximum
SPR) for selecting the sensitive IMF, thereby solving
the difficult problem of accurately detecting com-
pound faults. *e proposed method could poten-
tially provide technical support for engineering
applications.
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