Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Sphalerite

This page kindly sponsored by Natural History Appraisals
Hide all sections | Show all sections

About SphaleriteHide

Formula:
ZnS
Colour:
Yellow, light to dark brown, black, red-brown, colourless, light blue. green
Lustre:
Adamantine, Resinous
Hardness:
3½ - 4
Specific Gravity:
3.9 - 4.1
Crystal System:
Isometric
Name:
Named in 1847 by Ernst Friedrich Glocker from the Greek σφαλεροζ "sphaleros" = treacherous, in allusion to the ease with which dark varieties were mistaken for galena, but yielded no lead. Originally called blende in 1546 by Georgius Agricola (Georg Bauer). Known by a variety of chemical-based names subsequent to Agricola and before Glocker, including "zincum".
Dimorph of:
Sphalerite Group.

Sphalerite, also known as blende or zinc blende, is the major ore of zinc. When pure (with little or no iron) it forms clear crystals with colours ranging from pale yellow (known as Cleiophane) to orange and red shades (known as Ruby Blende), but as iron content increases it forms dark, opaque metallic crystals (known as Marmatite).
Very rare green crystals owe their colour to trace amounts of Co (Henn & Hofmann, 1985; Rager et al., 1996).

Sphalerite may also contain considerable Mn, grading into alabandite. Samples containing up to 0.36 apfu (atoms per formula unit) Mn (21.4 wt.% MnO) have been described by Hurai & Huraiová (2011).

See "Best Minerals" article on the schalenblende variety, by Harjo Neutkens: http://www.mindat.org/mesg-85-134773.html

According to Haussühl and Müller (1963), there are numerous polytypes; the ones identified by them are 3R (=3C); 2H, 4H, 6H; and 9R, 12R, 15R and 21R.

Compare UM1993-16-S:CdInZn and UM1993-15-S:CdInZn.

Visit gemdat.org for gemological information about Sphalerite.


Classification of SphaleriteHide

Approved, 'Grandfathered' (first described prior to 1959)
2.CB.05a

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
C : Metal Sulfides, M: S = 1: 1 (and similar)
B : With Zn, Fe, Cu, Ag, etc.
2.8.2.1

2 : SULFIDES
8 : AmXp, with m:p = 1:1
3.4.4

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
4 : Sulphides etc. of Group II metals other than Hg (Mg, Ca, Zn, Cd)

Physical Properties of SphaleriteHide

Adamantine, Resinous
Transparency:
Transparent, Translucent
Colour:
Yellow, light to dark brown, black, red-brown, colourless, light blue. green
Streak:
Pale yellow to brown.
Hardness:
3½ - 4 on Mohs scale
Hardness:
VHN100=208 - 224 kg/mm2 - Vickers
Tenacity:
Brittle
Cleavage:
Perfect
Perfect {011}
Fracture:
Conchoidal
Density:
3.9 - 4.1 g/cm3 (Measured)    4.096 g/cm3 (Calculated)

Optical Data of SphaleriteHide

Type:
Isotropic
RI values:
nα = 2.369
Birefringence:
May show strain induced birefringence
Birefringence:
Isotropic minerals have no birefringence
Surface Relief:
Moderate

Chemical Properties of SphaleriteHide

Formula:
ZnS
Common Impurities:
Mn,Cd,Hg,In,Tl,Ga,Ge,Sb,Sn,Pb,Ag

Age distributionHide

Recorded ages:
Phanerozoic : 519 Ma to 0 Ma - based on 23 recorded ages.

Crystallography of SphaleriteHide

Crystal System:
Isometric
Class (H-M):
4 3m - Hextetrahedral
Space Group:
F4 3m
Cell Parameters:
a = 5.406 Å
Unit Cell V:
157.99 ų (Calculated from Unit Cell)
Z:
4
Twinning:
{111}

Crystallographic forms of SphaleriteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Sphalerite no.1 - Goldschmidt (1913-1926)
Sphalerite no.3 - Goldschmidt (1913-1926)
Sphalerite no.9 - Goldschmidt (1913-1926)
Sphalerite no.13 - Goldschmidt (1913-1926)
Sphalerite no.33 - Goldschmidt (1913-1926)
Sphalerite no.46 - Goldschmidt (1913-1926)
Sphalerite no.53 - Goldschmidt (1913-1926)
Sphalerite no.162 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacingIntensity
3.123 Å(100)
2.705 Å(10)
1.912 Å(51)
1.561 Å(30)
1.351 Å(6)
1.240 Å(9)
1.1034 Å(9)
Comments:
Similar to that of cerianite-(Ce).

Synonyms of SphaleriteHide

Other Language Names for SphaleriteHide

Bosnian:Sfalerit
Catalan:Esfalerita
Czech:Sfalerit
Farsi/Persian:بلندروی
Finnish:Sinkkivälke
Hungarian:Szfalerit
Italian:Sfalerite
Japanese:閃亜鉛鉱
Latvian:Sfalerīts
Lithuanian:Sfaleritas
Low Saxon/Low German:Sphalerit
Norwegian:Sinkblende
Norwegian (Nynorsk):Sinkblende
Polish:Sfaleryt
Portuguese:Blenda
Romanian:Blendă
Simplified Chinese:闪锌矿
Slovak:Sfalerit
Swedish:Zinkblände
Traditional Chinese:閃鋅礦

Varieties of SphaleriteHide

Cadmian SphaleriteA Cd-bearing variety of sphalerite. Rather common. Reported, e.g., from La Fossa fumaroles, Italy.
CleiophaneLight-coloured (usually yellowish or greenish) up to colourless sphalerite with low contents of Fe" and Mn".
Cockade oreAn ore type showing ring-like structures. From French "cocarde", meaning cockade.
Further English terms: ring ore, sphere ore, cocarde ore.
German terms are "Kokardenerz" and "Ringelerz".
Gem BlendeA ruby-red translucent variety of "blende" (= sphalerite), the translucency increases the lower the iron content
HonigblendeGerman name for honey-coloured sphalerite.
Indian SphaleriteAn In-bearing variety of sphalerite.
KokardenerzAn ore type showing ring-like structures. From French "cocarde", meaning cockade.
"Ringelerz" is another German designation.
In English: ring ore, sphere ore, cocarde ore, cockade ore.
MarmatiteAn opaque black iron-rich variety of sphalerite.
Mercurian SphaleriteA mercury-bearing variety of sphalerite.
MátraiteA densely twinned columnar variety of sphalerite. Discredited as 2006-C.
Nitta et al. (2008) showed that the sphalerite is twinned on {111}.
Przibramite (of Huot)A variety of sphalerite with up to 2% Cd.
SchalenblendeCompact, fine grained Sphalerite of a mid brown to yellow or cream colour, occurring in concentric layers with reniform surfaces which also may contain intergrown, marcasite, pyrite, galena and possible wurtzite. It is believed to have formed by relativel...

Relationship of Sphalerite to other SpeciesHide

Other Members of this group:
BrowneiteMnS Iso. 4 3m : F4 3m
ColoradoiteHgTeIso. m3m (4/m 3 2/m)
HawleyiteCdSIso. 4 3m : F4 3m
Ishiharaite(Cu,Ga,Fe,In,Zn)SIso. 4 3m : F4 3m
MetacinnabarHgSIso. 4 3m : F4 3m
Rudashevskyite(Fe,Zn)SIso. 4 3m : F4 3m
StilleiteZnSeIso. 4 3m : F4 3m
TiemanniteHgSeIso. 4 3m : F4 3m

Common AssociatesHide

Associated Minerals Based on Photo Data:
4,444 photos of Sphalerite associated with QuartzSiO2
2,924 photos of Sphalerite associated with CalciteCaCO3
2,782 photos of Sphalerite associated with GalenaPbS
2,437 photos of Sphalerite associated with PyriteFeS2
1,824 photos of Sphalerite associated with ChalcopyriteCuFeS2
1,685 photos of Sphalerite associated with FluoriteCaF2
1,304 photos of Sphalerite associated with DolomiteCaMg(CO3)2
1,184 photos of Sphalerite associated with SideriteFeCO3
682 photos of Sphalerite associated with BaryteBaSO4
545 photos of Sphalerite associated with MarcasiteFeS2

Related Minerals - Nickel-Strunz GroupingHide

2.CB.AgmantiniteAg2MnSnS4Orth.
2.CB.05aColoradoiteHgTeIso. m3m (4/m 3 2/m)
2.CB.05aHawleyiteCdSIso. 4 3m : F4 3m
2.CB.05aMetacinnabarHgSIso. 4 3m : F4 3m
2.CB.05cPolhemusite(Zn,Hg)STet.
2.CB.05bSakuraiite(Cu,Zn,Fe)3(In,Sn)S4Iso.
2.CB.05aStilleiteZnSeIso. 4 3m : F4 3m
2.CB.05aTiemanniteHgSeIso. 4 3m : F4 3m
2.CB.05UM1998-15-S:CuFeZnCu2Fe3Zn5S10
2.CB.05aRudashevskyite(Fe,Zn)SIso. 4 3m : F4 3m
2.CB.10aChalcopyriteCuFeS2Tet. 4 2m : I4 2d
2.CB.10aEskeborniteCuFeSe2Tet.
2.CB.10aGalliteCuGaS2Tet. 4 2m : I4 2d
2.CB.10bHaycockiteCu4Fe5S8Orth. 2 2 2
2.CB.10aLenaiteAgFeS2Tet. 4 2m : I4 2d
2.CB.10bMooihoekiteCu9Fe9S16Tet.
2.CB.10bPutoraniteCu1.1Fe1.2S2Iso.
2.CB.10aRoquesiteCuInS2Tet. 4 2m : I4 2d
2.CB.10bTalnakhiteCu9(Fe,Ni)8S16Iso. 4 3m : I4 3m
2.CB.10aLaforêtiteAgInS2Tet. 4 2m : I4 2d
2.CB.15aČernýiteCu2(Cd,Zn,Fe)SnS4Tet. 4 2m : I4 2m
2.CB.15aFerrokësteriteCu2FeSnS4Tet. 4 : I4
2.CB.15aHocartiteAg2(Fe2+,Zn)SnS4Tet. 4 2m : I4 2m
2.CB.15aIdaiteCu5FeS6Hex.
2.CB.15aKësterite Cu2ZnSnS4Tet. 4 : I4
2.CB.15aKuramiteCu3SnS4Tet.
2.CB.15bMohiteCu2SnS3Mon.
2.CB.15aPirquitasiteAg2ZnSnS4Tet. 4 : I4
2.CB.15aStanniteCu2FeSnS4Tet. 4 2m : I4 2m
2.CB.15cStannoiditeCu+6Cu2+2(Fe2+,Zn)3Sn2S12Orth.
2.CB.15aVelikiteCu2HgSnS4Tet.
2.CB.15cUM2006-11-S:CuFeGeZnCu8(Fe,Zn)3Ge2S12 (?)
2.CB.20ChatkaliteCu6FeSn2S8Tet. 4 2m : P4m2
2.CB.20MawsoniteCu6Fe2SnS8Tet. 4 2m : P4m2
2.CB.30ColusiteCu13VAs3S16Iso. 4 3m : P4 3n
2.CB.30GermaniteCu13Fe2Ge2S16Iso. 4 3m : P4 3n
2.CB.30GermanocolusiteCu26V2(Ge,As)6S32Iso.
2.CB.30NekrasoviteCu26V2(Sn,As,Sb)6S32Iso.
2.CB.30StibiocolusiteCu13V(Sb,Sn,As)3S16Iso.
2.CB.30Ovamboite Cu20(Fe,Cu,Zn)6W2Ge6S32Iso.
2.CB.30MaikainiteCu20(Fe,Cu)6Mo2Ge6S32Iso. m3m (4/m 3 2/m)
2.CB.35aHemusiteCu6SnMoS8Iso.
2.CB.35aKiddcreekiteCu6SnWS8Iso. 4 3m : F4 3m
2.CB.35aPolkovicite(Fe,Pb)3(Ge,Fe)1-xS4Iso.
2.CB.35aRenierite(Cu1+,Zn)11Fe4(Ge4+,As5+)2S16Tet. 4 2m : P4 2c
2.CB.35aVincienniteCu+7Cu2+3Fe2+2Fe3+2Sn(As,Sb)S16Tet.
2.CB.35aMorozeviczite(Pb,Fe)3Ge1-xS4Iso.
2.CB.35bCatamarcaiteCu6GeWS8Hex. 6mm : P63mc
2.CB.40LautiteCuAsSOrth. mmm (2/m 2/m 2/m) : Pnma
2.CB.45CadmoseliteCdSeHex. 6mm : P63mc
2.CB.45GreenockiteCdSHex. 6mm : P63mc
2.CB.45Wurtzite(Zn,Fe)SHex. 6mm : P63mc
2.CB.45RambergiteMnSHex. 6mm : P63mc
2.CB.45Buseckite(Fe,Zn,Mn)SHex. 6mm : P63mc
2.CB.55aCubaniteCuFe2S3Orth. mmm (2/m 2/m 2/m)
2.CB.55bIsocubaniteCuFe2S3Iso. m3m (4/m 3 2/m) : Fm3m
2.CB.60PicotpauliteTlFe2S3Orth. mmm (2/m 2/m 2/m) : Cmcm
2.CB.60RaguiniteTlFeS2Orth.
2.CB.65ArgentopyriteAgFe2S3Mon. 2/m
2.CB.65SternbergiteAgFe2S3Orth. mmm (2/m 2/m 2/m)
2.CB.70SulvaniteCu3VS4Iso.
2.CB.75VulcaniteCuTeOrth.
2.CB.80EmpressiteAgTeOrth. mmm (2/m 2/m 2/m)
2.CB.85MuthmanniteAuAgTe2Mon. 2/m : P2/m

Related Minerals - Dana Grouping (8th Ed.)Hide

2.8.2.2StilleiteZnSeIso. 4 3m : F4 3m
2.8.2.3MetacinnabarHgSIso. 4 3m : F4 3m
2.8.2.4TiemanniteHgSeIso. 4 3m : F4 3m
2.8.2.5ColoradoiteHgTeIso. m3m (4/m 3 2/m)
2.8.2.6HawleyiteCdSIso. 4 3m : F4 3m
2.8.2.7Rudashevskyite(Fe,Zn)SIso. 4 3m : F4 3m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

3.4.1Niningerite(Mg,Fe2+,Mn2+)SIso.
3.4.2Oldhamite(Ca,Mg)SIso. m3m (4/m 3 2/m) : Fm3m
3.4.3MátraiteZnSTrig.
3.4.5Wurtzite(Zn,Fe)SHex. 6mm : P63mc
3.4.6StilleiteZnSeIso. 4 3m : F4 3m
3.4.7GreenockiteCdSHex. 6mm : P63mc
3.4.8HawleyiteCdSIso. 4 3m : F4 3m
3.4.9CadmoseliteCdSeHex. 6mm : P63mc

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Sphalerite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for SphaleriteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Agricola (1546) 465.
Wallerius (1747) 248.
Bergmann (1782).
Glocker (1847) 17.
Jorissen, A. (1887) Sur la présence de mercure dans la blende. Annales de la Société géologique de Belgique, 14, CI.
Headden, W.P. (1906) Mineralogic notes, III, phosphorescent zinc blendes: Colorado Sci. Soc. Proc.: 8: 167-182.
Brown, J.S. (1936) Supergene sphalerite, galena, and willemite at Balmat, NY. Economic Geology: 31: 331-354.
Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 210-215.
Kutina, J. (1953) Mikroskopischer und spektrographischer Beitrag zur Frage der Entstehung einiger Kolloidalstrukturen von Zinkblende und Wurtzit. Geologie, Berlin, 1, 436.
Smith. F.G. (1955) Structure of zinc-sulfide minerals. American Mineralogist: 40: 658-675.
Rigault G. (1956) Gallio e Indio nella blenda. Periodico di Mineralogia: 43-78.
Haussühl, S., Müller, G. (1963): Neue ZnS-Polytypen (9 R, 12 R und 21R) in mesozoischen Sedimenten NW-Deutschlands. Contributions to Mineralogy and Petrology: 9: 28-39 [in German, with English abstract].
Fleet, M.E. (1975) Thermodynamic properties of (Zn,Fe)S solid solutions at 850°C. American Mineralogist: 60: 466-470.
Fleet, M.E. (1977) Structural transformations in natural ZnS. American Mineralogist: 62: 540-546.
Fleet, M.E. (1977) The birefringence-structural state relation in natural zinc sulfides and its application to the schalenblende from Pribram. The Canadian Mineralogist: 15: 303-308.
Schaefer, S.C. (1978) Electrochemical determination of the Gibbs energy of formation of sphalerite (ZnS). U.S. Bureau of Mines, Report of Investigation 8301, 16 pp.
Togari, K. (1978) Colour of Sphalerite. Jour. Fac. Sci., Hokkaido Univ., Ser. IV, vol. 18, no. 3, Mar. 1978, pp. 283-290.
(1980) Acta Crystallographica: A36: 482.
Augustithis, S.S., Vgenopoulos, A. (1982) On the hawleyite-sphalerite-wurtzite-galena paragenesis from Ragada, Komotini, (Rhodope) North Greece. Special Publication of the Society for Geology Applied to Mineral Deposits: 2: 413-417.
Schaefer, S.C., Gokeen, N.A. (1982) Electrochemical determination of the thermodynamic properties of sphalerite, ZnS (beta). High Temperature Science: 15: 225-237.
Henn, U. & Hofmann, C. (1985) Green sphalerite from Zaire. Journal of Gemmology 19, 416-418.
Rager, H., Amthauer, G., Bernroider, M., Schürmann, K. (1996) Color, crystal chemistry, and mineral association of a green sphalerite from Steinperf, Dill syncline, FRG. European Journal of Mineralogy: 8: 1191-1198.
Bawden, T.M., et al. (2003) Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: Evidence for bacteriogenic supergene sphalerite. Geology: 31: 913-916.
Lusk, J., Calder, B.O.E. (2004) The composition of sphalerite and associated sulfides in reactions of the Cu–Fe–Zn–S, Fe–Zn–S and Cu–Fe–S systems at 1 bar and temperatures between 250 and 535 °C. Chemical Geology: 203: 319-345.
Deore, S., Navrotsky, A. (2006) Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. American Mineralogist: 91: 400-403.
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta: 73: 4761-4791.
Hurai, V., Huraiová, M. (2011) Origin of ferroan alabandite and manganoan sphalerite from the Tisovec skarn, Slovakia. Neues Jahrbuch für Mineralogie - Abhandlungen: 188: 119-134.
Goldmann, S., Junge, M., Wirth, R., Schreiber, A. (2019): Distribution of trace elements in sphalerite and arsenopyrite on the nanometre-scale – discrete phases versus solid solution. European Journal of Mineralogy 31, 325-333.

Internet Links for SphaleriteHide

Significant localities for SphaleriteHide

Showing 46 significant localities out of 23,694 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Austria
 
  • Carinthia
    • Villach-Land District
      • Nötsch im Gailtal
        • Kreuth
[var: Schalenblende] Fotini Kanaki(1972) Die Minerale Bleibergs (Kärnten)
G. Niedermayr, I. Praetzel: Mineralien Kärntens, 1995
Belgium
 
  • Wallonia
    • Namur
      • Andenne
        • Seilles
[var: Schalenblende] Harjo Neutkens collection
Canada
 
  • Ontario
    • Wellington County
      • Guelph Township
Reiner Mielke Ray Lehoux
France
 
  • Auvergne-Rhône-Alpes
    • Isère
      • Susville
Belot, Victor R. (1978) Guide des minéraux, coquillages et fossiles: où les trouver en France, comment les reconnaître et les collectionner (Guides Horay). Pierre Horay (Ed.), 224 pp.
  • Grand Est
    • Haut-Rhin
      • Thann-Guebwiller
        • Cernay
          • Steinbach
            • Silberthal
J.-L. Hohl: "Minéraux et Mines du Massif Vosgien", Editions du Rhin (Mulhouse), 1994 Mines, mineurs et minéralogie du Silberthal, tomes 1 et 2
  • Occitanie
    • Gard
      • Saint-Laurent-le-Minier
        • Les Malines District
J F Carpenter specimen
Germany
 
  • Baden-Württemberg
    • Karlsruhe Region
      • Rhein-Neckar-Kreis
        • Wiesloch
[var: Schalenblende] Lapis Mineralian Magazin Jg. 10 Nr 12 Dezember 85
  • North Rhine-Westphalia
    • Cologne
      • Rheinisch-Bergischer Kreis
        • Waldbröl
          • Wirtenbach
Lapis 2005(30), 9
    • Niederberg area
      • Wülfrath
        • Rohdenhaus
[var: Schalenblende] Harjo Neutkens collection
Ireland
 
  • Leinster
    • Co. Longford
      • Ballymahon
        • Keel
Barry Flannery (Personal Collection); Singer, D.A., Berger, V.I., and Moring, B.C., (2009), Sediment-hosted zinc-lead deposits of the world; database and grade and tonnage models: U.S. Geological Survey Open-File Report 2009-1252
  • Munster
    • Co. Tipperary
      • Silvermines District
Barry Flannery Collection; Mineralogical Magazine 1959 32 : 128-139.
Barry Flannery Collection; Econ Geol (1987) 82:371-394
Moreton, S. (1999) Mineralogical Record, 30, 99-106.
Italy
 
  • Tuscany
    • Lucca Province
      • Gallicano
Biagioni, C., & Barsanti, M. (2008). Primo ritrovamento di millerite nella Valle del Serchio (Lucca). MICRO (notizie mineralogiche), 2008, 111-116.
      • Stazzema
European Journal of Mineralogy, 12 (2)
Dini A., 1995. Metacinabro zincifero (leviglianite) e sfalerite mercurifera della miniera di Levigliani (Alpi Apuane, Toscana). Atti Soc. Tosc. Sci. Nat., Mem., 102: 67-72.
        • Ponte Stazzemese
Orlandi P., Dini A., 2004. Die Mineralien der Buca della Vena-Mine, Apuaner Berge, Toskana (Italien). Lapis, 1: 11-24
      • Vergemoli
        • Fornovolasco
Cioffi M., 1991. La mineralizzazione a magnetite-pirite di Fornovolasco (Alpi Apuane). Tesi di laurea inedita, Università di Firenze. ; Biagioni, C., Orlandi, P., & Bonini, M. (2008). Fornovolasco. Storia e minerali delle miniere di ferro presso Vergemoli (Alpi Apuane). Rivista Mineralogica Italiana, 4/2008, 230-252
Kazakhstan
 
  • Karaganda Region
RWMW Specimen; Box, S.E., Syusyura, Boris, Hayes, T.S., Taylor, C.D., Zientek, M.L., Hitzman, M.W., Seltmann, Reimer, Chechetkin, Vladimir, Dolgopolova, Alla, Cossette, P.M., and Wallis, J.C., 2012, Sandstone copper assessment of the Chu-Sarysu Basin, Central Kazakhstan: U.S. Geological Survey Scientific Investigations Report 2010–5090–E, 63 p. ; Evseev, A. A. (1995) Kazaknstan and Middle Asia. A brief Mineralogical Guide. World of Stone 8:24-30
Kosovo
 
  • District of Mitrovica
    • Kosovska Mitrovica
      • Trepča valley
        • Trepča complex
Féraud J. (1979) - La mine " Stari-Trg " (Trepca, Yougoslavie) et ses richesses minéralogiques. Avec la collaboration de Mari D. et G. (1979) Minéraux et Fossiles, n° 59-60, p. 19-28; Joana Koà Odziejczyk ,Jaroslav Pršek , Halilqela ( 2012) MIneralogical Diversity In Orebodies Within Xth Horizon.At Stan Terg Mine, Kosovo. Buletini i Shkencave Gjeologjike pp84-; Kołodziejczyk, J., Pršek, J., Melfos, V., Voudouris, P. C., Maliqi, F., & Kozub-Budzyń, G. (2015). Bismuth minerals from the Stan Terg deposit (Trepça, Kosovo). Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 192(3), 317-333.
Norway
 
  • Buskerud
Neumann, H. (1944): Silver deposits at Kongsberg. Norges Geologiske Undersøkelse 162. p. 57
  • Rogaland
    • Karmøy
Torkelsen, Arne (1993): Om gruvene på Karmøy. STEIN 20 (1), 47-52
Peru
 
  • Áncash
    • Bolognesi Province
      • Huallanca District
        • Huallanca
Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Econ Geol (1985) 80:416-478
Mineralogical Record 28, no. 4 (1997); Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
    • Pallasca Province
      • Pampas District
Mineralogical Record 28, No. 4 (1997); Hyršl, J. (2011): Pasto Bueno und Mundo Nuevo in Peru- die weltbesten Hübnerite und mehr. Mineralien Welt 22(1), 64-79
    • Recuay Province
      • Ticapampa District
Mi.Rec. 28, no.4 (1997)
  • La Libertad
    • Santiago de Chuco Province
      • Quiruvilca District
Burkart-Baumann, I.; Ottemann, J. (1972): Low temperature sulfides from Quiruvilca, Peru. Neues Jahrbuch für Mineralogie, Monatshefte 1972, 541-551 (in German).; Min.Rec. 28, #4 (1997)
Poland
 
  • Lower Silesian Voivodeship
    • Kłodzko County
      • Nowa Ruda
Andrzejewski K. (1993) - Szczelinowa mineralizacja hydrotermalna w skałach gabrowo-diabazowych KWK Nowa Ruda. Archiwum Uniwersytetu Slaskiego
  • Silesian Voivodeship
    • Bytom City County
[var: Schalenblende] P Haas collection; Eligiusz Szełęg collection
Romania
 
  • Maramureș
    • Baia Mare (Nagybánya)
      • Chiuzbaia (Kisbánya)
Palache et al. (1944) Dana's System of Mineralogy, Seventh ed., Vol. 1: 450.; Zsivny, V. and Naray-Szabo, I.V. (1947) Parajamesonit, ein neues Mineral von Kisbanya. Schweizerische mineralogische und petrographische Mitteilungen: 27: 183-189.; Fleischer, M. (1949) New mineral names. American Mineralogist: 34: 133.; Cook, N.J. and Damian, G.S. (1997) New data on "plumosite" and other sulfosalt minerals from the Herja hydrothermal vein deposit, Baia Mare district, Rumania. Geologica Carpathica 48, 387-399.; Damian, G. (2012) The genesis of the base metal ore deposit from Herja. Studia UBB, Geologia, 48(1), 85-100.; Mârza, I.; Tămaș, C.G.; Tetean, R.; Andreica, A.; Denuț, I.; Kovács, R. (2019) Epithermal Bicolor Black and White Calcite Spheres from Herja Ore Deposit, Baia Mare Neogene Ore District, Romania-Genetic Considerations. Minerals 9, 352.
Russia
 
  • Primorsky Krai
    • Dalnegorsk Urban District
      • Dalnegorsk
[MinRec 32:9]; Rogulina, L.I., and Sveshnikova, O.L. (2008): Geology of Ore Deposits 50(1), 60-74.; Dobovol'skaya, M. G., Baskina, V. A., Balashova, S. P., Kenisarin, A. M., Arakelyants, M. M., Klimachev, L. A., & Muravitskaya, G. N. (1990). Order of Formation of the Ores and Mafic Dikes of the Nikolayevsk Deposit (Southern Primor'ye). International Geology Review, 32(4), 391-403.; Vasilenko, G.P. (2001) The Dalnegorsk Ore District. pp98-124 in Khanchuk, A.I., Gonevchuk, G.A. & Seltmann, R. (Eds) Metallogeny of the Pacific Northwest (Russian Far East): Tectonics, Magmatism and Metallogeny of Active Continental Margins. IAGOD Guidebook series 11, Dalnauka Publishing House, Vladivostok 2004, 176 p
South Africa
 
  • Gauteng
    • West Rand District (West Rand)
      • Far West Rand (West Wits Line)
        • Western Sector
          • Carletonville
[MinRec 32:177]
Spain
 
  • Basque Country
    • Guipúzcoa (Gipuzkoa)
      • Mutiloa
Calvo, M., Gascón, F. and Cavia, J.M. (1993) Minerales de las Comunidades Autónomas del País Vasco y Navarra. Museo de Ciencias Naturales de Álava. 156 pp.; Calvo Rebollar, Miguel. (2003) Minerales y Minas de España. Vol. II. Sulfuros y sulfosales. Museo de Ciencias Naturales de Alava. Vitoria. 705 págs.
  • Cantabria
    • Camaleño
Gómez Fernández, F., Claverol, M.G., Luque, C., and Calvo Rebollar, M. (2006) La mina de Áliva. La blenda acaramelada de los Picos de Europa. Bocamina, 17, 28-112.
  • Murcia
    • Cartagena
      • Sierra Minera de Cartagena-La Unión
        • El Gorguel
          • El Pino
[var: Marmatite] Calvo, M. (2003) Minerales y Minas de España. Vol II. Sulfuros y sulfosales. Museo de Ciencias Naturales de Alava. Vitoria. 705 págs.
Switzerland
 
  • Valais
    • Goms
      • Binn
        • Fäld
No reference listed
UK
 
  • England
    • Cumbria
      • Eden
        • Alston Moor
          • Nenthead
Dunham K C, Geology of the Northern Pennine Orefield , Vol 1, Tyne to Stainmore. HMSO
No reference listed
    • Dorset
      • West Dorset
        • Symondsbury
          • Eype
David Baldwin
USA
 
  • Connecticut
    • Fairfield County
      • Brookfield
Weber, Marcelle H. and Earle C. Sullivan. (1995): Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70 (6): 396; Januzzi, Ronald E. (1994), Mineral Data Book - Western Connecticut and Environs. The Mineralogical Press, Danbury, Connecticut.
    • Litchfield Co.
      • Thomaston
        • Thomaston Dam
Yedlin, Neal. (1973a), Yedlin on Micromounting. Mineralogical Record: 4(2).; Yedlin, Neal. (1973b), Yedlin on Micromounting. Mineralogical Record: 4(6).; Fluorite: The Collector's Choice. Extra Lapis English No. 9; Segeler, Curt and Molon, Joseph. (1985), The Thomaston Dam Site, Thomaston, Connecticut; Rocks & Minerals: 60(3): 119-124.; Henderson, William A. (1995), Microminerals of Connecticut; Rocks & Minerals: 70: 420-425.; Henderson, William A. (1979), Microminerals. Thomaston Dam. Mineralogical Record: 10: 239-241.; Vogt, Wolfgang. (1991), Rediscovering Thomaston Dam. Lapidary Journal: April.
    • New Haven Co.
      • Southbury
J. Zolan; Weber, Marcelle H. and Earle C. Sullivan. (1995): Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70(6): 407; Garabedian, James A. (1998), Secondary Mineralization of Half-Moon Vesicles in the Mesozoic Basalt of the O&G;#2 Quarry, Woodbury, Connecticut. University of Connecticut Master of Science Thesis.
  • Maryland
    • Carroll Co.
      • Medford
J. Wingard, personal observation 5/1/04
  • Missouri
    • Lewis Co.
Sherwood, M. D., & Williams, G. A. (1998). Missouri mineral locality index. Rocks & Minerals, 73(2), 98-117.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 23, 2020 15:33:23 Page generated: May 23, 2020 01:09:59
Go to top of page