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1 Problem

Two capacitors of equal capacitance C are connected in parallel by wires of negligible resis-
tance and a switch, as shown in the lefthand figure below. Initially the switch is open, one
capacitor is charged to voltage V0, and charge Q0 = CV0, while the other is uncharged. At
time t = 0 the switch is closed. If there were no damping (dissipative) mechanism, the circuit
would then oscillate forever, at a frequency dependent on the self inductance L ≈ μ0 ln a/b
of the loop of radius a of wire of radius b � a and the total capacitance Ctot ≈ C/2, namely
f = ω/2π ≈ 1/2π

√
LCtot ≈ 1/2π

√
(μ0C/2) ln(a/b) ≈ 200 Hz/

√
C ln(a/b) for C in farards.

However, even in a circuit with zero Ohmic resistance, damping occurs due to the radiation
of the oscillating charges, and eventually a static charge distribution results, with charge
Qi/2 and voltage Vi/2, on each capacitor.

The “paradox” is that the final stored energy is Uf = 2(CV 2
f /2) = CV 2

0 /4 = Ui/2, where
Ui = CV 2

0 /2 is the initial stored energy.1 Hence, half the initial energy is “missing” in the
final state.

Where is the “missing” energy?2

2 Solution

This problem is (in the view of this author) meant to illustrate the limitations of “ordi-
nary” circuit analysis,3 and has been discussed many times, including [1]-[38]. A substantial
fraction of these papers argue that “ordinary” circuit analysis suffices for a practical under-
standing of the two-capacitor problem, remarking that if the circuit contains a large enough

1If the two capacitances were unequal, more than half of the initial energy would go “missing”. Better
energy efficiency while charging a capacitor can be obtained using nonlinear circuit elements, as in sec. 9.1
of http://www.ti.com/lit/ds/symlink/lm2664.pdf.

2This problem can also be posed for a single capacitor that is initially charged with ±Q on its plates,
and then discharged by “shorting” its terminals with a wire. This can be dangerous, so “don’t try this at
home”. That is, a spark generally occurs during the discharge, which is a clue that the physics here can be
intricate. The experiment discussed in sec. 2.3 below is for the single-capacitor version of the “paradox”.

3Another example that illustrates the limitations of “ordinary” circuit analysis is [39].

1



Ohmic resistance, the associated Joule heating accounts for essentially all of the “missing”
energy.4

Recall that in Poynting’s view [40], the energy the energy that is transferred from one
capacitor to the other passes through the intervening space, not down the connecting wires.
In the present example, some of the energy in the electrostatic field of the initially charged
capacitor “escapes” from the circuit in the form of electromagnetic radiation.5 Hence, we
should examine the possibility that radiation carries away a significant fraction of the “miss-
ing” energy.6

2.1 Ordinary Circuit Analysis of the Two-Capacitor Problem

If the quantity labeled Rrad in the circuit diagram on p. 1 were an ordinary resistor of value
R, then the circuit equation would be,

− V1 + V2 + Lİ + IR = 0,
Q

C
+

LQ̈

2
+

RQ̇

2
= 0, (1)

where L ≈ μ0 ln(a/b) is the self inductance of the circuit, Q ≡ Q2 − Q1 and we note that
I = Q̇2 = −Q̇1 = Q̇/2. The initial conditions are Q(0) = −Q1(0) = −CV0 and Q̇(0) = 0.
Use of a trial solution of the form eiωt leads to

ω =
iR

2L
± ω0, ω0 ≡

√
2

LC
− R2

4L2
, (2)

so the (real) solution that obeys the initial conditions can be written as

Q(t) = −CV0 e−Rt/2L

(
cos ω0t +

R

2Lω0
sinω0t

)
, I(t) =

Q̇

2
=

V0

Lω0
e−Rt/2L sinω0t. (3)

The energy dissipated by the resistor R is

ΔU =

∫ ∞

0

I2R dt =
V 2

0 R

L2ω2
0

∫ ∞

0

e−Rt/L sin2 ω0t dt =
V 2

0 R

L2ω2
0

2ω2
0

(R/L)(R2/L2 + 4ω2
0)

=
CV 2

0

4
=

Ui

2
, (4)

4The YouTube video https://www.youtube.com/watch?v=cmverrUVOQA adds a motor + mechanical
load to the circuit, so that the “missing” energy can be “seen” as the mechanical work done after the switch
is closed, thereby avoiding the need to consider radiation or even Joule heating, which concepts the video
author finds too abstract. Yet, this author gets it right that a dissipative mechanism is required for the
circuit to end up with only half of the initial stored field energy.

5As noted in [13], when a capacitor is discharged near a radio, the latter detects a burst of noise at any
frequency, associated with the initial “switching” transients that last a few nsec. See also the caption of
Fig. 3 of [7]. For additional commentary on this phenomenon, see [41].

6Some authors [12, 17, 18, 20, 21, 30, 31, 32, 34] have argued that the two-capacitor problem is analogous
to the “two-tank problem,” in which water is transfered from one tank to another via a connecting pipe
(although this “plumbing analogy” was objected to already in [13]). If the water were frictionless, the
eventual “missing” potential energy (i.e., gravitational-field energy) would be radiated away by gravitational
waves. Since this is a very weak process, the frictionless water would oscillate from one tank to the other
for a very long time, before eventually coming to equilibrium with each tank half full. In practice, the
friction (viscosity) of water is large enough that there would be no observable oscillation of the water (i.e.,
overdamped “oscillation”).
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using Dwight 861.10.7 Thus, if the voltage drop associated with the dissipative mechanism
has the form IR for a constant R, the dissipated energy equals the “missing” energy Ui/2 =
CV 2

0 /4. It does not, however, follow that this demonstrates R to be purely an Ohmic
resistance.

Indeed, for low Ohmic resistance, the current in the circuit would perform a damped
oscillation with nominal angular frequency ω0 ≈ √

2/LC , and the associated electric and
magnetic dipole radiation would have power well described by Prm(t) = I2(t)Rrad where Rrad

is a constant with dimensions of electrical resistance.

2.2 Model Calculation of Magnetic Dipole Radiation

We assume that the wires form a circle of radius a and we neglect charge accumulation
in the wires compared to that on the capacitor plates. In this approximation the current
in the wires is spatially uniform, and the total electric dipole moment of the system (with
symmetrically arrayed capacitors) is constant. Then, electric dipole radiation does not exist,
and magnetic dipole radiation dominates.

The “radiation resistance” of this circuit causes a voltage drop Vrad within the circuit
that can be identified as

Vrad(t) =
Prad(t)

I(t)
= I(t)

Prad(t)

I2(t)
≡ I(t)Rrad , (5)

where Prad is the radiated power, I(t) is the current in the wire, and the radiation resistance
is Rrad = P/I2 The latter is constant in the further approximation that the damping time
is large compared to the period of oscillation of the current, i.e., Ï ≈ −ω2

0I ≈ 2I/LC.
To estimate the radiated power we note that the magnetic moment m of the circuit is

(in Gaussian units)

m(t) =
πa2I(t)

c
, (6)

where c is the speed of light. According to the Larmor formula [42], the radiated power is

Prad =
2m̈2

3c3
=

2π2a4Ï2

3c5
≈ 2π2a4ω4

0I
2

3c5
. (7)

The radiation resistance is

Rrad =
Prad

I2
≈ 2π2

3c

(aω0

c

)4

=
25π6

3c

(a

λ

)4

≈ 3 × 105
(a

λ

)4

Ω, (8)

noting that ω0 = 2πc/λ, and 1/c in Gaussian units equals 30 Ω.
While this radiation resistance appears large at first glance, in practice a/λ (the ratio

of the size of the circuit compared to the wavelength of the radiation) will be quite small,
and the circuit would oscillate a very long time before the “missing” energy CV 2

0 /4 would
be radiated away.

7In [1], the self inductance was ignored, so the resulting circuit equation Q̇ = −2Q/RC has the solution
Q(t) = −CV0 e−2t/RC, with I(t) = Q̇/2 = (V0/R) e−2t/RC. Then, the total energy dissipated by the resistor
R is ΔU =

∫ ∞
0

I2R dt = (V 2
0 /R)

∫ ∞
0

e−4t/RC dt = CV 2
0 /4 = Ui/2.
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2.3 An Experiment

Hence, it is useful to consider the only experimental data in the literature related to the two-
capacitor problem, in Fig. 3 of [7], shown on left on the next page, where the current trace has
10 μs per horizontal (time) division. This experiment was on the “short circuit” discharge of
a single capacitor with C = 11.5 μF, where the observed frequency of the damped oscillations
was f = 41 kHz (λ = 7.3×105 cm), and the damping time was observed to be approximately
two periods, τ ≈ 2/f . Considering the equivalent circuit to be a series R-L-C circuit, where
the charge on the capacitor varies as Q = Q0 eiωt, the (complex) angular frequency ω is

ω =
1√
LC

√
1 − R2C

4L
+

iR

2L
≈ 1√

LC
+

iR

2L
= 2πf +

i

τ
, (9)

where the approximation holds for small resistance R, as holds for this example. Then the
observed frequency implies that the self inductance of the circuit was L = 1/4π2f2C = 1.3 μH
(consistent with the circuit being a loop of 2-cm radius made of 24-gauge wire), and the
observed damping time implies that the effective resistance was R = fL = 0.05 Ω.

The wires in the circuit were stated to be “very short,” such that it is implausible that
the Ohmic resistance of the circuit was 0.05 Ω (for example, the resistance of 2000 feet
of 24-gauge wire is 0.05 Ω). However, the conventional capacitor contained a “rolled up”
sandwich of foil and dielectric, for which the equivalent series resistance of the thin foil was
very plausibly close to the observed 50 mΩ.8 In contrast, the radiation resistance (8) is only
1.7 × 10−17 Ω for a = 2 cm and λ = 7.3 × 105 cm.

This supports the view in many of the discussions of the two-capacitor problem [1]-[38]
that the Ohmic resistance of the circuit dissipates the vast majority of the “missing” energy
(unless, of course, the electrical circuit is used to drive a nonelectrical load that dissipates
the energy, as in footnote 2).
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