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Laboratory exercise 4

• Any questions or problems?
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Mid-term feedback summary

• Lecture pace (too fast, too slow or about right?):

• About right   !

• Lecture content (too simple, too difficult or about right?):

• Mostly about right   "

• Some things are too simple, some a bit difficult

• Some material is only explained briefly making 
understanding difficult

• Some of the mathematical explanations are a bit simple, but 
still useful
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Mid-term feedback summary

• Exercise content (too simple, too difficult or about right?):

• Mostly about right, parts are a bit difficult   #

• Exercises are heavily based on programming with less 
geology than the lectures

• A bit difficult and time consuming to learn Python so 
quickly

• Hours per week on this course:

• 2-3 to ~15   #

• 25 hours per credit point, 125 hrs expected for this course
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Mid-term feedback summary

• Most helpful aspects of the course:

• Combination of geology and programming exercises   $

• Learning to use Python and NumPy   $

• Visualisation of the advection and diffusion equations   !

• Clear exercises with no trick questions   $

• Least helpful aspects of the course:

• Can get stuck with programming issues and not be able to 
progress to understand the geological problems   %

• Lecture on geochronological ages unrelated to other 
course material   %
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Mid-term feedback summary

• Suggestions for improving the course:   $

• More time could be spent to qualitatively explain lecture 
material

• Part of the exercises could be “brainless”, where a set of 
instructions are followed to introduce concepts; other part 
could be the like recent exercises

• Younger students could also be encouraged to take this 
course - Not just 3rd year and up

• Questions can sometimes be hidden in the long exercise 
handouts, it would help to make the questions more clear

7
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Goals of this lecture

• Introduce the basic relationship for viscous flow of rock and 
ice

• Explore two different end-member types of viscous flow in a 
channel

• Discuss the effects of temperature on viscosity and nonlinear 
viscosity

8
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Examples of viscous flow: Alpine glaciers

• Alpine glaciers flow downhill under their own weight

9

Riggs Glacier, Alaska, USA
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• Modern uplift rates are relatively rapid, 
especially beneath the Gulf of Bothnia

6.10 Postglacial Rebound 435

Figure 6.14 Subsidence due to glaciation and the subsequent postglacial
rebound.

discussed in Section 2–2. However, mountain building is so slow that dy-
namic effects can be neglected; that is, the mantle beneath a mountain is in
essential hydrostatic equilibrium throughout the life cycle of the mountain.
The growth and melting of ice sheets, on the other hand, occur sufficiently
fast so that dynamic effects are important in the adjustment of the mantle
to the changing surface load. The thick ice sheet that covers Greenland has
depressed the surface several kilometers so that it is below sea level in places.
The load of the ice sheet has forced mantle rock to flow laterally, allowing
the Earth’s surface beneath the ice to subside. During the last great ice
age Scandinavia was covered with a thick ice sheet that caused considerable
subsidence of the surface. When the ice sheet melted about 10,000 years
ago the surface rebounded. The rate of rebound has been determined by
dating elevated beaches. We will now show how these data can be used to
determine the solid-state viscosity of the mantle. The process of subsidence
and rebound under the loading and unloading of an ice sheet is illustrated
in Figure 6–14.

To determine the response of the Earth’s mantle to the removal of an ice

Helsingin Sanomat, 19.3.2012

Turcotte and Schubert, 2002

Glacio isostatic adjustment

10

Surface uplift due to glacio isostatic adjustment 
is controlled by flow of the underlying 
asthenosphere
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Lava flows…

11

A’a flowing during the 1984 eruption
of Mauna Loa, Hawai’i, USA

US Geological Survey
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or resists flow (explodes)
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http://volcanoes.usgs.gov/

Crater Lake Caldera, Oregon, USA

http://volcanoes.usgs.gov/
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or resists flow (explodes)

13

http://volcanoes.usgs.gov/

Crater Lake Caldera, Oregon, USA

What do all of these processes have in common?
Viscous flow

http://volcanoes.usgs.gov/
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What is a fluid?

• Fluid: Any material that flows in response to an applied stress

• Deformation is continuous

• Stress is proportional to strain rate 
 
 
 
where ! is the shear stress, "#⁄"$ is the velocity gradient 
(equivalent to strain rate) and # is the velocity in the  
%-direction

• What does this suggest for deforming rock or ice? 

14
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Viscosity, defined

• Constant of proportionality & is known as the dynamic 
viscosity, or often simply viscosity  
 
 

• Viscosity has units of Pa s (Pascal seconds) or kg m-1 s-1

• You can think of viscosity as a resistance to flow

• Higher viscosity → more resistant to flow, and vice versa

• The terms kinematic viscosity and bulk viscosity (or 
compressibility) are not the same thing as the dynamic 
viscosity

15

1-D:

http://en.wikipedia.org

Low viscosity

High viscosity

⌧ = ⌘
du

dz

http://en.wikipedia.org/wiki/Viscosity
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Approximate viscosities of common materials

• Viscosity of natural materials is hugely variable

• Range of almost 20 orders of magnitude for 
rocks and lava

16

Material Viscosity [Pa s]

Air 10-5

Water 10-3

Honey 101

Basaltic lava 103

Ice 1010

Rhyolite lava 1012

Rock salt 1017

Granite 1020

A honey dipper works 
because of the 

viscosity of honey
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⌧ = ⌘
du

dz

Newtonian (linear) viscosity

• A Newtonian material has a linear relationship between 
shear stress and strain rate

• In other words, & is a constant value that does not depend 
on the stress state or flow velocity

• Air, water and thin motor oil are practically Newtonian fluids

• Rocks rarely deform as Newtonian fluids

17
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Reynolds number:  
Laminar versus turbulent flow

• We have assumed all of our flows are laminar thus far

• Flow behavior can be estimated using the Reynolds number  
 
 
 
where ' is the fluid density, ū is the mean velocity and ( is the 
pipe diameter

• Flows typically become turbulent for Re > 2200
18

424 Fluid Mechanics

Figure 6.7 Dependence of the friction factor f on the Reynolds number
Re for laminar flow, from Equation (6–41), and for turbulent flow, from
Equation (6–42).

Figure 6.8 Illustration of the difference between (a) laminar and (b) turbu-
lent flow. Laminar flow is steady, and the fluid flows parallel to the walls:
lateral transport of momentum takes place on a molecular scale. Turbulent
flow is unsteady and has many time-dependent eddies and swirls. These
eddies are much more effective in the lateral transport of momentum than
are molecular processes. Therefore, the friction factor (pressure drop) in
turbulent flow is larger at a prescribed Reynolds number (flow velocity).

stress and rate of strain as given in Equation (6–1) or Equation (6–31)
exists for turbulent flow. It is found empirically that

f = 0.3164 Re−1/4 (6.42)

in the turbulent flow regime. This result is also shown in Figure 6–7 along
with the transition from laminar to turbulent flow.

Problem 6.7 Determine the Reynolds number for the asthenospheric flow
considered in Problem 6–5. Base the Reynolds number on the thickness of
the flowing layer and the mean velocity (u0 = 50 mm yr−1 and ρ = 3200 kg
m−3). This problem illustrates that the viscosity of mantle rock is so high
that the Reynolds number is generally small.

Laminar Turbulent

Re =
⇢ūD

⌘

Fig. 6.8, Turcotte and Schubert, 2002



www.helsinki.fi/yliopistoIntro to Quantitative Geology

Styles of viscous flow: Couette flow

19

416 Fluid Mechanics

Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.

To evaluate the constants, we must satisfy the boundary conditions that
u= 0 at y = h and u= u0 at y = 0. These boundary conditions are known as
no-slip boundary conditions. A viscous fluid in contact with a solid bound-
ary must have the same velocity as the boundary. When these boundary
conditions are satisfied, Equation (6–11) becomes

u =
1

2µ

dp

dx
(y2 − hy) −

u0y

h
+ u0. (6.12)

If the applied pressure gradient is zero, p1 = p0 or dp/dx = 0, the solution
reduces to the linear velocity profile

u = u0

(

1 −
y

h

)

. (6.13)

This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1

2µ

dp

dx
(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y −
h

2
, (6.15)

$

$

$

Fig. 6.2a, Turcotte and Schubert, 2002
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Styles of viscous flow: Couette flow
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y

h
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velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1
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dp
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(y2 − hy). (6.14)
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the channel y′, where
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2
, (6.15)

• What is the velocity distribution across this channel?

$

$

$

Fig. 6.2a, Turcotte and Schubert, 2002
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Styles of viscous flow: Couette flow
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(
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y

h
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This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1

2µ

dp

dx
(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y −
h

2
, (6.15)

• What is the velocity distribution across this channel?

• Couette flow occurs when there is (1) a difference in velocity 
between the channel boundaries and (2) effectively no 
pressure gradient 

$

$

$

Fig. 6.2a, Turcotte and Schubert, 2002
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Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.
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This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
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$

$

$

Couette flow solution

• The general solution for the 1-D velocity of a fluid across a 
channel with boundary conditions (1) # = 0 at $ = ℎ and 
(2) # = #0 at $ = 0 is  
 
 
 
where "*⁄"% is the applied pressure gradient

20

u =
1

2⌘

dp

dx

�
z

2 � hz

�
� u0z

h

+ u0

Fig. 6.2a, Turcotte and Schubert, 2002
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Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.
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This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1

2µ

dp
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(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y −
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2
, (6.15)

$

$

$

Couette flow solution

• If we assume "*⁄"% = 0,  
 
 
 
reduces to 
 

21

u =
1

2⌘

dp

dx

�
z

2 � hz

�
� u0z

h

+ u0

u = u0

⇣
1� z

h

⌘

Fig. 6.2a, Turcotte and Schubert, 2002
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Poiseuille flow

22
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Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.

To evaluate the constants, we must satisfy the boundary conditions that
u= 0 at y = h and u= u0 at y = 0. These boundary conditions are known as
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If the applied pressure gradient is zero, p1 = p0 or dp/dx = 0, the solution
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(
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. (6.13)

This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1

2µ

dp

dx
(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y −
h

2
, (6.15)

$ʹ

$
$

$

$ $ʹ

$ʹ

$ʹ

Fig. 6.2b, Turcotte and Schubert, 2002



www.helsinki.fi/yliopistoIntro to Quantitative Geology

• What is the velocity distribution across this channel?

Poiseuille flow
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• What is the velocity distribution across this channel?

• Poiseuille flow occurs when (1) there is no velocity difference 
between the walls of the channel and (2) a pressure gradient is 
applied 

Poiseuille flow

22
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Poiseuille flow solution

• Using the same equation as we have previously, we can start 
with the general solution

• If we set #0 = 0, the velocity solution becomes 
 

23

416 Fluid Mechanics

Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.
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Salt tectonics

• Let’s look at an example geological system that can exhibit 
both Couette and Poiseuille flow behavior:  
Sediment atop rock salt

24

http://commons.wikimedia.org

Finlay Point  
Cape Breton Island, Nova Scotia, Canada

http://commons.wikimedia.org/wiki/File:Cape-Breton-Diapir-Finlay-Point_038.jpg
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Salt tectonics

• Let’s look at an example geological system that can exhibit 
both Couette and Poiseuille flow behavior:  
Sediment atop rock salt

24

http://commons.wikimedia.org

Finlay Point  
Cape Breton Island, Nova Scotia, Canada

Head of salt diapir

http://commons.wikimedia.org/wiki/File:Cape-Breton-Diapir-Finlay-Point_038.jpg
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A generic salt tectonic system model

• Salt tectonics refers to the 
deformation of rock as a result of the 
presence of significant salt layers or 
bodies

• In this example, we have a simple 
system of an ocean adjacent to a 
continent and underlain by a uniform 
salt layer

25

and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z

h1

minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
Z

h2

maxðsxxÞ dz ¼
1
2
rg h22

ð1þ sinfÞ
ð1% sinfÞ

ð5bÞ

(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z

@hðxÞ
@x

zðhc % zÞ ð6Þ

Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.
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and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z

h1

minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
Z

h2

maxðsxxÞ dz ¼
1
2
rg h22

ð1þ sinfÞ
ð1% sinfÞ

ð5bÞ

(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z

@hðxÞ
@x

zðhc % zÞ ð6Þ

Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.

r 2004 Blackwell Publishing Ltd,Basin Research, 16, 199^218 201

Salt tectonics driven by differential sediment loading

Gemmer et al., 2004



www.helsinki.fi/yliopistoIntro to Quantitative Geology

A generic salt tectonic system model

• Let’s assume the overburden is stable, 
which way would the salt flow and 
what is the distribution of velocities?

• If the overburden is stable, a pressure 
gradient resulting from the different 
sediment thicknesses drives Poiseuille 
flow in the salt

26

and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z

h1

minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
Z

h2

maxðsxxÞ dz ¼
1
2
rg h22

ð1þ sinfÞ
ð1% sinfÞ

ð5bÞ

(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z

@hðxÞ
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Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.
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and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z

h1

minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
Z

h2

maxðsxxÞ dz ¼
1
2
rg h22

ð1þ sinfÞ
ð1% sinfÞ

ð5bÞ

(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z

@hðxÞ
@x
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Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.
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and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z

h1

minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
Z

h2

maxðsxxÞ dz ¼
1
2
rg h22

ð1þ sinfÞ
ð1% sinfÞ

ð5bÞ

(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z
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Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.
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and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z

h1

minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
Z

h2

maxðsxxÞ dz ¼
1
2
rg h22

ð1þ sinfÞ
ð1% sinfÞ

ð5bÞ

(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z

@hðxÞ
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Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.
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and initial velocity analytically and in the section‘Compar-
ison of analytical and numerical results’ we compare these
results with those from the numerical models.

Thin sheet approximation of the stability
analysis

Lehner (2000) uses local balance of stresses to predict in-
itial deformation styles of systems with a viscous substrate
overlain by frictional-plastic sediments of laterally varying
thickness. In this section, we re-derive the Lehner (2000)
stability criterion using balance of the horizontal bulk
forces that act on the transition zonewhere the overburden
is thinning.We consider vertical plane-strain initial geo-
metries, like those of Fig.1, inwhich the base is horizontal
and the linear viscous layer has a uniform thickness be-
neath a variable thickness frictional-plastic overburden.
No consideration is given to theway inwhich the geometry
was created or to the ¢nite deformation. Consider the hor-
izontal force balance of the overburden transition zone
outlined by the thick line (Fig. 2). The upper surface is
stress free and forces F1 and F2 result from the vertically
integrated horizontal stresses in the frictional overburden.
The di¡erential overburden load also induces a Poiseuille
£ow in the viscous layer, which produces shear traction on
the base of the overburden resulting in the horizontal
force Fp.The overburden is stable against outward £ow in
the downdip direction when

F1 þ F2 þ Fp < 0 ð1Þ
using the sign convention that forces directed to the right
are positive. In this case the forces, F1 and F2, are below

their respective extensional and contractional yield values.
By introducing the yieldvalues ofF1andF2, Eqn. (1) can be
rewritten as the stability condition for outward £ow of the
overburden

F1e þ F2c þ Fp < 0 system is stable ð2aÞ

F1e þ F2c þ Fp < 0 system is unstable ð2bÞ

where F1e and F2c are the forces that result from limiting
extensional and contractional horizontal stresses in the
plastic overburden, above locations x1 and x2. The Mohr^
Coulomb criterion is used to represent the cohesionless
frictional-plastic behaviour of the overburden

txz ¼ szz % sxx ¼ &ðsxx þ szzÞ sinf ð3Þ

txz is the shear stress andf is the internal angle of friction.
To estimate these limiting horizontal forces, we assume
that the principal stresses in the overburden are horizontal
(sxx) andvertical (szz) and that szz is equal to the lithostatic
pressure (small angle approach, Dahlen,1990), which yields

sxx ¼ %rgðhc þ hðxÞ % zÞ ð1& sinfÞ
ð1& sinfÞ

ð4Þ

where r is the density, g is the gravitational acceleration
and (hc1h(x)% z) is the depth.The resulting forces are

F1e ¼ %
Z
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minðsxxÞ dz ¼
1
2
rg h21

ð1% sinfÞ
ð1þ sinfÞ ð5aÞ

F2c ¼ %
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1
2
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(note the di¡erent signs in the force expressions due to the
opposite orientations of the outward normal vectors to the
two surfaces onwhich the forces are acting).

To estimate the basal traction force, Fp, we assume that
the topography changes slowly with position and therefore
that slopes are small.The thin sheet approximation (Lob-
kovsky & Kerchman, 1991) then gives the distribution of
horizontal velocities, vp, in the viscous substratum subject
to variations of lithostatic pressure as

vp ¼ % rg
2Z

@hðxÞ
@x

zðhc % zÞ ð6Þ

Fig.1. Deformation styles in systems where a frictional-plastic
overburden (white) of varying thickness overlies a viscous
substratum (grey). (a) Stable overburden. A pressure-driven
Poiseuille £ow in the viscous channel dominates deformation.
(b) Unstable overburden.The Couette £ow-induced overburden
velocities are smaller than the Poiseuille £ow velocities in the
viscous channel. (c) Unstable overburden. Couette £ow
dominates the deformation pattern.

Fig. 2. Horizontal forces acting on the overburden transition
zone (outlined by a thick solid line) when the model is stable.
F1 and F2 are forces related to the horizontal stresses within the
overburden. Fp is the traction force caused by the Poiseuille £ow
in the viscous channel. h1 and h2 are the updip and downdip
overburden thicknesses and hc is the thickness of the salt.r is the
density,f is the internal angle of friction and Z is the viscosity.

r 2004 Blackwell Publishing Ltd,Basin Research, 16, 199^218 201
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Salt tectonic numerical model

• Salt/sediment deformation behavior was explored using 2D 
viscous-plastic numerical models

• 1 km of linear viscous salt overlain by 1.5-4.5 km of sediment

• No imposed velocity at margins, purely gravity driven
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bu¡er zones are su⁄ciently wide to prevent any in£uence
of the model boundaries on the deformation.The width of
the transition region, l, is determined by the value of
d5100 km (l approximately equals 2d, Eqn. (12)) and was
chosen to approximate a continental margin in which the
shelf edge to abyssal plain transition is 200 kmwide, corre-
sponding to typical continental margins (e.g., Demercian
et al., 1993; Peel et al., 1995; Tari et al., 2002). The width of
the salt layer (960 km) in the numerical models used for
the stability analysis is chosen to be much wider than the
width of the overburden transition zone. Consequently,
the initial deformation pattern used for comparison with
the analytical stability theory is not a¡ected by the ¢nite
width of the numerical model.

TheEulerian andLagrangian grids consist of 88vertical
by 800 horizontal elements.The grids are adjusted verti-
cally to form the half-Gaussian-shaped topography (Fig. 4;
Eqn. (19)). Thus, the numerical resolution varies from
one end of the overburden to the other.However, the reso-
lution is uniform throughout the viscous layer.The solu-
tion space has a stress-free top surface. No horizontal or
vertical velocities are permitted at the vertical model
boundaries or at the base of the model. Viscous £ow is

hence driven solely by the pressure gradient set up by dif-
ferential loading of the frictional-plastic overburden ma-
terial on the viscous substrate. For the stability tests, the
densities of both the overburden and the viscous layerhave
nominal values of 1000 kgm! 3 for ease of comparison of
the results with the non-dimensional thin sheet stability
calculation in Eqn. (8). In later experiments, the densities
are chosen to correspond to those of sediment and salt
(Table 1).

Model results

The initial velocities computed for three di¡erent ¢nite-
element stability experiments are shown in Fig. 5. Figure
5a shows the velocities predicted for a model with a rela-
tively large downdip overburden thickness (h25 2.5 km).
For this model, the traction force at the base of the over-
burden is insu⁄cient to cause the overburden to fail.
Therefore, the overburden does not move horizontally
and channel Poiseuille £ow in the viscous layer dominates
the system. The Poiseuille £ow is focused in the region
where the overburden is thinning and the pressure gradi-
ent is high. In Fig. 5b the downdip overburden is 2.35 km

Table1. Parameter values used in the numerical models.

Parameter
Stability
models

Finite deformation models

Model 1
(Fig. 8)

Model 2
(Fig.9)

Model 3
(Fig.10)

Model 4
(Fig.11)

Model 5
(Fig.12)

Model 6
(Fig.13)

Model width (km) 1000 1000 600 300 600 600 600
Salt width, w (km) 960 960 420 240 420 420 420
Transition zone width, l (km) 200 200 200 200 200 200 200
Salt thickness, hc (m) 1000 1000 1000 1000 1000 1000 1000
Downdip overburden thickness, h2 (m) 600^4200 500 500 500 500 500 500
Updip overburden thickness, h1 (m) 4500 4500 4500 4500 4500 500 500
Overburden density (kg m! 3) 1000 2300 2300 2300 2300 2300 2300
Salt density (kg m! 3) 1000 2200 2200 2200 2200 2200 2200
Overburden internal angle of friction,f (1) 5^50 20 20 20 20 20 20
Salt viscosity, Z (Pa s) 1018 1018 1018 1018 1018 1018 1018

Sediment progradation rate,Vsp (cmyr!1) ^ ^ ^ ^ 0 1 5

Fig.4. Numerical model set-up.The model domain is 1000 km long and height varies from h1 to h2 over a length, l " 2d.Vertical
exaggeration5 55. Light grey region: Frictional-plastic material, internal angle of frictionf. Dark grey region: Linear viscous material,
viscosity Z.

r 2004 Blackwell Publishing Ltd,Basin Research, 16, 199^218204

L. Gemmeret al.
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Quick summary of model results

The Gemmer et al. model 
shows the salt tectonic 
behavior and flow style in 
the salt depends on the 
thickness of the downdip 
sedimentary layer
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thick. For this model the basal traction caused by the £ow-
ing viscous material is su⁄cient to cause overburden
yielding, and the system is characterised by a combination
of Poiseuille and Couette £ow. Figure 5c shows a model
with a thin (1.5 km) downdip overburden. In this case, the
Couette velocity caused by the unstable, moving overbur-
den is signi¢cantly greater than the Poiseuille velocity and
a linear velocity pro¢le develops in the viscous layer.Thus
the numerical model results conform to the conceptual
£ow regimes illustrated in Fig.1.

COMPARISON OFANALYTICAL AND
NUMERICAL RESULTS
Stability results

The stability criterion de¢ned byEqn. (8) is shown as a so-
lid curve (Fig. 6) as a function of the internal angle of fric-
tion f and the downdip overburden thickness, h!2, for a
constant value of the updip overburden thickness,
h!1 ¼ 4:5. For a given internal angle of friction, f a mini-
mum value of h!2 is needed for the overburden to remain
stable. For progressively higher internal angles of friction,
the overburden strength increases and the h!2needed to
keep the overburden stable decreases.To test the response

of the ¢nite-element model against the stability criterion,
we examine sets of models inwhich h!1 is held constant, and
h!2 is varied for a given overburden strength f. Numerical
model sets of this type span 514f4501 (Fig. 6) to yield a
suite of model results for comparison with the non-di-
mensional analytical stability criterion. The numerical
model results are converted to the non-dimensional form
using hc and k as de¢ned in Eqn. (8).The results are coded
according to the initial velocity pattern predicted for the
¢rst 10 time steps (before signi¢cant changes in the geo-
metry occur) (Fig. 6). The overall results show a good
agreement between the ¢nite-element models and the
analytically predicted stability criterion. This indicates
that the numerical model is capable of calculating stresses
and overburden stability associated with £ows caused by
di¡erential loading. It is not possible to determine the ab-
solute accuracy of the numerical results from the compar-
ison of the numerical model and the analytical predictions
because the analytical theory is itself approximate.

Initial velocities

A suite of similar numerical models was compared with
the analytical Couette velocity prediction of Eqn. (12). For
these models, h!1 ¼ 4:5 and the internal angle of friction

Fig. 5. Velocities predicted by the numerical model. Arrows represent horizontal velocity vectors, the magnitude ofwhich is relative to
the scale in each frame. Light grey: Frictional-plastic overburden. Dark grey: viscous substratum. (a) Poiseuille-dominated £ow.
(b) Combined Poiseuille and Couette £ow. (c) Couette-dominated £ow. Note in all three cases that £ow is restricted to the transition
zone.

r 2004 Blackwell Publishing Ltd,Basin Research, 16, 199^218 205
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Temperature dependence

• In general, rock viscosity depends strongly temperature 
 
 
 
where ,0 and - are material properties known as the  
pre-exponent constant and activation energy, . is the 
universal gas constant and /K is temperature in Kelvins 
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Temperature dependence

• In general, rock viscosity depends strongly temperature 
 
 
 
where ,0 and - are material properties known as the  
pre-exponent constant and activation energy, . is the 
universal gas constant and /K is temperature in Kelvins 

• What happens to rock viscosity at /K approaches absolute 
zero?
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Temperature dependence

• In general, rock viscosity depends strongly temperature 
 
 
 
where ,0 and - are material properties known as the  
pre-exponent constant and activation energy, . is the 
universal gas constant and /K is temperature in Kelvins 

• What happens to rock viscosity at /K approaches absolute 
zero?

• What happens as /K approaches infinity?
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Temperature-dependent viscosity

• The viscous strength of quartz, for 
example, rapidly decreases with increasing 
temperature

• Note that the viscous strength is simply 
the viscosity & multiplied by a nominal 
strain rate

• How might temperature-dependent 
viscosity be important in the Earth?
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Nonlinear viscosity

• In general, rocks will deform about 8 times as quickly when the 
applied force is doubled

• Relationship between shear stress and strain rate is thus 
NOT linear

• Mathematically, we can say 
 
 
 
where 0 is the power law exponent and ,eff is a material 
constant

• The power law exponent for many rocks is 2-4

• ,eff is similar to &, but has units of Pan s
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Flow of glaciers

• Gravity drives the flow of alpine 
glaciers from higher elevation zones 
of accumulation to lower elevation 
zones of ablation 

• Depending on the temperature of the 
region and the ice itself, the glacier 
may either be frozen to the bedrock 
(cold-based) or sliding along the 
bedrock (warm-based)
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Fig. 9.14, Ritter et al., 2002
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How do glaciers move?

• Basal sliding 

• Bottom of the glacier sliding along the 
substrate

• Can occur as a result of slip atop a thin 
water layer, melting/re-freezing or slip 
atop water-saturated sediment

• Internal deformation 

• Ice flow is nonlinear viscous and sensitive 
to temperature

• Deformation is concentrated near the 
bed

35

Briksdal Glacier, Norway
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Flow of glaciers

• In the next lecture and in the laboratory exercise this week, 
we will look more closely at glacial flow

• Flow down an inclined slope

• Flow velocity across a glacial valley

36

6.2 One-Dimensional Channel Flows 417

Figure 6.3 Unidirectional flow of a constant thickness layer of viscous fluid
down an inclined plane.

we find

u =
1

2µ

dp

dx

(

y′2 −
h2

4

)

. (6.16)

The velocity profile is a parabola that is symmetric about the centerline of
the channel, as shown in Figure 6–2b.

Problem 6.1 Show that the mean velocity in the channel is given by

ū = −
h2

12µ

dp

dx
+

u0

2
. (6.17)

Problem 6.2 Derive a general expression for the shear stress τ at any
location y in the channel. What are the simplified forms of τ for Couette
flow and for the case u0 = 0?

Problem 6.3 Find the point in the channel at which the velocity is a
maximum.

Problem 6.4 Consider the steady, unidirectional flow of a viscous fluid
down the upper face of an inclined plane. Assume that the flow occurs in a
layer of constant thickness h, as shown in Figure 6–3. Show that the velocity
profile is given by

u =
ρg sinα

2µ
(h2 − y 2), (6.18)

where y is the coordinate measured perpendicular to the inclined plane
(y = h is the surface of the plane), α is the inclination of the plane to
the horizontal, and g is the acceleration of gravity. First show that

dτ

dy
= −ρg sinα, (6.19)

$
$
$

Fig. 6.3, Turcotte and Schubert, 2002
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Recap

• Viscous flow is a common deformation behavior for rock and 
ice, where the deformation rate is proportional to the applied 
shear stress

• Couette and Poiseuille flows refer to end-member behaviors 
of linear viscous channel flows, and depend on the channel 
boundary velocities and pressure changes along the channel

• Most rocks do not exhibit a linear relationship between stress 
and strain rate (nonlinear viscosity), and their viscosity is 
strongly temperature-dependent

37



www.helsinki.fi/yliopistoIntro to Quantitative Geology

References

Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment 
loading: stability analysis and finite-element experiments. Basin Research, 16(2), 199–218.

Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process Geomorphology (4 ed.). MgGraw-Hill Higher Education.

Stüwe, K. (2007). Geodynamics of the Lithosphere: An Introduction (2nd ed.). Berlin: Springer.

Turcotte, D. L., & Schubert, G. (2002). Geodynamics (2nd ed.). Cambridge, UK: Cambridge University Press.

38


