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Abstract: Spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) provides a new 
opportunity for land observation. This study is the first to compare and evaluate the performance 
of the only two spaceborne GNSS-R satellite missions whose data are publicly available, i.e., the 
UK’s TechdemoSat-1 (TDS-1) and the US’s Cyclone Global Navigation Satellite System (CYGNSS), 
for sensitivity analysis with SMAP SM on a daily basis and soil moisture (SM) estimates on a 
monthly basis over Mainland China. For daily sensitivity analysis, the two data were matched up 
and compared for the period (i.e., May 2017 through April 2018) when they coexisted (R = 0.561 vs 
R = 0.613). For monthly SM estimates, a back-propagation artificial neural network (BP-ANN) was 
used to construct a model using data from more than two years. The model was subsequently used 
to derive long-term and continuous SM maps over Mainland China. The results showed that TDS-
1 and CYGNSS agree and correlate very well with the SMAP SM in Mainland China (R = 0.676, MAE 
= 0.052 m3m-3, and ubRMSE = 0.060 m3m-3 for TDS-1; R = 0.798, MAE = 0.040 m3m-3, and ubRMSE = 
0.062 m3m-3 for CYGNSS). The retrieved results were further validated using monthly in situ SM 
data from dense sites across Mainland China. It was found that the SM derived from the TDS-1/ 
CYGNSS also correlated well with in situ SM (R = 0.687, MAE = 0.066 m3m-3, and ubRMSE = 0.056 
m3m-3 for TDS-1; R = 0.724, MAE = 0.052 m3m-3, and ubRMSE = 0.053 m3m-3 for CYGNSS). The results 
in this study suggested that TDS-1/CYGNSS and the upcoming spaceborne GNSS-R mission could 
be new and powerful data sources to produce SM data set at a large scale and with relatively high 
precision. 
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1. Introduction 

Global Navigation Satellite System Reflectometry (GNSS-R) is a technique that exploits the 
capability of GNSS satellites to act as a bistatic-radar with the GNSS satellites as its transmitters and 
the receiver capable of processing scattered signals from the Earth’s surface [1,2]. With the 
development of spaceborne observations, the GNSS-R technology provides new opportunities for 
Earth observation on a global scale. The first spaceborne GNSS-R was launched on the UK-Disaster 
Monitoring Constellation (UK-DMC) satellite in September 2003, which proved that spaceborne 
GNSS-R signals can reliably measure environmental parameters for ocean and land surface [3,4]. The 
TechdemoSat-1 (TDS-1), the experimental GNSS-R satellite, launched in July 2014, has demonstrated 
the strong sensitivity of the GNSS-R signal to various ocean and land parameters [5–9]. However, 
TDS-1 has limitations in data acquisition, both spatially and temporally, because the TDS-1 contains 
only one GPS-R payload and active for two out of every eight days, and the payload of TDS-1 stopped 
transmitting data in December 2018. The Cyclone Global Navigation Satellite System (CYGNSS) 
mission, launched into space in December 2016, contains eight microsatellites with the same payload 
as the TDS-1. The CYGNSS was designed to measure ocean winds in the tropics, while reflections 
observed from the satellites were also proved sensitive to land parameters [10–13]. Table 1 shows 
general information of the TDS-1 and CYGNSS missions. Compared to TDS-1 (10–35 days) [14], the 
CYGNSS microsatellites randomly receive GNSS-R signals with revisiting times of approximately 
2.8~7 hours per day [12,15]. 

Table 1. General Information of the TechdemoSat-1 (TDS-1) and Cyclone Global Navigation Satellite System 

(CYGNSS) missions.  

 TDS-1 CYGNSS 

Launch time 2014.7 2016.12 

Satellite Numbers 1 8 

Payload SGR-ReSI SGR-ReSI 

Spatial Resolution 

∼25 km×25 km (incoherent), ~1 km×

7km (coherent, theoretical minimum) 

[6] 

∼25 km×25 km (incoherent), ~0.6 km×6.6 

km (coherent, theoretical minimum) [12] 

Revisit Times 10~ 35 days [14] 2.8 ~ 7 hours [112,15] 

Coverage ± 90º latitude ± 38º latitude  

Frequency 1.57542 GHz 1.57542 GHz 

Inclination orbit 98.8° 35° 

Altitude ~825 km  ~520km 

 
Soil moisture (SM) has a significant impact on the earth’s ecosystem by affecting the hydrological 

processes and climate changes, and it also plays an important role in land surface evapotranspiration, 
water migration, and the carbon cycle [16,17]. This reveals the necessity to obtain and analyze SM 
information in the long-term and over a large scale for such applications. Common remote sensing 
approaches to measure SM on a large scale mainly rely on optical and microwave sensors [18,19]. 
Optical remote sensing data have high-spatial resolution (hundreds of meters) but are impacted 
greatly by cloud and mist. Passive microwave remote sensing data have high-temporal resolution 
(one or two half-orbit per day) with low-spatial distributions (tens of kilometers). Research results 
have shown methods to downscale the SM product from SM measurements (i.e., soil moisture ocean 
salinity (SMOS)) to obtain high-resolution SM maps at 1 km from the approximately 40 km native 
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resolution of the instrument; this is closer to the spatial resolution achieved by GNSS-R instruments 
[20,21]. Spaceborne GNSS-R is an attractive approach for regional and global scale SM measurements 
because the GNSS signal is in the L-band, which is the same as the SM missions such as soil moisture 
active and passive (SMAP) and SMOS satellites, making it optimal for SM remote sensing [22,23]. 
Additionally, a constellation of GNSS-R receivers shortens the revisit time compared to traditional 
microwave remote sensing sensors. 

Due to the abovementioned advantages of monitoring the SM with spaceborne GNSS-R, and in 
order to support the development of future GNSS-R satellites/constellations dedicated for monitoring 
the SM, many studies have focused on developing algorithms for SM estimation using the TDS-1 and 
CYGNSS observations [6,8,12,15,24,25]. Because TDS-1 and CYGNSS are both designed for ocean 
sensing, the data processing on land has inherent limitations, such as that they cannot receive 
adequate data from high altitude regions due to no consideration of land topography. Table 2 shows 
a summary of relevant studies using TDS-1 and CYGNSS to estimate SM. From Table 2, it can be 
concluded that notable gaps remain for evaluating use of the two data to estimate SM: 

1) No study compares the current two existing spaceborne GNSS-R missions (i.e., TDS-1 and 
CYGNSS) whose data are publicly available. The two missions and their data have several 
common points (e.g., the same payload SGR-ReSI and the same key observable DDM SNR 
for SM sensing). Precisely because of this situation, the comparisons between them will bring 
new insights into better using their data and provide reference information for designation 
of future GNSS-R payloads for soil moisture sensing. 

2) No attempt has been made to evaluate the performance of using the two data to estimate 
both daily and monthly SM, and a few studies focused on comparing the SM derived from 
CYGNSS with the SM derived from limited numbers of in situ sites. 

Table 2. Summary of relevant studies using TDS-1 and CYGNSS to estimate SM. The “key results” 
column is summarized from the following two aspects: 1) key conclusion and 2) accuracy evaluations. 
N/A represents “not applicable.” 

Publication Data 
used  Study area Objectives Key results 

Chew et al., 
2016 [6] TDS-1 Global 

1) Proposes effective 
reflected power (Pr,eff) and 
analyze the sensitivity of 
Pr,eff with SM; 
2) Qualitatively compares 
Pr,eff with SMOS SM 

1) Pr,eff can sense changes in SM; 
surface roughness and 
vegetation would affect the final 
accuracy 
2) N/A 

Camps et al., 
2016 [8] TDS-1 Global 

1) Analyzes the sensitivity 
of TDS-1 SNR with SMOS 
SM over different types of 
surfaces 
(2) Compares TDS-1 SNR 
with SMOS SM 

1) Vegetation cover decreases 
the sensitivity of SNR to SM 
2) R varies from 0.3 to 0.63 
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Camps et al., 
2018 [25] TDS-1 Global 

1) Analyzes the sensitivity 
of different observables 
extracted from the DDM 
(i.e., SNR, DDMpeak, Γ) with 
SM 
2) Validates the result with 
SMOS SM and in situ 
measurements from 
CEMADEM sites  

1) TDS-1 data quality, 
topography and vegetation 
decrease the sensitivity of 
observables to SM 
2) N/A 

Chew et al., 
2018 [12] CYGNSS 

Global (±38º 
latitude, ± 

90º 
longitude) 

1) Proposes surface 
reflectivity (SR), and use 
SR to estimate SM globally  
2) Validates the result with 
SMAP SM and in situ data 
from four COSMOS sites 

1) CYGNSS can provide global 
SM observations 

2) overall ubRMSE= 0.045m3m-3 

(vs. SMAP) 
ubRMSE varies from 0.044 to 
0.059m3m-3 (vs. in situ) 

 Kim et al., 
2018 [24] CYGNSS Western 

CONUS 

1) Proposes relative SNR 
(rSNR), and use rSNR to 
estimate SM 
2) Compares the results 
with SMAP SM and in situ 
data from three ISMN sites 

1) CYGNSS can fill the gap of 
SMAP SM  
2) R varies from 0.68 to 0.77 (vs. 
SMAP) 

Eroglu et al., 
2019 [15] CYGNSS 

North 
Carolina, 

USA 

1) Combines incidence 
angles, reflectivity etc. 
derived from CYGNSS and 
ancillary data using an 
ANN model to estimate 
SM; 
2) Validates the results 
with in situ data from 18 
ISMN sites 

1) CYGNSS can generate sub-
daily and high-resolution SM 
predictions, 
2) ubRMSE=0.0544 m3m-3 

This study TDS-1, 
CYGNSS 

Mainland 
China 

1) Compares and evaluates 
the performance of TDS-1 
and CYGNSS for SM 
estimations on both daily 
and monthly scale; 
2) Validates the GNSS-R 
derived SM by SMAP and 
dense (588) in situ 
networks over Mainland 
China 

1) TDS-1 and CYGNSS can 
produce SM data set with large 
scale and relatively high previse 
precision; 
2) R = 0.676, ubRMSE = 0.060 
m3m-3 for TDS-1 (vs SMAP);  
R = 0.687, ubRMSE = 0.056 m3m-3 
for TDS-1(vs. in situ) 
R = 0.798, and ubRMSE = 0.062 
m3m-3 for CYGNSS (vs SMAP) 
R = 0.724, ubRMSE = 0.053 m3m-3 
for CYGNSS (vs. in situ) 

 
Aiming to address the above-mentioned two issues, the overall objectives of this study are 1) for 

the first time ever to compare and evaluate the performance of the only two spaceborne GNSS-R 
satellite missions whose data are publicly available (e.g., TDS-1 and CYGNSS) for soil moisture 
estimations; and 2) comprehensively validates the GNSS-R derived soil moisture by taking advantage 
of the dense in situ networks over Mainland China. Specifically, the TDS-1 and CYGNSS data are 
matched up regionally and compared during their overlapping periods (i.e., May 2017 through April 
2018). For daily sensitivity analysis, the effective reflected power (Pr,eff) and the surface reflectivity 
(SR) proposed by Chew et al. [6,12] were used as proxies to evaluate their ability to estimate SM. For 
the monthly SM estimates, to reduce vegetation and ground effects, a new SM retrieval algorithm 
combining variables affecting SM (i.e., vegetation cover, surface roughness, topography, and 
precipitation) and data for deriving SM (i.e., SR and SMAP SM data) were constructed based on the 
back propagation ANN (BP-ANN). The model was applied to compute long-term (over one year) 
and large-scale (a 50-km grid for TDS-1 and a 10-km grid for CYGNSS) SM data sets over Mainland 
China. Finally, the results were validated by the SMAP SM products and in situ data. The results of 
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this study provide the possibility that TDS-1/ CYGNSS and the upcoming spaceborne GNSS-R 
missions could be new and powerful data sources to produce SM data set with large scale and 
relatively high previse precision. 

2. Data and Methods 

2.1. Spaceborne GNSS-R Dataset 

The study area is the region of Mainland China (73 through 135°E and 18 through 53°N), as 
shown in Figure 1. Data from TDS-1 and CYGNSS are used in this study. The two missions coexisted 
between the period from May 2017 to April 2018. TDS-1 level 1b data were downloaded via 
ftp.MERRByS.co.uk, and CYGNSS level 1 data, version 2.1, were downloaded via 
https://podaac.jpl.nasa.gov/. The DDM is the main observable of the data. One DDM is a two-
dimensional image generated by the scatter power from the surface of the specular point with the 
surroundings. DDMs are computed with a locally generated replica for different path delays and 
Doppler shifts. The SNR is computed from the averaged values of several delay-Doppler bins around 
the peak, to the average noise floor computed for delay lags before the reflected signal. Since the 
CYGNSS on-board data compression algorithm has an elevation upper limit of 600 m [12,13], which 
thus makes the valid observations mainly distributed in the southeastern part of Mainland China. 
For TDS-1, the reflected waveforms from surface with elevations over 3000 m were excluded, as done 
previously [6]. The TDS-1 and CYGNSS data were then filtered for 1) the antenna gain greater than 0 
dB (corresponding to uncertainties reported in the measured antenna gain patterns) [6] and 2) the 
elevation angle of the specular point higher than 30° (to keep the good-quality Left Hand Circularly 
Polarized (LHCP) data) [12]. Also, a parameter called DirectSignallDDM in the TDS-1 L1b data and 
Quality Flags (i.e., direct signal in DDM, low confidence in the GPS EIRP estimate) in the CYGNSS 
L1b data were used to select the good data acquisitions. The NASA Shuttle Radar Topographic 
Mission (SRTM) 90 m Digital Elevation Models (DEM) database was applied to compute the 
elevations of the TDS-1 and CYGNSS coverage areas. 

2.2. In situ Measurements 

Monthly averaged in situ SM data of 588 sites selected from the meteorological observation 
network of Mainland China were used for validation (Figure 1). Considering the complex 
geographical environment and climate conditions in China, the selected sites are distributed in seven 
provinces of China, with different land covers, climate conditions, and terrain distributions (Table 3). 
All the in situ SM data were collected at a depth of 10 cm. Additionally, as shown in Figure 1, to 
exclude the effects of vegetation cover, buildings, inland water bodies, etc., the selected sites were 
located in bare soil and low vegetated density regions (i.e., vegetation height < 5 m) identified by the 
Global Land Cover Map for 2009 (GlobCover 2009). 
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Figure 1. Locations of the 588 in situ soil moisture (SM) sites in Mainland China. The background map 
is the Global Land Cover Map for 2009 (GLCover 2009) data set. 

Table 3. Characteristics of the in situ measurements. 

Province Numbers 
of sites 

Lat/Lon Climate condition Land cover 

Jilin 48 41.1°~45.6° 
122.2°~130.3° 

Temperate continental 
monsoon 

Irrigated croplands 
Rainfed croplands 

Sichuan 181 26.5°~33° 
98.1°~108.3° 

Subtropical monsoon Irrigated croplands 
Rainfed croplands 

Yunnan 36 23.3°~27.4° 
98.5°~104.3° 

Tropical monsoon/ 
Plateau mountain 

Irrigated croplands 
Rainfed croplands 

Mosaic cropland/vegetation 
Mosaic vegetation/cropland 
Closed to open shrubland 

Hunan 60 25.1°~29.7° 
09.6°~114° 

Subtropical monsoon Irrigated croplands 
Rainfed croplands 

Mosaic cropland/vegetation 
Mosaic vegetation/cropland 

Closed to open shrubland (< 5 m) 
Jiangxi 52 24.5°~29.8° 

113.5°~118.6° 
Subtropical humid Rainfed croplands 

Mosaic cropland/vegetation 
Mosaic vegetation/cropland 

Closed to open shrubland (< 5 m) 

Guangdong 28 20.3°~25.1° 
110.1°~117° 

Subtropical monsoon Rainfed croplands 
Mosaic cropland/vegetation 
Mosaic vegetation/cropland 

Closed to open shrubland (< 5 m) 

Shandong 183 34°~38.4° 
115.0°~122.6° 

Temperate monsoon Irrigated croplands 
Rainfed croplands 

Mosaic cropland/vegetation 
Mosaic vegetation/cropland 

2.3. Calculation of the Daily Surface Reflectivity (SR) and the Effective Reflected Power (Pr,eff) 

For daily basis sensitivity analysis, the surface reflectivity (SR) and effective reflected power 
(Pr,eff) proposed by Chew et al. [6,12] are used as a proxy for SM to compare it with the SMAP SM 
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products. The SR and Pr,eff are calibrated variables of SNR after correcting effects such as antenna gain, 
receiver noise, and range items. The SR and Pr,eff depend on the reflectivity of the soil, which is related 
to the dielectric constant [27]. 

For TDS-1 data, as presented by Carreno-Luengo et al. [26] and Chew et al. [6], the effective 
reflected power (Pr, eff) is defined as the corrected SNR of the DDM, as shown in Equation (1). The 
SNR (in dB) correction is based on the bistatic radar equation describing the coherent component of 
the received power. 

𝑃௥,௘௙௙ ∝ 𝑆𝑁𝑅 + 20 𝑙𝑜𝑔( 𝑅௧௦ + 𝑅௦௥) − 10𝑙𝑜𝑔𝐺௥ + 20 𝑙𝑜𝑔(𝑐𝑜𝑠𝜃)
 

(1) 

where SNR is the peak power minus the noise, Rts is the range from the transmitter to the specular 
reflection point, Rsr is the range from the specular reflection point to the receiver, Gr is the antenna 
gain toward the specular reflection point, and 𝜃 is the incidence angle. 

For CYGNSS data, Chew et al. [12] proposed that the SR (in dB) can be described as follows: 𝑆𝑅 ∝ 𝑆𝑁𝑅 − 10 𝑙𝑜𝑔 𝑃௥௧ − 10 𝑙𝑜𝑔 𝐺௧ − 10 𝑙𝑜𝑔 𝐺௥ − 20 𝑙𝑜𝑔 𝜆 + 20 𝑙𝑜𝑔( 𝑅௧௦ + 𝑅௦௥)+ 20 𝑙𝑜𝑔(4𝜋) 
(2) 

where Ptr is the transmitted power, Gt is the gain of the transmitting antenna, and λ represents 
wavelength of the GPS L1 bands signal (0.19 m). 

2.4. Monthly SM Estimation Using Neural Network 

GNSS-R reflectivity is sensitive to SM and to other geophysical parameters, e.g., vegetation 
canopy, elevation, slope, surface roughness, and precipitation [28-31]. Thus, for monthly SM 
estimates, a new model considering the aforementioned variables was constructed using the BP-
ANN to estimate continuous SM over the study area (Figure 2). The BP-ANN is a supervised learning 
algorithm, which refers to a multi-layers forward neural network with an input layer, one or more 
hidden layers, and an output layer. BP-ANN can be used in many tasks, e.g., classification and 
regression [32,33], and is also used in the geoscience field [34]. BP-ANN can, in principle, efficiently 
handle input and output variables relations, with no limited in linear relationships [35,36]. A 
multifactor non-linear regression model was applied in this study. During the model processing, 
contributions of individual variables and their combinations to the learning process were assessed to 
determine the optimal inputs for SM estimations. In addition to the variables mentioned above (i.e., 
NDVI, VWC, elevation, slope, and roughness), the variable of noise floor derived from the native 
data was also considered. This variable reflects the DDM noise. Additionally, numerous studies show 
that seasonal SM and precipitation have a significant interaction, and SM is probably influenced by 
insignificant precipitation changes. Hence, precipitation was also considered [37,38]. 
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Figure 2. The back-propagation artificial neural network (BP-ANN) model to estimate monthly SM. 

In order to choose the optimal input variables for SM retrieval, contributions of individual 
variables and their combinations to the sensitivity of SM were assessed (using the correlation 
coefficient (R) , RMSE, and the mean absolute error (MAE) as indicators), as shown in Table 4. The 
statistical indices from models 2 and 3 show that the combination of NDVI and VWC provides an 
optimal performance. Models 3~5 show that elevation and precipitation appear to positively affect 
the model, and precipitation has a slightly lower impact than that of elevation. Models 6 and 7 were 
used to investigate the slope and surface roughness, and both show positive correlations with SM. 
The contribution of noise is negative, as shown in models 8 and 9, so this variable is not selected. 
Most important of all, to determine the contribution of SR, model 10 used all the other variables 
(excluding noise) except SR. Note that the correlation coefficient of model 10 is much lower than that 
of other models, which proves that the SR has the highest impact on the overall performance. The 
best variable combination (i.e., model 7) was selected for the subsequent SM estimation. The model 
test was executed using CYGNSS data from April 2018. 

Table 4. Variables used to fit the SM. 

Model Variables R RMSE 
(m3m-3) 

MAE 
(m3m-3) 

1 SR 0.790  0.069 0.045 
2 SR, NDVI, VWC 0.808  0.062 0.044 
3 SR, NDVI, VWC, Elev. 0.828  0.065 0.063 
4 SR, NDVI, VWC, Preci. 0.821  0.070 0.059 
5 SR, NDVI, VWC, Elev., Preci. 0.814  0.067 0.056 
6 SR, NDVI, VWC, Preci., Elev., Slope, 0.842  0.061 0.045 
7 SR, NDVI, VWC, Elev., Slope, Preci., Rough. 0.871  0.057 0.041 
8 SR, NDVI, VWC, Elev., Slope, Preci., Rough., Noise 

NDVI, VWC, Elev., Slope, Preci, Rough., Noise 
0.856  
0.726  

0.061 
0.074 

0.049 
0.057 9 

10 NDVI, VWC, Elev., Slope, Preci., Rough. 0.756  0.073 0.061 

 
Three different layers were contained in the model, i.e., the input layer, the hidden layer, and the 

output layer. The input layer contained multi-parameters affecting SM, i.e., NDVI, vegetation water 
content (VWC), elevation, slope, precipitation, and roughness data, as shown in Figure 2. The NDVI 
and VWC were estimated from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua 
Surface Reflectance Daily Global 500m data set. The elevation, slope and roughness data were 
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derived from the SRTM 90m DEM data set. The precipitation was derived from the Global 
Precipitation Measurement (GPM) Level 3 data set. The SMAP Level 3 SM data with a 9-km 
resolution were used in the output layer during the training stage of the model for optimization of 
the BP-ANN parameters. All data sets of the input and output layers were averaged to obtain 
monthly values. The VWC and roughness were computed from NDVI and slope with empirical 
relations [39,40], respectively. 

The datasets were normalized to obtain values between 0 and 1 prior to training. The datasets 
were divided into a training set, testing set, and validation set, accounting for 60%, 20%, and 20%, 
respectively. The training set was used to adjust the weights on the neural network, the testing set 
was used to test the network performance, and the validation set was used to minimize overfitting 
[34, 36]. Repeated trainings were tested to obtain an optimal neural network to achieve reasonable 
results. Table 5 shows the accuracy assessment of the multiple regression models. As shown in Table 
5, the non-linear model is better than the corresponding linear model; two hidden layers show the 
highest precision; also, the hyperbolic tangent performs better than others. Hence, the ANN structure 
used in this paper was as follows: the input layer has seven nodes, which is the same as the number 
of used features. The output layer has a single node that is the predicted SM values. There are two 
hidden layers, and the number of nodes is 8. The hyperbolic tangent is chosen as the activation 
function. The last layer is a regression layer with no activation function. The maximum training 
number was set to 6000, the error metric was being minimized as RMSE, the error threshold was set 
to 0.001, and the learning rate was set to 0.05. 

Table 5. Accuracy assessment of the BP-ANN structures. 

  Training set Testing set 
  R RMSE(m3m-3) R  RMSE(m3m-3)  

Regression function 
non-linear  0.871  0.064 0.840  0.068 

linear 0.762  0.073 0.748  0.075 

Hidden layers 

One 0.755  0.069 0.755  0.080 
Two 0.871  0.064 0.840  0.068 

Three  0.847  0.087 0.841  0.084 
Four 0.738  0.069 0.723  0.071 

Activation function 
logsig 0.830  0.059 0.802  0.059 

tangent 0.871  0.064 0.840  0.068 
purelin 0.841  0.083 0.832  0.081 

 

3. Results and Comparisons 

In this section, the results of TDS-1 and CYGNSS were analyzed for sensitivity analysis on a daily 
basis and SM estimation on a monthly basis, respectively. Due to the fact that the TDS-1 data stopped 
transmitting data in December 2018, and the data after April 2018 is very sparse, in Section 3.1 and 
3.2, data from the overlapping time period (between May 2017 and April 2018) of the two satellite 
missions were used for evaluation. In Section 3.3, to match up with the one-year’s in situ 
measurements collected from April 2018 to May 2019, the TDS-1 derived SM in April 2018 were 
compared with in situ measurements, and the CYGNSS derived SMs from April 2018 to May 2019 
were compared with in situ measurements. 
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For the daily results, since the TDS-1 data are distributed discretely and the daily MODIS NDVI 
data set is severely affected by cloud and fog, SR and Pr,eff are used as a proxy to compare with the 
SMAP SM dataset. For monthly results, the BP-ANN method proposed in Section 2.4 was used to 
estimate SM. All input parameters for the model (including TDS-1 Pr,eff and CYGNSS SR) were 
monthly averaged. Note that the monthly SM were derived in a separate way and were not simply 
inherited from the daily results. The temporal behavior of estimated SM, SMAP SM, and in situ 
measurements were examined during the entire period. Three statistical indices, i.e., ubRMSE, MAE, 
and R, were computed to quantify the accuracy. 

3.1. Sensitivity Analysis from TDS-1 and CYGNSS on a Daily Basis 

As an example, Figure 3(a) and (b) show the Pr,eff distribution of TDS-1, and SR distributions of 
TDS-1 and CYGNSS in May 2017, respectively. Overall, neither data sets are available for the 
southwestern portion of Mainland China; the TDS-1 covers northern China. The distribution of the 
TDS-1 results is more discrete than those of CYGNSS, and there are only seven months of TDS-1 data 
available within the observed period. Additionally, the longer revisiting time (10~35 days) of the 
TDS-1 payload compared to that of CYGNSS (2.8~7 hours) also leads to this phenomenon. In 
addition, compared to TDS-1, the SR derived from CYGNSS exhibits a slightly higher correlation 
with the SMAP SM (R = 0.561 vs R = 0.613). 

 

Figure 3. (a) Distribution of TDS-1 Pr,eff in May 2017; (b) distribution of CYGNSS SR in May 2017. 

Due to the sparse distribution of TDS-1, for each grid cell (9 × 9-km), the maximum number of 
matches of TDS-1 Pr,eff and SMAP SM is 11; most are five to seven, so the R estimation for each grid 
may not be very particularly accurate. Thus, only the R of the SR derived from CYGNSS against the 
SMAP SM for each grid cell over the entire time period is shown (Figure 4(a)). The inner box in Figure 
4(a) illustrates the numerical distributions of R for CYGNSS at a daily scale. The VWC estimated from 
NDVI with empirical relations [39] is also presented to show the influence of vegetation on the 
derived SM (Figure 4(b)). Overall, the performance of the SM derived from CYGNSS shows different 
consistency with the SMAP SM. The low R values mainly occur in the central regions where the VWC 
values are obviously high, and the high R values occur in the northeast and south where the VWC 
values are relatively low. This indicates that the SR derived from CYGNSS could not guarantee an 
absolutely high accuracy of the SM estimates when the VWC is high, which is consistent with 
previous studies [8,25]. This may be due to the absorption of the signal by the vegetation resulting in 
a large attenuation of the signal intensity; thus, the estimated SM is lower than the actual value [24]. 
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To estimate SM under dense vegetation, future research of an algorithm suitable for bare soil or low-
vegetation surfaces should be improved to consider removing the effects of vegetation. 

 

Figure 4. (a) R between daily averaged CYGNSS SR and SMAP SM, (b) the averaged VWC estimated from 

NDVI with empirical relations over the observed time 

Figure 5 shows the variations of CYGNSS, and TDS-1 against SMAP during the observation 
period at one specific grid (31.5°E, 104.4°N). This grid was selected because it contained the most 
CYGNSS data during the observed time. The SMAP SM data were interpolated to show a visually 
continuous curve in Figure 5; this does not affect the final accuracy. Note that the Pr,eff derived from 
TDS-1 and the SR derived from CYGNSS show good agreement with SMAP SM data (R = 0.682 for 
TDS-1, and R = 0.763 for CYGNSS). It should be pointed out that, due to the limited amount of TDS-
1 data used, the comparison between TDS-1 and SMAP is almost not significant from a statistical 
point of view. For CYGNSS, the magnitudes are not always proportional to the SMAP SM when the 
SM is low (see the box in Figure 5). The underestimates of the SMAP SM products over high 
vegetation regions may lead to this phenomenon [41,42]. The difference in scales between the SMAP 
pixels and the CYGNSS points may also be linked to the biases. 

 

Figure 5. Variations of CYGNSS, TDS-1, and SMAP during the observation period. 

3.2. SM Estimation From TDS-1 and CYGNSS on a Monthly Basis 

Compared with most atmospheric processes, soil moisture has a longer memory time and may 
impact the climatic characteristics; hence, monthly SM is a key variable for climatology studies and 
soil hydrology [37,38]. 
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The BP-ANN model proposed in Section 2.4 was used to estimate SM on a monthly basis. For 
TDS-1, one-year data (from May 2016 to April 2017) of TDS-1 were used to train the model, and for 
CYGNSS, one-year data (from April 2018 to March 2019) were used to train the model. For both TDS-
1 and CYGNSS, one-year data over the two missions’ overlapping time period (i.e., between May, 
2017 and April, 2018) were used to predict the monthly SM. Taking advantage of the predicted SM 
over the entire overlapping time period, the main purpose of this section was to compare the 
performance of CYGNSS SM with SMAP SM on a monthly basis, and in the meantime, to cross-
validate the BP-ANN model using the SMAP SM data from a relatively independent time period. The 
following results shown in this section are all based on the predicted SM over the overlapping time 
period. To make the analysis consistent, all the results were converted to gridded data. The CYGNSS 
data were gridded to 10-km. Considering the sparse distribution of TDS-1 in Mainland China, 50 km 
was applied for TDS-1; thus, it cannot present as much detailed SM information as CYGNSS. The 
data value per grid cell was determined to be the mean value of the specular points in the grid. 

The data from one month of each season were chosen to display the results. Because there were 
only seven months of TDS-1 data available within the observed period, the selected months (i.e., June, 
November, February, and April) were not evenly time spaced. Figure 6 shows spatial comparisons 
of the SM derived from TDS-1 with the SMAP SM. Generally, the SM derived from TDS-1 shows 
good agreement with the SMAP SM. The central region of Mainland China shows a high SM value 
during the observation period (the green box in Figure 6(a1)), which is consistent with the variations 
of SMAP SM. In addition, SM in the north region shows little variation (the blue box in Figure 6(a1)); 
conversely, the SM in the tropic region (the gray box in Figure 6(a1)) tends to be high most of the 
time. 
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Figure 6. Comparisons of the SM derived from TDS-1 and the SMAP SM. (a1–a2) June 2017, (b1–b2) 

November 2017, (c1–c2) February 2018, and (d1–d2) April 2018. 

Figure 7 shows the variations of the SM derived from CYGNSS and the SMAP SM over Mainland 
China during the same four months as that of TDS-1 in Figure 6. Overall, the CYGNSS data well 
reflects the SM dynamics during the observed period with different seasonal amplitudes, and there 
is a good agreement between CYGNSS and SMAP. Spatially, the estimated SM varies significantly, 
similar to that of TDS-1 in Figure 6. Note that the estimated SM of the northeast (the box in Figure 7 
(a1)) shows lower variation compared with other areas, and the SM maintains a constant value of 
around < 0.4 m3 m-3 during the full year. This is consistent with SMAP SM. The SM in central and 
southern Mainland China show variations between locations. 
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Figure 7. Comparisons of the SM derived from CYGNSS and the SMAP SM. (a1–a2) June 2017, (b1–

b2) November 2017, (c1–c2) February 2017, and (d1–d2) April 2018. 

Figure 8 shows the spatial patterns of R, ubRMSE, and MAE of the TDS-1 and CYGNSS against 
SMAP on a monthly basis, respectively. Generally, CYGNSS performs well with good spatial patterns 
for all three indices, indicating that CYGNSS data could be used to produce an SM product (R = 0.798; 
ubRMSE = 0.062 m3m-3; MAE = 0.040 m3m-3); TDS-1 also shows good results, but with sparse spatial 
distribution (R = 0.676; ubRMSE = 0.052 m3m-3; MAE = 0.060 m3m-3). 

The inner boxes in Figure 8(a1) and 8(a2) illustrate the numerical distributions of R for TDS-1 
and CYGNSS, respectively. As shown in Figure 8 (a1), for TDS-1, over 65% of the R values are higher 
than 0.4, and the ubRMSE values are smaller than 0.08 m3m-3 over most areas, while those values are 
larger than 0.08 m3m-3 in the northeast. For the MAE of TDS-1, the values are smaller than 0.07 m3m-

3 in most parts of Mainland China, while they are larger than 0.07 m3m-3 in the northeast, which is 
similar to the case of the ubRMSE. Additionally, because overlapping TDS-1 data were used for both 
monthly SM and daily SM sensitivity analysis (May 2016 through April 2017), the proposed model 
exhibits a higher correlation with the SMAP SM than that of Pr,eff compared to the daily results (R= 0. 
561. vs R= 0. 676). In terms of CYGNSS, the R values are higher in the north and, conversely, tend to 
be lower in the central area. Incoherent scattering due to volume scattering from dense vegetation 
and large surface roughness could be the possible reason for this phenomenon. Regarding the 
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distributions of ubRMSE, the values are generally lower than 0.08 m3m-3 over 50% of Mainland China, 
which is similar to the TDS-1 results. In part of the central regions, the ubRMSE values are rarely 
larger than 0.08 m3m-3, which are similar to the R distributions and are consistent with that of TDS-1. 
The MAE values are less than 0.03 m3m-3 over most of Mainland China. 

 

Figure 8. Statistical indices for the SM derived from TDS-1 /CYGNSS against the SMAP SM. (a1–a2) 

R, (b1–b2) ubRMSE, and (c1–c2) MAE. 

The average values of the three statistical indices per month basis are shown in Figure 9. For 

TDS-1 (Figure 9 (a)), the ubRMSE and MAE values are less than 0.075 m3m-3 and 0.08 m3m-3 over the 

entire time period, respectively, and the values of the two indices both show increasing trends from 

May to October, which are relevant to the declining trend of the R. As shown in Figure 9(b), the 

CYGNSS R are higher than 0.7 in most months and, conversely, tend to be low from August to 

October. Similar to TDS-1, the CYGNSS MAE value shows a rising trend from June to September, 

which indicates that the estimated SM had lower accuracies from June to September compared to 

other months. This is probably due to the growth of vegetation and the increase in surface roughness. 

The histograms of sample numbers were also shown. The sample numbers of CYGNSS show little 

differences per month. However, the sample numbers of TDS-1 vary from month to month. For 

example, the numbers of TDS-1 in July and October 2017 are very few, which may due to the 

instability of the payload. This may lead to the precision of SM estimates in these two months lower 

than other months. 
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Figure 9. Comparisons of the three statistical indices (i.e., ubRMSE, MAE, and R) between TDS-1/ 

CYGNSS and SMAP. (a) TDS-1 vs. SMAP, (b) CYGNSS vs. SMAP. 

3.3. Validation of TDS-1 and CYGNSS Results with in situ Measurements 

Given the limitations of the model construction and the cross-validation (i.e., the dependence of 
SMAP data during the training and predicting stages of the model) described in the Sections 2.4 and 
3.2, the in situ measurements derived from dense SM ground networks of Mainland China were 
introduced to further validate the model results. The TDS-1 data and in situ measurements only 
overlapped in April 2018, and the TDS-1 SM results from longitude 95.9° to 130° were selected for 
validation. As shown in Figure 10, the SM derived from TDS-1 shows a good correlation with the in 
situ data (R= 0.687, ubRMSE = 0.056 m3m-3, MAE = 0.066 m3m-3). Note that higher SM is observed in 
wetland and riverine areas (longitudes between 110° to 118°). Meanwhile, in the north areas 
(longitudes between 120° to 129.8°), the SM values tend to be lower, which is consistent with the 
climate features of China. 

 

Figure 10. Correlations of the SM derived from TDS-1, SMAP SM, and in situ measurements for 

locations with longitudes between 95.9° to 129.8° in April 2018. 

The statistical indices of each month between the SM derived from CYGNSS, and the in situ 
measurements are displayed in Figure 11. The indices illustrate that the variability of the SM derived 
from CYGNSS is in good agreement with that of the in situ measurements (averaged R= 0.724, 
averaged ubRMSE = 0.053 m3m-3, averaged MAE = 0.052 m3m-3). It is particularly noteworthy that, 
similar to Figure 8(b), between May and October, the Rs tend to be lower, and the ubRMSE and MAE 
values tend to be larger than those of other months. 
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Figure 11. Comparisons of ubRMSE, MAE, and R between the SM derived from CYGNSS and the in 

situ measurements. 

Three typical regions (i.e., Shandong (the blue box in Figure12(d)), Jiangxi (the green box in 
Figure12(d))), and Guangdong Province (the gray box in Figure12(d)) represent different climate 
conditions and vegetation densities and thus were chosen to further analyze the temporal variations 
of the estimated SM (Figure 12(a–c)). Figure 12(a–c) shows the time-series at each site. Twenty-seven 
sites in each typical region were chosen. Since the in situ data were monthly averaged, so 12 points 
were contained for each site per year, representing twelve months. Figure 12(a) shows sites 
distributed in a tropic region, i.e., Guangdong Province. The NDVI at this location varies from 0 to 
0.6. There were high SM values associated with the tropical climate. Fluctuations in the SM derived 
from CYGNSS are similar to the SMAP SM and in situ measurements across the entire observation 
time and exhibit the highest correlation (R = 0.856). Figure 12(b) shows sites distributed in a 
subtropical monsoon climate region, i.e., Jiangxi Province. Note that CYGNSS, SMAP and ground 
observations show large variations, with the lowest correlation (R= 0.672). Compared with the other 
two cases, these sites were influenced by vegetation cover more seriously with higher NDVI values 
(0 to 0.7). As shown in Figure 12(c), the Shandong Province is under a temperate monsoon climate 
condition, and the average NDVI varies between 0 and 0.5. All SM derived from CYGNSS, SMAP 
SM, and in situ measurements show little variations. The correlation value (R= 0.758) is relatively 
higher than that in Figure 12(b), whereas CYGNSS continues to provide an underestimate with a 
small negative bias value over the entire time period (MAE = 0.057m3m-3). 
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Figure 12. Correlations of the SM derived from CYGNSS, SMAP SM, and in situ measurements for 
three provinces with typical climate conditions, (a) Guangdong Province, (b) Jiangxi Province, (c) 
Shandong Province, (d) the sites distribution. 

4. Discussion 

4.1. Issues Related to the BP-ANN Model 

Overall, the proposed model based on BP-ANN generated promising results with comparable 
accuracy to the referenced SMAP data and the in situ measurements, demonstrating that it could be 
generalized for regional SM estimation. However, because the SMAP SM data were used in the 
output layer of the BP-CNN model during the training stage, the correlation coefficients of the 
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estimated SM and the SMAP SM (R = 0.676 for TDS-1; R = 0.798 for CYGNSS) were similar with or 
better than that of the estimated SM and the in situ measurements (R = 0. 687 for TDS-1; R = 0. 724 for 
CYGNSS). Although similar validation methods have been used in other publications [12, 24], it is 
better to involve other data sources to cross-validate the SM results. 

The model can be further trained with additional variables affecting SM (e.g., vegetation optical 
depth and soil composition). It should also be noted that an increase in parameters does not always 
improve accuracy. Additionally, the proposed model in this study was not applicable for a daily 
scale. Future research should consider this issue and improve the model by involving additional daily 
ancillary data from multiple sources. 

4.2. Advantages and Limitations of Spaceborne GNSS-R for Estimating SM 

Spaceborne GNSS-R, e.g., TDS-1 and CYGNSS as presented in this study, can estimate SM with 
accuracy comparable to L band SM satellite missions such as SMAP. The results show the two mission 
can estimate SM with accuracy comparable to L band SM satellite missions such as SMAP. Moreover, 
as the first GNSS-R constellation, CYGNSS can provide detailed spatial variabilities of SM with a very 
short revisit time. The GNSS-R payload is light in weight and cost effective, which makes it possible 
to design small satellite constellations. It is believed that future spaceborne GNSS-R missions will 
have better spatial and temporal resolutions for sensing SM. 

Possible errors of estimating SM using TDS-1/CYGNSS are explained as follows:  
1. Different spatial scales between in situ/SMAP points and TDS-1/CYGNSS points. Although 

ground measurements from dense sites were used to reduce this well-known issue, the 
differences in spatial resolution continue to introduce deviations. Future research may 
consider downscaling the SMAP SM product to the same resolution as the GNSS-R.  

2. Effects in terms of VWC, roughness, and elevation etc. For daily sensitivity analysis results, 
the vegetation severely affects the accuracy of SM, particularly over the central part of 
Mainland China (VWC>6 kg/m2 vs. R<0.6). The accuracies of monthly results were improved 
since these variables were considered in the proposed neural network model. Nevertheless, 
surface roughness and complex terrain environments may still reduce the estimation 
accuracy. Subsequent research may attempt to a potential way to reduce this impact by using 
changes instead of absolute reflectivity values.  

3. Mismatch between the depth of microwave penetration and the depth of in situ SM 
measurements. The in situ measurements used for validation are at 10 cm, whilst the GNSS 
L-band signal has various penetration depths between 0 cm and 20 cm, depending on the 
soil’s wetness, as Camp et al. shown in [8].  

4. Difficulty of matching different remote sensing datasets to each other and the GNSS-R daily 
values. As mentioned before, the daily MODIS NDVI data set is severely affected by cloud 
and fog, and currently NDVI does not have a commonly used product. Future study may 
focus on generation of daily continuous surface soil moisture of high spatial resolution using 
spaceborne GNSS-R data; daily NDVI estimation method as Zhao et al. proposed [43] may 
be a good inspiration. 

5. Conclusions 

This study, taking Mainland China as an example, gave a comprehensive evaluation and 

comparison of using TDS-1 and CYGNSS data sets to estimate SM. For sensitivity analysis on a daily 

basis, the two data were matched up regionally and compared over the overlapping periods (May 

2017–April 2018) with SMAP SM. For SM estimation on a monthly basis, an algorithm based on BP 

ANN was proposed to estimated SM. The algorithm combined variables (e.g., vegetation cover, 

surface roughness, elevation, and precipitation) that highly related to SM estimation. The predicted 
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SM showed strong and positive linear relationship with SMAP SM and in situ measurements, 

respectively. The findings of this study suggested that TDS-1/ CYGNSS and upcoming spaceborne 

GNSS-R missions could be new and powerful data sources to produce SM data sets at large scale and 

with relatively high precision. 
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