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Abstract. The automata-theoretic approach provides an elegant
method for deciding linear arithmetic theories. This approach has
recently been instrumental for settling long-standing open problems
about the complexity of deciding the existential fragments of Büchi
arithmetic and linear arithmetic over p-adic fields. In this article, which
accompanies an invited talk, we give a high-level exposition of the
NP upper bound for existential Büchi arithmetic, obtain some derived
results, and further discuss some open problems.
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1 Introduction

Finite-state automata over finite and infinite words provide an elegant method
for deciding linear arithmetic theories such as Presburger arithmetic or linear
real arithmetic. Automata-based decision procedures for arithmetic theories have
also been of remarkable practical use and have been implemented in tools such as
LASH [16] or TaPAS [10]. However, understanding the algorithmic properties of
automata-based decision procedures turned out to be surprisingly difficult and
tedious, see e.g. [3,6,9,19]. It took, for instance, 50 years to show that Büchi’s
seminal approach for deciding Presburger arithmetic using finite-state automata
runs in triply-exponential time and thus matches the upper bound of quantifier-
elimination algorithms [5,6]. Given this history, it is not surprising that, until
recently, the author was of the opinion that automata should better be avoided
when attempting to prove complexity upper bounds for arithmetic theories.

The author’s opinion drastically changed when appealing to automata-based
approaches recently allowed for settling long-standing open problems about the
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complexity of the existential fragments of Büchi arithmetic and linear arith-
metic over p-adic fields, which were both shown NP-complete [8]. The NP upper
bounds are the non-trivial part in those results, since, unlike, for instance, in
existential Presburger arithmetic, the encoding of smallest solutions can grow
super-polynomially. The key result underlying both NP upper bounds is that
given two states of a finite-state automaton encoding the set of solutions of a
system of linear Diophantine equations, one can decide whether one state reaches
the other in NP in the size of the encoding of the system (and without explicitly
constructing the automaton).

This article gives a high-level yet sufficiently detailed outline of how the NP
upper bound for existential Büchi arithmetic can be obtained. We subsequently
show how the techniques used for the NP upper bound can be applied in order
to show decidability and complexity results for an extension of Presburger arith-
metic with valuation constraints. Those results are somewhat implicit in [8] but
seem worthwhile being explicated in written. We conclude with some observa-
tions and discussion of open problems.

2 Preliminaries

We denote by R the real numbers, by R+ the non-negative reals, by Q the
rational numbers, by Z the integers, by N the non-negative integers, and by N+

the positive integers. For integers a < b, we write [a, b] for the set {a, a+1, . . . , b}.
All numbers in this article are assumed to be encoded in binary. Given a matrix
A ∈ Z

m×n with components aij ∈ Z, 1 ≤ i ≤ m, 1 ≤ j ≤ n, the (1,∞)-norm of
A is ‖A‖1,∞ := maxm

i=1

∑n
j=1|aij |. For v ∈ R

n, we just write ‖v‖∞.

2.1 Büchi Arithmetic

Throughout this article, let p ≥ 2 be a base. Recall that Presburger arithmetic
is the first-order theory of the structure 〈N, 0, 1,+〉. Büchi arithmetic is the first-
order theory of the structure 〈N, 0, 1,+, Vp〉 obtained from endowing Presburger
arithmetic with a functional binary predicate Vp ⊆ N × N such that Vp(x, u)
evaluates to true if and only if u is the largest power of p dividing x without
remainder. This definition leaves the case x = 0 ambiguous. A sensible approach
would be to introduce a special value ∞ and to assert Vp(0,∞) to hold, many
authors choose to assert Vp(0, 1), see e.g. [4]. However, the particular choice has
no impact on the sets of naturals definable in Büchi arithmetic.

Atomic formulas of Büchi arithmetic are either linear equations a · x = c or
Büchi predicates Vp(x, u). Note that the negation of a · x = c is equivalent to
a ·x < c ∨a ·x > c. Since we interpret variables over the non-negative integers,
we have a · x > c ≡ ∃y a · x − y = c + 1. Consequently, we can, with no loss of
generality, assume that negation symbols only occur in front of Vp predicates.
Now if we consider a negated literal ¬Vp(x, u), we have that ¬Vp(x, u) evaluates
to true if and only if either



Approaching Arithmetic Theories with Finite-State Automata 35

(i) u is a power of p but not the largest power of p dividing x; or
(ii) u is not a power of p.

The case (i) can easily be dealt with, as it is definable by

∃v Vp(u, u) ∧ Vp(x, v) ∧ ¬(u = v)

Moreover, ¬Vp(u, u) asserts that u is not a power of p. Thus, we may, without
loss of generality, assume that quantifier-free formulas of Büchi arithmetic are
positive Boolean combinations of atomic formulas a·x = c, Vp(x, u) and Vp(u, u).

2.2 Finite-State Automata and p-automata

It is well known that Büchi arithmetic can elegantly be decided using finite-state
automata, see [2] for a detailed overview over this approach. In this section, we
give a generic definition of deterministic automata and then define p-automata
which are used for deciding Büchi arithmetic.

Definition 1. A deterministic automaton is a tuple A = (Q,Σ, δ, q0, F ), where

– Q is a set of states,
– Σ is a finite alphabet,
– δ : Q × Σ → Q ∪ {⊥}, where ⊥ �∈ Q, is the transition function,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of final states.

Note that this definition allows automata to have infinitely many states and
to have partially defined transition functions (due to the presence of ⊥ in the
codomain of δ).

For states q, r ∈ Q and u ∈ Σ, we write q
u−→ r if δ(q, u) = r, and extend −→

inductively to finite words such that for w ∈ Σ∗ and u ∈ Σ, q
w·u−−→ r if there is

s ∈ Q such that q
w−→ s

u−→ r. Whenever q
w−→ r, we say that A has a run on w

from q to r. We write q
∗−→ r if there is some w ∈ Σ∗ such that q

w−→ r.
A finite-state automaton A is a deterministic automaton with a finite set of

states that accepts finite words. The language of A is defined as

L(A) def= {w ∈ Σ∗ : q0
w−→ qf , qf ∈ F}.

We now introduce p-automata, which are deterministic automata whose lan-
guage encodes a set of non-negative integers in base p. Furthermore, we recall
the construction of the key gadget underlying the automata-based decision pro-
cedures for Büchi arithmetic which provides a representation of the set of non-
negative integer solutions of a system of linear equations as the language of a
finite-state p-automaton.

Formally, a p-automaton is a deterministic automaton over an alphabet
Σn

p := {0, 1, . . . , p − 1}n for some nonnegative integer n. A finite word over
the alphabet Σn

p can naturally be seen as encoding an n-tuple of nonnegative
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integers in base p. There are two possible encodings: least significant digit first
and most-significant digit first. We only consider the latter msd-first encoding,
in which the most significant digit appears on the left. Formally, given a word
w = u0 · · ·uk ∈ (Σn

p )∗, we define �w� ∈ N
n

�w� :=
k∑

j=0

pk−j · uj .

Note that for w = ε, the empty word, we have �w� = 0.
A system S of linear Diophantine equations has the form S : A ·x = c, where

A is an m×n matrix with integer coefficients, c ∈ Z
m, and x = (x1, . . . , xn)� is

a vector of variables taking values in the nonnegative integers. We write �S� :=
{u ∈ N

n : A · u = c} for the set of all nonnegative integer solutions of S. We
denote by 〈S〉 the size of the encoding of S, i.e., the number of symbols required
to represent S assuming binary encoding of all numbers.

Following Wolper and Boigelot [19], we define a p-automaton whose language
is the msd-first encoding all nonnegative integer solutions of systems of linear
equations.

Definition 2. Let S : A · x = c be a system of linear equations with integer
coefficients such that A has dimension m × n. Corresponding to S, we define a
p-automaton A(S) := (Q,Σn

p , δ, q0, F ) such that

– Q = Z
m,

– δ(q,u) = p · q + A · u for all q ∈ Q and u ∈ Σn
p ,

– q0 = 0, and
– F = {c}.

Although the automaton A(S) has infinitely many states, it defines a regular
language since there are only finitely many live states, i.e., states that can reach
the set F of accepting states. The reason is that no state q ∈ Q such that
‖q‖∞ > ‖A‖1,∞ and ‖q‖∞ > ‖c‖∞ can reach an accepting state [1,8], and
hence Q can be restricted to a finite number of states. A rough upper bound on
the number #Q of states of A(S) is

#Q ≤ 2m · max(‖A‖1,∞, ‖c‖∞)m , (1)

where m is the number of equations in the system S [8,19].
A key reachability property of the automaton A(S) is the following: Let

q, r ∈ Z
m be states of A(S). Then for all k ∈ N and words w ∈ (Σn

p )k we have

q
w−→ r ⇐⇒ r = pk · q + A �w� (2)

From this characterization, it follows that the language of A(S) is an msd-first
encoding of the set of solutions of the system A · x = c. Indeed, choosing q as
0 and the final state c as r, we have that 0 w−→ c if and only if A · �w�m = c.

If we wish to emphasize the underlying system S of linear Diophantine equa-
tions of a p-automaton A(S) we annotate the transition relation with the sub-
script S and, e.g., write q

∗−→S r.
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2.3 Semi-linear Sets

Given a base vector b ∈ N
n and a finite set of period vectors P = {p1, . . . ,pm} ⊆

N
n, define

L(b, P ) :=

{

b +
m∑

i=1

λi · pi : λi ∈ N

}

.

We call L(b, P ) a linear set and we say that a subset of N
n is semi-linear if

it can be written as a finite union of linear sets. It is well-known that the set
of nonnegative integer solutions of a system of linear Diophantine equations is
a semi-linear set [7]. Also note that a linear set is definable by a formula of
existential Presburger arithmetic of linear size.

A special subclass of semi-linear sets are ultimately periodic sets, which are
an equivalent presentation of semi-linear sets in dimension one. A set M ⊆ N is
ultimately periodic if there is a threshold t ∈ N and a period � ∈ N such that for
all a, b ∈ N with a, b ≥ t and a ≡ b mod � we have a ∈ M if and only if b ∈ M .

3 Existential Büchi Arithmetic

One of the main results of [8] is that deciding existential formulas of Büchi
arithmetic is NP-complete. A main obstacle is that the magnitude of satisfying
variable assignments may grow super-polynomially. It is known that for infinitely
many primes q the multiplicative order ordq(2) of 2 modulo q is at least

√
q [13].

For such a prime the predicate x is a strictly positive power of 2 that is congruent
to 1 modulo q can easily be expressed as a formula of existential Büchi arithmetic
of base 2:

Φ(x) def= ∃y x > 1 ∧ V2(x, x) ∧ x = q · y + 1

Observe that Φ(x) has a constant number of literals and that its length linear
in the bit-length of q, while the smallest satisfying assignment is x = 2ordq(2).
Thus satisfying assignments in existential Büchi arithmetic may have super-
polynomial bit-length in the formula size, even for a fixed base and a fixed
number of literals. This rules out the possibility of showing NP membership by a
non-deterministic guess-and-check algorithm. We nevertheless have the following
theorem:

Theorem 1 ([8]). Existential Büchi arithmetic is NP-complete.

Existential Büchi arithmetic inherits the NP lower bound from integer program-
ming when the number of variables is not fixed. While existential Presburger
arithmetic can be decided in polynomial time when the number of variables is
fixed [15], showing such a result for Büchi arithmetic would likely require major
breakthroughs in number theory, even when fixing the number of literals. Given
a, b, c ∈ N, we can express discrete logarithm problems of the kind, does there
exist x ∈ N such that ax ≡ b mod c, in a similar way as above:

∃x∃y Va(x, x) ∧ x = c · y + b
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Such discrete logarithm problems are believed to possibly be even more difficult
than those underlying the Diffie-Hellman key exchange [14]. Of course, it may
well be that existential Büchi arithmetic with a fixed number of variables (and
even literals) is NP-hard. For instance, existential Presburger arithmetic with
a full divisibility predicate is NP-hard already for a fixed number of variables
and literals [11], shown via a reduction from a certain NP-complete problem
involving a special class of quadratic congruences [12].

We now give an exposition of the NP upper bound of Theorem1 developed
in [8]. It clearly suffices to only consider quantifier-free formulas. Let Φ(x) be
a quantifier-free formula of Büchi arithmetic, and let us first consider the spe-
cial case of a system of linear Diophantine equations together with a single Vp

assertion
Φ(x) def= A · x = c ∧ Vp(x, u),

where x and u are variables occurring in x. From Sect. 2.2, we know that we can
construct a p-automaton A(S) whose language encodes all solutions of S : A·x =
c. A key insight enabling showing decidability of Büchi arithmetic is that the
set of solutions of Vp(x, u) for x > 0 can be encoded by a regular language over
the alphabet Σp × Σp: [

Σp

0

]∗ [
Σp \ {0}

1

] [
0
0

]∗

Thus, in order to decide whether Φ(x) is satisfiable, we can check whether we
can find a run through the automaton A(S) that can be partitioned into three
parts. In the first part, x can have any digit and u has only zeros as digits. The
second part is a single transition in which x can have any non-zero digit and u
has digit one, and in the third part both x and u have digits zero.

To make this argument more formal, it will be useful to introduce a mild
generalization of the reachability relation for p-automata. Suppose we are given
a system of linear equations S : A ·x = c and an additional system of constraints
T : B ·x = d. For all pairs of states q, r of the automaton A(S), write q

w−→S[T ] r

if q w−→S r and B · �w� = d. Plainly q
w−→S[T ] r if and only if

(
q
0

)
w−→S∧T

(
r
d

)

,

where S ∧ T is the system of equations

S ∧ T :
(
A
B

)

x =
(
c
d

)

.

With the new notation at hand, the observations made above now enable us
to reduce satisfiability of Φ(x) to three reachability queries in p-automata: Φ(x)
is satisfiable if and only if there are states d and e of A(S), and a ∈ Σp \ {0}
such that

0 ∗−→S[u=0] d −→S[x=a,u=1] e
∗−→S[x=u=0] c . (3)
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Note that by (1), the encoding of the binary representation of the states d and e
of A(S) is polynomial in the encoding of S, and hence both states can be guessed
in NP.

The reduction to reachability queries in p-automata is easily seen to gener-
alize to the case where we have an arbitrary number k of constraints Vp(xi, ui)
in Φ(x). To check satisfiability, all we have to do is to guess a relative order
between the ui, ai ∈ Σp \ {0}, states di and ei of A(S), resulting in O(k) reach-
ability queries in p-automata. We illustrate the reachability queries for the case
in which ui > ui+1 for all 1 ≤ i ≤ k, the remaining cases follow analogously:

0 ∗−→S[u1,...,uk=0] d1 −→S[x1=a1,u1=1,u2,...,uk=0] e1
∗−→S[x1,u1,...,uk=0] d2 −→S[x2=a2,u2=1,x1,u1,u3,...uk=0] e2

∗−→S[x1,x2,u1,...,uk=0] · · ·
· · ·dk −→S[xk=ak,uk=1,x1,...,xk−1,u1,...,uk−1=0] ek

∗−→S[x1,...,xk,u1,...,uk=0] c (4)

Finally, we observe that the set of solutions of a literal ¬Vp(u, u), stating that
u is not a power of p, is encoded by the regular language given by the following
regular expression:

0∗10∗ ≡ 0∗(Σp \ {0, 1})Σ∗
p + 0∗10∗(Σp \ {0})Σ∗

p

Observe that this regular expression induces a decomposition similar to (3).
Hence, we can non-deterministically polynomially reduce deciding conjunctions
of the form

A · x = c ∧
∧

i∈I

Vp(xi, ui) ∧
∧

j∈J

¬Vp(uj , uj) (5)

for finite index sets I, J to a linear number of state-to-state reachability queries
in p-automata implicitly given by systems of linear Diophantine equations. We
now invoke the following theorem:

Theorem 2 ([8]). Deciding state-to-state reachability in a p-automaton A(S)
given by a system of linear Diophantine equations S is in NP (with respect to
the encoding of S).

In particular, the NP upper bound does not require the explicit construction
of A(S). By application of this result and the arguments above, the NP upper
bound for existential Büchi arithmetic follows. Given a quantifier-free formula
Φ(x), as discussed in Sect. 2.1, we can assume that Φ is a positive Boolean
combination of literals a · x = c, Vp(x, u) and ¬Vp(u, u). Hence we can guess in
NP a clause of the disjunctive normal form of Φ, which is of the form (5), and in
turn check in NP a series of guessed reachability queries in p-automata induced
by the guessed clause.

We close this section with a brief discussion of the main ideas behind the
NP upper bound of Theorem2. The first observation is that reachability in
p-automata reduces to satisfiability in a certain class of systems of linear-
exponential Diophantine equations. From (2), we can deduce that for a word
w ∈ (Σn

p )k,

q
w−→ r ⇐⇒ r = pk · q + A · �w� ⇐⇒ r = pk · q + A · x, ‖x‖∞ < pk.
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Let x = (x1, . . . , xn)�, replacing pk by a fresh variable y, it follows that q ∗−→ r if
and only if the following system of linear Diophantine inequalities has a solution
in which y is a power of p:

r = y · q + A · x, xi < y, 1 ≤ i ≤ n.

This is now a problem that is not difficult to decide, since we can guess in NP
a linear set L(b, P ) ⊆ N

m with a small description that generates a subset of
the set of solutions of this system. Checking whether L(b, P ) contains a point
in which the y-coordinate is a power of p can easily be done in NP, we refer the
reader to [8] for further details.

4 Presburger Arithmetic with Valuation Constraints

The definition of Vp ensures that p-recognizable sets are equivalent to those defin-
able in Büchi arithmetic. Note that it is possible to enrich Presburger arithmetic
with an even more general predicate which does, however, not change the defin-
able sets of natural numbers, see e.g. [4, p. 209]. But the predicate Vp also has
a close connection to the valuation function vp : Q → Z underlying the defini-
tion of the p-adic numbers. Given a prime p and a non-zero rational number
x, the p-adic valuation vp(x) is defined to be the unique integer e ∈ Z such
that x = pe · a

b with a, b ∈ Z and p � a, b. Intuitively vp(x) is the exponent of
the greatest power of p that divides x. Now the p-adic valuation vp and the Vp

predicate of Büchi arithmetic (viewing Vp as a function) are related as follows:
for a natural number n ∈ N we have Vp(n) = pvp(n). Thus, we could view vp(n)
as a succinct representation of Vp(n).

In arithmetic theories over p-adic numbers, it is common to consider two-
sorted logics with one sort for the p-adic numbers and another sort for the valu-
ation ring Z, together with additional (restricted) arithmetic over the valuation
ring, see e.g. [18]. One can naturally transfer this concept to arithmetic theo-
ries over numerical domains other than the p-adic numbers. The decompositions
established in the previous section together with classical results on finite-state
automata then give decidability and complexity results.

As a concrete illustrating example, we introduce in this section Presburger
arithmetic with valuation constraints. Since vp(n) ∈ N for all n ∈ N+, technically
we are not dealing with a multi-sorted logic.1 We use the following notational
convention: a variable x is interpreted as a natural number, and x

def= vp(x) is
interpreted as the valuation of x. A formula Φ of Presburger arithmetic with
valuation constraints is then given by a tuple

Φ = (Ψ(x1, . . . , xn);Γ (x1, . . . , xn)),

where both Ψ and Γ are formulas of Presburger arithmetic. We say that Φ is
existential if both Ψ and Γ are formulas of existential Presburger arithmetic.
1 And for brevity, we do not delve into different ways of defining Vp(0), the results

given work for any sensible choice of defining Vp(0).
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Moreover, Φ is satisfiable with respect to a fixed p > 1 given as input when-
ever we can find a variable assignment σ : {x1, . . . , xn} → N such that both
Ψ(σ(x1), . . . , σ(xn)) and Γ (vp(σ(x1)), . . . , vp(σ(xn))) evaluate to true.

It is not surprising and easy to see that satisfying assignments are not semi-
linear since, e.g.,

Φ = (x > 0;∃y x = 2y ∧ y > 0)

has the set of all positive integers n with vp(n) even and greater than zero as
its set of satisfying assignments, i.e., Φ defines the set {p2k · n : k, n ∈ N+, p � n}
which, for any base p > 1, is obviously not ultimately periodic and hence not
semi-linear.

We now show NP-completeness of existential formulas of Presburger arith-
metic with valuation constraints from which we can then conclude decidability
of the general case. Given Φ = (Ψ, Γ ), let us first consider the case in which Ψ
is a system of linear Diophantine equations S : A · x = c with x = (x1, . . . , xn),
and Γ is existential. A solution of S is encoded by a path in A(S) from 0 to c,
and if we assume without loss of generality that xi > xi+1 for all 1 ≤ i < n then
similarly as in (4) we can decompose this path as

0 ∗−→ d1 −→S[x1=a1] e1
w1−−→S[x1=0] d2 −→S[x2=a2,x1=0] e2

w2−−→S[x1,x2=0] · · ·
· · ·dn −→S[xn=an,x1,...,xn−1=0] en

wn−−→S[x1,...,xn=0] c (6)

for some wi ∈ (Σn
p )∗ and with all ai �= 0. Note that this decomposition implies

that vp(xn) = |wn| + 1, vp(xn−1) = |wn| + |wn−1| + 2, etc. In particular, each
|wi| is the length of a path between the states ei and di+1. It is well-known that
the set of lengths of paths between two states in a non-deterministic finite-state
automaton is semi-linear and that the encoding of each linear set in such a semi-
linear set is logarithmic in the number states, see e.g. [17]. Moreover, semi-linear
sets are closed under taking finite sums. Recall that by the estimation in Eq. (1)
the number of states of a p-automaton A(S) is exponentially bounded and that
each state has an encoding linear in the encoding of S. It follows that given a
decomposition as in (6), we can for each xi guess in NP a linear set L(b, P ) ⊆ N

such that vp(xi) ∈ L(b, P ). Also recall from Sect. 2.3 that a linear set is definable
by a formula of existential Presburger arithmetic of linear size. Consequently,
we obtain the following non-deterministic polynomial-time algorithm deciding
satisfiability of Φ above:

– guess the states occurring in a decomposition of a run from 0 to c in A(S) of
the form (6) (again note that this does not require constructing A(S));

– from this decomposition, guess linear sets L(bi, Pi) such that vp(xi) ∈
L(bi, Pi) for each xi;

– check whether Γ is satisfiable with each vp(xi) constrained to lie in L(bi, Pi).

If Φ = (Ψ, Γ ) is an arbitrary existential formula of Presburger arithmetic with
valuation constraints, an NP upper bound also follows: we only need to guess a
clause of the disjunctive normal form of Ψ and then proceed as before. The case
where Φ is arbitrary obviously reduces to the existential case since Presburger
arithmetic has quantifier elimination.
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Theorem 3. Presburger arithmetic with valuation constraints is decidable, and
its existential fragment is NP-complete.

5 Conclusion

This article provided an exposition of the results of [8] together with some
results that follow but are not explicated in [8]. We described the proof of NP-
completeness of existential Büchi arithmetic and showed how this proof can
be applied to obtain decidability of Presburger arithmetic with valuation con-
straints and NP-completeness of its existential fragment. We close this article
with a couple of remarks and open questions for future work:

– There is an analogue of Büchi arithmetic for the reals that was studied by
Boigelot, Rassart and Wolper [1]. This analogue builds upon a predicate Xp ⊆
R+ × Q × [0, p − 1] such that Xp(x, u, k) is true if and only if u is a (possibly
negative) integer power of p, and there is an encoding of x such that the digit
at the position specified by u is k:

Xp(x, u, k) ⇐⇒ there are � ∈ Z, a�, a�−1, . . . ∈ [0, p − 1] s.t. x =
−∞∑

i=�

aip
i

and there is q ∈ Z s.t. q ≤ �, u = pq and aq = k.

The real analogue of Büchi arithmetic is the first-order theory of the struc-
ture 〈R+, 0, 1,+,Xp〉 (BRW arithmetic after the authors of [1] for short).2

Looking at the similarities of the definitions of Xp(x, u, k) and Vp, it seems
conceivable that existential BRW arithmetic is also NP-complete, though this
is likely more tedious to prove mainly because some real numbers have mul-
tiple encodings (e.g., 1.0000 · · · = 0.9999 · · · ).

– Presburger arithmetic with valuation constraints is a powerful logic which can
be used to reason about sets of integers which are not semi-linear. Decidabil-
ity in such contexts is rare, and NP-completeness of its existential fragment
means that this logic could potentially find practical applications in areas
such as formal verification, as we seemingly can, for instance, express some
problems typically arising in bit-vector arithmetic. Generally speaking, what
are natural applications of Presburger arithmetic with valuation constraints?

– Is Büchi arithmetic with valuation constraints decidable? It can be derived
from the approach presented in Sect. 4 that this is the case for existential
Büchi arithmetic. However, the author is not aware of a quantifier-elimination
procedure for Büchi arithmetic that given a formula of Büchi arithmetic allows
for obtaining an equivalent formula of existential Büchi arithmetic.

– Is existential Büchi arithmetic with a fixed number of variables (and possibly
even a fixed number of literals) NP-complete? As discussed in Sect. 3, showing
membership in P would require breakthroughs that currently (and likely over
the next decades) seem out of reach, and would moreover break some public
key cryptographic systems.

2 For presentational convenience, we chose R+ as the domain of BRW arithmetic,
unlike [1] who actually use R.
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